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Vorsitzender des Promotionsorgans Prof. Dr. Georg Kreimer

Erstgutachter Prof. Dr. Uli Katz

Zweitgutachter PD Dr. Thomas Eberl



Abstract

In this analysis, a search for cosmic neutrinos with the neutrino telescope ANTARES from all

neutrino flavours is introduced. The Cherenkov telescope ANTARES, which is situated off the

French coast at 2.5km depth in the Mediterranean Sea, has been taking data since 2007 with the

goal to measure high-energy neutrinos of cosmic origin. To this end, two multivariate classifiers

are developed in this work to select the cosmic neutrino signal from the atmospheric muon and

neutrino background simultaneously for all neutrino flavours. While former analyses targeted

either muons originating from muon neutrinos’ charged-current interactions producing a long

particle track in the detector, or electronic and hadronic particle cascades from other neutrino

interactions, the classifiers incorporate common features from both signature types.

Analysing finally 913 days of data taking due to simulation constraints, a sensitivity to a cos-

mic neutrino flux with λ = 2.5 of Φ90% = 5.5× 10−6 GeV−1 sr−1 s−1 cm−2 between 6.74TeV
and 1.12PeV is reached, with a non-significant excess of events being observed over the num-

ber of expected background events. The analysis approach increases the overall sensitivity of

ANTARES towards the cosmic neutrino flux beyond that reached in former signature-specific

cosmic neutrino searches.
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Zusammenfassung

In der vorliegenden Arbeit wird eine Analyse zur Suche nach kosmischen Neutrinos mit dem Neu-

trinoteleskop ANTARES unter Verwendung von multivariaten Selektionsmethoden entwickelt

und auf die von dem Neutrinoteleskop zwischen 2007 und 2013 gesammelten Daten angewen-

det.

Neutrinoastronomie In der Neutrinoastronomie vereinen sich mit der Astrophysik und Teil-

chenphysik zwei Teilbereiche der Physik, in denen die Grundlagenforschung mit einer Vielzahl

von Theorien und Modellen versucht, sowohl kosmologische Gegebenheiten als auch Struktur

und Bildung von Materie genauer zu erklären. Auf astronomischer Seite stehen Neutrinote-

leskope neben der klassischen optischer Beobachtung von astronomischen Objekten in einer

Reihe von Experimenten, die Astronomie in anderen Wellenlängenbereichen oder mit anderen

Botenteilchen wie kosmischer Strahlung betreiben. Hierbei steht das Verständnis der Beschle-

unigungsprozesse und Teilcheninteraktionen in galaktischen und kosmischen Beschleunigern im

Vordergrund, wie beispielsweise in Supernovae, bei Gammablitzen oder Aktiven Galaxienkernen.

Primäres Ziel der Neutrinoteleskope wie ANTARES ist daher die Identifizierung von Quellen

kosmischer Neutrinos und die Beschreibung des diffusen kosmischen Neutrinoflusses, auch wenn

keine direkten Quellen für die kosmischen Neutrinos zugeordnet werden können. Darüber hinaus

können Hochenergie-Neutrinoexperimente seitens der Teilchenphysik Beiträge leisten, beispiels-

weise in der Erforschung der physikalischen Natur des Neutrinos durch Messung von Neutri-

nooszillationen oder bei der Suche nach Neutrinos aus Dunkler Materie.

ANTARES Das ANTARES Neutrino Teleskop ist ein Cherenkov-Detektor, der hochenergeti-

sche Neutrinos νl und deren Antiteilchen misst, indem die Cherenkov-Strahlung der aus der

Interaktion der Neutrinos entstandenen geladenen Sekundärteilchen detektiert wird. Die 12 De-

tektionslinien von ANTARES, die am Meeresboden vor der südfranzörischen Küste in 2,5km
Tiefe verankert sind, sind dafür mit je 75 sogenannten Optischen Modulen versehen, die aus

druckresistenten Glaskugeln mit Photomultipiern und Ausleseelektronik bestehen. Durch die

Messung von einzelnen Photonen mit einer Genauigkeit innerhalb weniger Nanosekunden und

Zentimeter können in ANTARES die Richtung von Myonenspuren und Kaskaden von elektro-

magnetischen und hadronischen Schauern rekonstruiert und die Gesamtenergie der erzeugenden

Neutrinos geschätzt werden.

