next up previous
Next: About this document Up: No Title Previous: Slow Control

References

1
T. H. Gaisser, Cosmic Rays and Particle Physics, Cambridge Univ. Press, 1990.
2
C. E. Fichtel et al., Astrophys. J. Suppl. 94 (1994) 551.
3
J.A. Esposito et al., ApJ 461 (1996) 820.
4
From WHIPPLE Collaboration:
M. Punch et al. Nature 160 (1992) 477.
J. Quinn et al. IAU Circular 6169, Juin 1995.
From HEGRA Collaboration:
D. Petry et al. Astron. Astrophys. 311 (1996) L13.
5
D. Vignaud, Proc. Int. Europhys. Conf. on High Energy Physics,
Brussels, Belgium, 1995.
http://kosmopc.mpi-hd.mpg.de/GALLEX/ROM.HTM
6
KAMIOKANDE-II - K.S. Hirata et al., Phys. Rev. D38(1988)448.
IMB - C.B. Bratton et al. Phys. Rev. D37(1988)3361.
7
A. Surdo, Proc. Int. Europhys. Conf. on High Energy Physics, Brussels, Belgium, 1995.

8
W.Rhode et al., Wuppertal preprint WUB 95-26.
K. Daum et al., Z. Phys. C66 (95) 417.
9
ANTARES Proposal, CPPM-97-02, DAPNIA-97-03, IFIC-97-35, OUNP-97-06, May 1997, http://marcpl1.in2p3.fr.
10
V.S. Berezinskii et al., Astrophysics of Cosmic Rays, North-Holland, 1990.

11
C.A. Meegan et al., Nature 355 (1992) 143.
T. Piran, Astrophys. J. 389 (1992) L45.
12
B. Paczynski and G. Xu, Astrophys. J. 427 (1994) 708.
13
R. Plaga, Astrophys. J. 424 (1994).
14
Waxman and Bahcall, PRL 78 (1997) 2292.
15
IAU Circular 6649, 1997
The BeppoSAX Science Data Center, http://www.sdc.asi.it
16
C.T. Hill and D.N. Schramm, Phys. Rev. D31 (1985) 564.
S. Yoshida and M. Teshima, Prog. Theoret. Phys. (Kyoto) 89 (1993) 833.
17
T.K. Gaisser et al., Phys. Rep. 258 (1995) 173.
18
L.V.Volkova, Yad. Fiz. 31(1980)1510 (Sov. J. Nucl. Phys. 31(1980)784).
19
V. S. Berezinsky, High Energy Astronomy,
in Proc. 3rd Int. Workshop on Neutrino Telescopes, Venise, 1991.
20
P. Bhattacharjee et al., Phys. Rev. Lett. 69 (1992) 567.
21
G. Jungman, M. Kamionkowski, K. Griest, Phys. Rep. 267 (1996) 195.
22
F.W.Stecker, C.Done, M.H.Salamon and P.Sommers, Phys. Rev. Lett. 66(1991)2697 and 69(1992)2738(E).
23
L.Nellen, K.Mannheim and P.L.Biermann, Phys. Rev. D47(1993)5270.
24
R.J. Protheroe, High Energy Neutrinos from Blazars,
ADP-AT-96-7 and astro-ph/9607165.
25
G. Sigl et al., astro-ph/9610221.
26
A.Bottino, N.Fornengo, G.Mignola and L.Moscoso,
Astropart. Phys. 2(1994)65.
27
Y.Fukuda et al., Phys. Lett. B335(1994)237.
28
K.K. Young et al. Proc. Int. Europhys. Conf. on High Energy Physics, Brussels, Belgium, 1995.
http://www.phys.washington.edu/ superk/

29
http://dilbert.lbl.gov/www/amanda.html
P.B. Price et al. Proc. XXXIInd Rencontres de Moriond,
``Very High Energy Phenomena in the Universe'', Les Arcs, France, Jan. 1997.

30
The Baikal neutrino telescope, BAIKAL 92-03.

L.Kuzmichev et al. Submitted to the 25th International Cosmic Ray Conference, Durban, South Africa, 1997.
http://www.ifh.de/baikal/baikalhome.html

31
DUMAND II proposal, HDC-2-88
DUMAND II supplementary proposal, August 1994.
32
NESTOR proposal, May 1995.
L.K.Resvanis et al.: Proc. 3rd NESTOR International Workshop, Pylos, Greece, 1993.
http://abyss.hepl.uoa.ariadne-t.gr
http://www.roma1.infn.it/nestor/nestor.html

33
D.R. Nygren et al., LBL-38321 UC-412.
34
M. Bonori et al., NESTOR data transmission.

35
V. Chaloupka et al, Technology development for a neutrino astrophysical observatory, L.O.I. to the D.O.E., LBL-38321, UC-412, February 1996.

  
Table: Number of neutrino induced muons per year in a 1km detector for two ranges of zenith angle and different muon energy thresholds . Diffuse neutrino sources considered here are the Earth atmosphere, Active Galactic Nuclei, Blazars jets and topological defects.

  
Figure: Neutrino detection principle

  
Figure: Atmospheric muon flux (under 2300m of water) and atmospheric neutrino induced muon flux as a function of the zenith angle for two muon energy thresholds (1 and 10 TeV).

  
Figure: Neutrino fluxes at Earth from different sources (see text)

  
Figure: Schematic mooring lines to measure water transparency (a), optical background (b), biofouling growth (c)

  
Figure: Background frequency of the PMT versus threshold on the output signal.

  
Figure: Correlation between the current velocity and the bioluminescent activity above a 0.3 p.e. threshold. Top : evolution with time of the percentage of time spent above 250 kHz during each run. Bottom : evolution with time of the current velocity.

  
Figure: Glass transparency decrease due to biofouling at different polar angle points on a sphere.

  
Figure: Possible set-up of a 3D array of optical modules with 3 strings 100 meters apart (not to scale).



Jean-Philippe Laugier
Fri Oct 31 11:48:44 MET 1997