Analyseansatz ANTARES ist optimiert auf die Messung von Myonenspuren, da diese durch

ihre Länge von mehreren Metern bis zu Kilometern besonders gut für eine Richtungsrekonstruk-
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CHAPTER 0. ZUSAMMENFASSUNG

tion der erzeugenden Myonneutrinos geeignet sind. Um diese neutrinoerzeugten Myonen von

atmosphärischen Myonen zu unterscheiden, die den Detektor von oben kommend durchströmen,

konzentriert sich die Spurselektion auf Myonen, deren Trajektorie von unterhalb des Horizontes

kommt, wodurch die Erde effektiv als Filter genutzt wird. Allerdings werden in atmosphärischen

Kaskaden auch Neutrinos erzeugt, die einen irreduziblen Untergrund für die Messung der kos-

mischen Neutrinos bilden, da sie sowohl die Erde passieren als auch energetisch im TeV-Bereich

der kosmischen Neutrinos liegen. Die Suche nach einem diffusen Fluss kosmischer Neutrinos

fokusiert sich daher auf die höchstenergetischsten Neutrinos, um sowohl atmosphärische My-

onen als auch atmosphärische Neutrinos in der Teilchenselektion herauszufiltern. In ANTARES

wurden erste Analysen des diffusen kosmischen Neutrinoflusses unter der Verwendung von My-

onenspuren durchgeführt, später kamen mit der Entwicklung von Kaskadenrekonstruktionen

Analysen hinzu, die sich nur auf kaskadenerzeugende Neutrinointeraktionen spezialisierten. In

dieser Arbeit werden alle Arten von Neutrinoereignissen in ANTARES betrachtet.

Multivariate Klassifizierung In einer Vorstudie zeigte sich, dass die Sensitivität der Ana-

lyse für einen kosmischen Neutrinofluss erhöht werden kann, wenn sich die Analyse nicht allein

auf Auswahlkriterien beschränkt, die durch die Ereignisrekonstruktion bei ANTARES geliefert

werden, da diese jeweils auf die Spezifika der Myonenspuren oder Kaskaden optimiert waren,

sondern zusätzliche signaturunabhängige Kriterien eingeführt werden. Diese fokusieren die

Ereignisauswahl stärker auf die Eigenschaften, die die kosmischen Neutrinos von Untergrun-

dereignissen unterscheiden, wie Richtung und Energie des erzeugenden Neutrinos. Daher wur-

den in einer Testreihe unter Verwendung verschiedensten Observablen der Neutrinoereignisse

in mehreren multivariaten Verfahren zwei multivariate Klassifikatoren zur Selektion der kos-

mischen Neutrinoereignisse aus dem kompletten Datensatz entwickelt. Zum einen wird in der

Analyse ein geboosteter Entscheidungsbaum (boosted decision tree, BDT) zur Klassifizierung

von atmosphärischen Myonen herangezogen, zum anderen wird eine Klassifikation auf Basis

der Fisher-Diskriminanzfunktion zur Unterscheidung zwischen atmosphärischen und kosmischen

Neutrinoereignissen eingesetzt.

Ereignisselektion aus 6 Jahren Datennahme Da die Vorhersage der zu erwartenden Ereignis-

zahlen und die Entwicklung der gesamten Analyse auf einer Monte Carlo Simulation der bei

ANTARES gemessenen Daten basiert, die beginnend mit der Neutrinointeraktion mit hoher De-

tailtreue versucht, die Interaktionsprozesse der Teilchen, Ausbreitung der Photonen im Wasser,

Reaktion der Optischen Module und Effekte der Ausleseelektronik nachzubilden, ist eine Überein-

stimmung der Simulation mit den tatsächliche gemessenen Daten ein Kernpunkt der Analyse.

Da die Datennahme bei ANTARES vor allem stark durch die Umweltbedingungen in der Tiefsee

und die Aktivität biolumineszenter Lebewesen beeinflusst wird, werden Simulationen auf Basis

mehrstündiger Datennahmeeinheiten für die gesamte Messdauer erzeugt. Zum Zeitpunkt der

Analyse lag jedoch kein homogener Satz von Simulationen für die gesamte Datensatz vor, denn

es fehlten vor allem Simulationen für das Jahr 2013 und für kaskadenartige Neutrinoereignisse.

Da der Versuch, die Simulationen für die fehlenden Datennahmeeinheiten aus dem übrigen Satz

zu rekonstruieren, fehlschlug, wurde schließlich die Analyse auf Basis eines Datensatzes von 913

Tagen mit entsprechenden Simulationen durchgeführt.
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Ergebnis Als Grundlage der Schätzung des kosmischen Neutrinoflusses diente zum einen die

theoretische Vorhersage von Waxman und Bahcal, dass der Fluss einem Spektrum mit dem

Spektralindex λ = 2.0 folge, zum anderen die Messungen durch das IceCube Neutrinoteleskop,

welches eine erste signifikante Messung des Neutrinoflusses bereits durchführen konnte und

sowohl die Stärke des kosmischen Neutrinoflusses als auch einen Spektralindex des Flusses bis zu

λ = 2.5 bestimmte. In dem Datensatz wurden 12 Neutrinoereignisse gefunden, wobei die Simu-

lation 9,5 Ereignisse atmosphärischen Ursprungs und 4,6−4,9 Ereignisse kosmischen Ursprungs

vorhersagt. Somit wurden zwar mehr Neutrinos gemessen als für eine reine Untergrundmes-

sung erwartet wird, allerdings ist der Überschuss nicht groß genug, um von einer signifikanten

Entdeckung sprechen zu können. Die Qualitätsgröße der Analyse, ihre Sensitivität, liegt bei

Φ90%IC2.0 = 1.4ΦIC2.0 zwischen 16,4TeV to 7.1PeV für eine theoretischen Fluss ΦIC2.0 mit

λ = 2.0 und der Stärke des IceCube-Flusses, oder Φ90%IC2.5 = 1.35ΦIC2.5 zwischen 6.74TeV
and 1.12PeV für einen entsprechenden Fluss mit λ = 2.5. Damit ist die Analyse sensitiver als

vorangegangene Analysen und als Analysen, deren Ereignisselektion allein auf Selektionskriterien

aus Kaskaden- und Myonenspurrekonstruktion beruht.

v





Contents

I Aim and Instrument 5

1 Cosmic neutrinos 7

1.1 Charged cosmic rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Neutrinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 High-energy neutrino astrophysics . . . . . . . . . . . . . . . . . . . . . . . . 15

2 The ANTARES detector 21

2.1 Measuring neutrinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Building a high-energy neutrino detector . . . . . . . . . . . . . . . . . . . . . 25

2.3 Detector operation in the deep sea . . . . . . . . . . . . . . . . . . . . . . . . 28

II Toolbox 35

3 Monte Carlo Simulation 37

3.1 Particle Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Particle Propagation and Photon Production . . . . . . . . . . . . . . . . . . . 40

3.3 Detector Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Event Reconstruction 45

4.1 Muon track reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Cascade reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Energy reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Further useful parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Analysis approach 53

5.1 Analysis goal and optimization parameters . . . . . . . . . . . . . . . . . . . . 53

5.2 Analysis strategy study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Multivariate Tools development 59

6.1 Multivariate classification methods . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2 Parameter selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.3 Tools assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.4 Atmospheric muon classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

vii



CONTENTS

6.5 Atmospheric neutrino classifier . . . . . . . . . . . . . . . . . . . . . . . . . . 78

III Analysis 85

7 Event selection and simulation additions 87

7.1 Data selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.2 Simulation extensions and adaptions . . . . . . . . . . . . . . . . . . . . . . . 92

8 Search for cosmic neutrinos 97

8.1 Classifier selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.2 Application to the full simulation . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.3 Error estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.4 Test on a data subsample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

9 Analysis results 109

9.1 Results from the full sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

9.2 A closer look at the final events . . . . . . . . . . . . . . . . . . . . . . . . . 111

9.3 Results from selection 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

10 Investigation and Outlook 123

10.1 Simulation discrepancies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

10.2 Signature-specific analysis and update . . . . . . . . . . . . . . . . . . . . . . 125

A Appendix 129

A.1 Monte Carlo Simulation Definition . . . . . . . . . . . . . . . . . . . . . . . . 129

A.2 Mathematical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A.3 Fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A.4 Parameter selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

A.5 TMVA optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.6 Summary of simulation sets used during this work . . . . . . . . . . . . . . . . 140

A.7 Cosmic neutrino candidates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

List of Figures 160

List of Tables 164

Bibliography 166

Danksagung 173

viii



Introduction

Human nature has instilled in us curiosity as the need to explore what we do not understand

and make it understood. In modern science, this drive has lead us to sophisticated systems of

models to satisfy the need for knowing what it is we see when we look into a starry sky, what

the substance that we are and walk on is made of and how it is possible that we are intelligible

beings. In astrophysics, the simple star gazer has found ways to look far beyond what the eye

can see, particle physics is at a crossroads where new theories about the fundamental building

blocks and forces seem more abundant than our inventory of the latest star catalogue, and

where the fast rise of computing power has come with an unprecedented understanding of data

acquisition and processing that is inspired by the search for artificial intelligence.

On this way from simplicity to multitude, human nature has also made sure that we are left

with enough pitfalls and short-sightedness that the search for scientific knowledge is not only

an intellectual challenge but also one to battle one’s own inaptitude. While the blank result

of knowledge gathered by deliberation and testing become short lines in the history books, the

daily bread of science is that of trial and error and of striking the right balance between detail

and simplification.

In this thesis, the limits of human aspiration are as much at display as a multiplicity of sci-

entific concepts is touched upon to answer the main question that grandfather stargazer would

not have even been capable of formulating: Can we claim to measure neutrinos of cosmic origin

in the deep-sea neutrino telescope ANTARES? He would probably ask: What are neutrinos

and where should they come from? What is ANTARES? And how do you measure with this

telescope? Before answering the main question of the thesis itself, a look at these underlying

concepts is therefore necessary.

Here, the astrophysical laboratory of high-energy particle accelerators like active galactic nuclei

is used to probe for an elusive component of particle physics, the neutrino. Bearing a part

of the answer to a better understanding of both astrophysical objects as well as high-energy

particle physics, the neutrino is a unique messenger which requires the construction of specified

detectors. In these, the secondary products of neutrino interaction can be measured using their

Cherenkov radiation in a medium which is naturally abundant like water or ice. To the end of

capturing cosmic neutrinos, the ANTARES collaboration has therefore constructed a deep-sea

neutrino telescope in the Mediterranean Sea and taken data since 2005. After a short view

at the scientific framing of neutrinos in the astrophysical laboratory and their particular role

in particle physics in Chapter 1, the specific construction of the ANTARES detector will be
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CHAPTER 0. INTRODUCTION

explained further in Chapter 2.

With the construction of the detector, the necessity to deal with large amounts of data comes

hand in hand. Here, the advancements in computing science come to the aid of the physicist,

who is generally a lover of analytic formula rather than non-continuous complex correlation.

In Chapter 3 and 4, the data simulation and reconstruction in the ANTARES detector are in-

troduced, before embarking on the core question of the analysis: How to best achieve a high

sensitivity in the analysis of the ANTARES data for the cosmic neutrino signal?

Due to the different radiative patterns of secondary particles induced by the different neutrino

flavours and types in ANTARES, these different event types are generally approached as sep-

arate phenomena for which specified and well optimized event reconstruction algorithms have

been developed. While former analyses focused either on track-like events from interaction of

neutrinos producing a high energy muon νX → νµ µY , or on shower-like events originating from

a bundle of secondary particles with a shorter trajectory, this analysis includes both event types.

After an initial toy analysis investigation comparing the analysis sensitivity with event-type spe-

cific event selection approaches to an analysis with a dedicated event selection including all

event types in a common selection procedure, the development of dedicated all-flavour event

selection tools was favoured over the sole combination of two signature-specific analysis chains.

To this end, two multivariate classification tools for the de-selection of atmospheric muons and

neutrino events of atmospheric origin from the cosmic neutrino signal are introduced, yielding

the preference for analytic formula to the practicability of machine-learning algorithms on an

evolving set of Monte Carlo simulations.

With these dedicated tools, the implementation of the cosmic neutrino event selection and

the according analysis chain is described in Chapter 8. In this step, the application of theoretical

modelling to the real world conditions pose the main challenge. With simulation for some event

types still under development for parts of the data taking between 2007 and 2013, a match-

ing procedure is introduced to allocate simulated data to periods lacking dedicated simulated

events. After additional adjustments for non-represented event classes and estimation of the

error of the procedure, the analysis is tested on a sub-sample before disclosing the complete

set of measurements taken from 2007 to 2013. However, the application of the analysis chain

developed to the full data sample in Chapter 9 showed a deficit of measured neutrino events in

comparison to expectation. As the effect was especially apparent in the part of the data where

simulation had been allocated by the matching procedure, the analysis was finally limited to the

comparatively well understood part of the measurements with dedicated simulations. Therefore,

the full search for a diffuse cosmic neutrino signal from all flavours in ANTARES was finally

performed on 913 days of measurements.

While learning the lesson that thorough testing of the accurate representation of all relevant

data features in the simulation is a complex undertaking which is a study in itself, and which

at the point of the analysis was not sufficiently well developed to allow an interpretation of

the full set of measurements, the analysis still succeeds in introducing an all-flavour search for

cosmic neutrinos drawing on the common features of cosmic neutrino events in comparatively

small-scale telescopes (among high-energy neutrino telescopes) like ANTARES. The inclusion

of data mining techniques and multivariate tools as computational aids in the modelling of
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complex systems here leads to the increase of the ANTARES sensitivity to a diffuse cosmic

neutrino flux with spectral index γ = −2.0 towards Φ90%2.0 = 1.57× 10−8 GeV−1 sr−1 s−1 cm−2

per flavour within 16.4TeV to 7.1PeV, at the time of publication [1] the most sensitive diffuse

flux analysis in the experiment.
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Part I

Aim and Instrument
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1 l Cosmic neutrinos

1.1 Charged cosmic rays

1.1.1 The beginning of astroparticle physics

Astronomy in the classic sense is understood as the observation of the solar system, galaxy and

entire cosmos by using photons in the optical range that can penetrate Earth’s atmosphere.

However, with the development of the understanding of the nature of light and matter and de-

velopment of particle physics, it was only a matter of time until light of different wavelength and

ultimately particles arriving at Earth would be used to extend astrophysics by including these

new messengers. Therefore, when Viktor Hess first described the observation of an ionizing

radiation in the atmosphere that increased with altitude1 and the radiation was soon found to

contain high-energy charged particles of non-terrestrial origin, his discovery marked the birth of

astroparticle physics.

The scientific investigation of the continuous bombardment of our atmosphere by cosmic

particles would not only turn towards the origin of the cosmic rays to gain new insights into

astrophysical processes, but cosmic rays also provide us with a free-of-charge laboratory for

high energy particle physics through study of atmospheric particle cascades from cosmic ray

interactions. Research of both the processes underlying the production of, inter alia, cosmic

rays on the one hand and their interaction at Earth on the other hand have boosted not only

the field of astrophysics, but also furthered the understanding of particle physics, especially at

energies far beyond what could be produced by Earth-bound particle accelerators.

1.1.2 Cosmic rays at Earth

Cosmic rays arriving at the top of Earth’s atmosphere have been found to mostly consist of

electrons, protons, helium and some heavier nuclei, the energies of which can reach up to the

TeV range, see Figure 1.1. As particle energies therefore lie far above those of the constituents

of the solar wind, the origin of those particles points outside the solar system to larger objects

containing larger acceleration regions required for the highest energies, which will be introduced

in more detail below.

Considering the wide range of possible sources for cosmic rays, the bumpy form of the

cosmic ray spectrum measured at Earth can be expected and is considered to be indicative of

1V. F. Hess. Über Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten. Physikalische

Zeitschrift, 13:1084-1091, November 1912.
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Figure 1.1: All-particle primary cosmic ray spectrum as a function of energy per nucleus from

various air shower measurements. From [2]

contributions from different particle accelerators in the different energy ranges. Here, the three

mainly discernible features of the spectrum are called the knee, second knee and ankle of the

spectrum and can be attributed to contributions from different sources of cosmic rays. Particles

from most galactic accelerators, e.g. some types of supernova remnants, are not expected

to reach particle energies above the knee. Generally, the available acceleration processes and

propagation and the assumption of confinement of particles to the galaxy restricts galactic

particles to energies well below the ankle (i.e. E < 1018 eV). Therefore, the ankle shows the

onset of an extragalactic component to the spectrum which becomes dominant at energies

unreachable for galactic accelerators [2].

The intensity of cosmic rays at Earth’s atmosphere for the relevant energy range for high-

energy neutrino astronomy between several GeV to beyond 100GeV can be approximated [2]

as

IN(E)≈ 1.8×104(E/1GeV)−α nucleons
m2 s sr GeV

(1.1)

with E being the energy-per-nucleon including rest-mass energy and α(= γ + 1) = 2.7 as the

differential spectral index of the cosmic ray flux, while γ is the integral spectral index. This

spectrum is not only indicative of the astrophysical processes leading to the generation of

cosmic rays, but is also the cause for those particles originating from atmospheric cascades.
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1.1. CHARGED COSMIC RAYS

(a) second order (b) first order

Figure 1.2: Schematic of the second order and first order Fermi mechanisms. From [5]

The distribution of cosmic rays at Earth’s atmosphere is isotropic up to a level of 10−3 as

observed by IceCube, Milagro and the Tibet-III air shower array [3], which also allows for the

assumption of an isotropic distribution of particles from atmospheric cascades. It should be

noted that the accuracy of cosmic ray spectral modelling translates directly into uncertainties

of the flux of secondary atmospheric particles, which in turn constitute also the background of

any direct measurement of cosmic rays. Therefore, an accurate understanding of cosmic ray

composition and atmospheric cascade formation is a key aspect in many connected fields of

astroparticle physics.

1.1.3 The origin of high-energy cosmic rays

The processes and dynamics underlying the generation of the cosmic ray spectrum are manifold,

as cosmic rays do not only originate from different sources but are also modulated by magnetic

fields and accompanied by secondary particles which originate from the interaction of primary

cosmic rays with the interstellar medium. In addition to charged cosmic rays, astrophysical

research also extends to uncharged high-energy messenger particles, namely γ-rays and high-

energy neutrinos, which is the focus of this work. All three constituents, cosmic rays, γ-rays

and neutrinos are considered to be produced at cosmic particle accelerators in the presence

of a strong magnetic field, and emerge from these acceleration sites at a roughly comparable

luminosity [4]. Therefore, research in all three areas is highly interlinked and proves reciprocally

helpful to enhance the understanding of these cosmic high-energy particle laboratories.

Acceleration mechanisms

Acceleration of cosmic particles occurs through the interplay of charged particles with strong

magnetic fields through processes comparable to collisions or scattering between the particle

and the magnetic field.

In the so-called Fermi mechanism, the encounter of a charged particle with a slowly-moving

9



CHAPTER 1. COSMIC NEUTRINOS

cloud at v = β , in which the reflected particle can enter from a random direction, can transfer

energy as 〈∆E/E ≈ 4/3β 2〉 [6], see Figure 1.2. Although the probability of a head-on collision of

particles is more probable, leading to a general acceleration of particles in the vicinity of the cloud,

the mechanism is not sufficient to explain high-energy cosmis rays. However, in case of first-order

Fermi acceleration, a shock front of plasma is considered to move coherently instead of randomly,

thus creating a wall with downstream particles moving away from the shock front. Here, the

energy gain turns linear, with ∆E/E ≈ 4/3β . As processes in acceleration regions are generally

turbulent, the particle can interact with the same shock front repeatedly. After repetitive deposit

of ∆E = ζ E through interaction after time interval T , the particle can thus reach an energy

E = E0(1 + ζ )n. Assuming an escape probability Pi after each interaction, Fermi acceleration

turns out to produce a power-law spectrum with dN
dE ≈ (E/E0)−γ and γ = − ln(1−Pi)

ln(1+ζ )
+ 1. Fermi

acceleration is therefore commonly assumed to accelerate particles at least up to the knee of

the cosmic ray spectrum.

Producing gamma rays and neutrinos

High-energy astrophysics is multi-messenger physics, as cosmic rays only constitute one type of

particles emerging from acceleration sites and lose their directional information due to magnetic

field interaction. On the other hand, gamma rays are an ever-present signal from these sources.

In the production of gamma rays, two scenarios can be considered, the first one involving solely

leptonic processes including synchrotron radiation and Compton scattering. In the Synchrotron

Self-Compton (SSC) model [6], these mechanisms suffice to generate synchrotron radiation

in the infrared, which then in turn interact through (inverse) Compton interaction with the

electrons, leading to the production of gamma rays in the GeV to TeV range. While the

resulting spectrum has been well observed from the Crab nebula, gamma ray emission from

AGN seems to lack the X-ray counterpart of the spectrum.

This lack could be explained by a second production mechanism, this time on a hadronic basis.

Here, the interaction of photons from synchrotron radiation with accelerated protons or heavier

nuclei leads to a hadronic cascade, which produces gamma rays primarily through π0 → γγ,

leading to a bump in the spectrum at 70MeV. In contrast to the leptonic scenario, hadronic

cascades would also produce high-energy neutrinos, which can therefore serve as an indicator

for the presence of hadronic processes within an accelerator.

Sources of high-energy cosmic neutrinos

The capability of astrophysical objects to accelerate charged particles and therefore be a source

of high-energy cosmic rays, gamma rays and neutrinos, depends on both the size of the object

and the magnetic field strength, as the containment of charged particles in the magnetic field

of the object and the possibility for repetitive interaction with the magnetic field determines the

magnitude of the acceleration. This interdependence can be seen in the Hillas plot Fig. 1.3,

where galactic and cosmic accelerators are shown with regard to their size and magnetic field

strength. Following the hand-waving argument that containment arises from Lorentz force on

charge Z, the maximum energy reached at the sites of size R is Emax ∝ ZRβB, with magnetic

field strength B and particle shock velocities β . The diagonal lines (B×R) in the Hillas plot

therefore correspond to Emax. It can be seen that, of the more compact objects in the galaxy,
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Figure 1.3: The Hillas plot, showing the dependence on particles at an acceleration site on the

magnetic field strength correlated to the size of the site. From [5]

Supernova Remnants (SNRs) are a hot candidate for cosmic ray production, while the most

highly energized particles stem from extragalactic sources, with Gamma Ray Bursts (GRBs) and

Active Galactic Nuclei (AGNs) as two candidates for compact acceleration sites.

Supernova Remnants At the end of the life cycle of massive stars, a core collapse and

expulsion of the outer plasma layers of the star lead to the formation of a supernova remnant

(SNR). They account for up to 90% of the galactic gamma ray emission. Depending on the size

and type of the core, SNRs can expand from neutron stars, pulsars or black holes. While the

remnant is called a Shell Supernova Remnants in older objects, younger objects with a neutron

star at the core are Pulsar Wind Nebulae . In the supernova remnant, the shock fronts in the

nebula can accelerate particles up to the TeV range.

Gamma Ray Bursts Very luminous outbreaks of gamma ray emission are considered to orig-

inate from different sources. They either stem from large mass supernovae in the case of long

outbreaks which last longer than a few seconds, while the origin of shorter Gamma Ray Bursts

(GRBs) in galaxies of old star populations has recently been further illuminated by the first

coincidental observation of a short GRB and gravitational waves, stemming from the merging

of two neutron stars [8]. Although no neutrinos were found from the merger, the emission of

neutrinos along the outflow jet was not directed towards Earth, providing a possible explanation

for the lack of neutrino observations. The well-established fireball model for GRBs allows for
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CHAPTER 1. COSMIC NEUTRINOS

Figure 1.4: Model of an Active Galactic Nucleus, and the respective classification depending on

the observation angle. From [7]

neutrino production in shock front and describes the process in three stages, where first the

formation of a black hole creates a relativistic accretion disk of charged matter, forming a strong

magnetic field as pre-shock. Secondly, matter is released along the axis, forming jets which act

like a ”fireball”, producing gamma rays through collision, but which are only released when the

matter has cooled enough to become transparent. These photons, travelling ahead of the shock

front, appear through their relativistic shift towards us as gamma-rays. In an afterglow, where

the shock front interacts with the local medium, additional photons of lower energy are also

created as the shock front cools down.

Active Galactic Nuclei A super-massive black hole lying at the center of a galaxy provides

an accretion disc of matter. In about 10% of cases, the accretion leads to the formation of

relativistic jets, which serve as particle acceleration sites, leading to the formation of an Active

Galactic Nucleus (AGN). Depending on the observation angle, their resulting appearance from

Earth and additional radio emission from the galaxies, AGN are categorized into different objects,

see Figure 1.4.
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1.2 Neutrinos

As a particle which was first postulated as explanation for the elusive energy loss of electrons

from β decay by Wolfgang Pauli in the 1930s, neutrinos have a notorious history of being hard

to measure. From the first observation of neutrinos in the 1956 by Cowan and Reines2 to

the establishment of the three-flavour regime and the detection of the ντ in 2000, theoretical

predictions ran generally ahead of measurements.

1.2.1 Neutrino properties

Interaction and cross-section The small cross-section of neutrinos, see Figure 1.5, poses the

main challenge for their detection, leading to large-scale, long-time and high-statistics experi-

ments for neutrino measurements. As neutrinos only interact through weak force and gravity,

the influence of the latter being negligible due to its small mass, this turns them on the other

hand into ideal long-distance messengers in astrophysics.

Neutrino flavours For the three charged leptons of the standard model, e, µ and τ, the ob-

servation of the decay of heavier leptons to a continuous spectrum of lighter leptons without the

emission of another detectable particle leads, via the assumption of lepton number conservation,

to the introduction of a corresponding (anti-)neutrino for each type of charged leptons, so that

e.g. µ−→ e−+ νe + νµ . Therefore, each charged lepton is in the standard model assigned its

corresponding neutrino (l−,νl), with the corresponding antiparticles (l+,ν l) carrying the the

according negative lepton number. The six lepton types are commonly referred to as flavours

and grouped into three so-called generations of neutrinos. Neutrinos carry a spin ±1/2 which

is antiparallel to its direction of momentum, giving it a left-handed helicity (with antineutrinos

being right-handed).

Oscillation and flavour mixing The first theoretical introduction of the assmption of a non-

zero neutrino mass by Pontecorvo in 19573 suggesting it to be observable as oscillation of

neutrinos between the different flavours again preceded the observation of changed neutrino

flavour ratios in solar neutrinos. In both solar experiments as well as long-baseline experiments,

the change of the proportion from the expected contributions of neutrinos of a specific flavour

are well established and have been used to determine the exact mixing parameters for neutrino

oscillation.

In order to allocate mass to neutrinos, three distinct neutrino mass eigenstates are introduced, νi,

which produce the observed neutrino flavour eigenstates through weak interaction as a coherent

superposition of these mass eigenstates, i.e.




νe

νµ

ντ


=




Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3







ν1

ν2

ν3


 . (1.2)

2Through the reaction νe + p→ e+ + n, in C. Cowan, F. Reines et al. Detection of the Free Neutrino: a

Confirmation. Science, Vol. 124, No. 3212, p. 103-4, July 20 1956.
3B. Pontecorvo. Mesonium and Antimesonium. Journal of Experimental and Theoretical Physics, Vol. 6, No.

2, p. 429, February 1958.
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CHAPTER 1. COSMIC NEUTRINOS

U , also called the PMNS-matrix, is assumed to be a unitary matrix, leading to its common

parametrization with mixing angles θ12, θ13, θ23 and phases δ , ξ , ζ . Here, ξ and ζ are only

physical if neutrinos are Majorana fermions, i.e. they would be their own antiparticle. The matrix

is then parametrized as tan2 θ12 = |Ue2|2/|Ue1|2, tan2 θ23 = |Uµ3|2/|Uτ3|2 and sinθ13e−iδ = Ue3.

Neutrino masses and hierarchy With the investigation of the mixing angles, also the ques-

tion of the ordering of the mass eigenstates and the actual neutrino masses started4. The

parametrization of the PMNS-matrix already suggests that access to the measurement of neu-

trino masses is gained by determination of ∆m2
i j. With mass differences between pairs of neutrino

eigenstates having been determined from measurements, two possible ordering schemes for the

clear identification of the physical states present themselves, called normal (m2
3 > m2

2 > m2
1) and

inverted (m2
2 > m2

1 > m2
3) mass hierarchy. In addition to that, an upper limit can currently be

given on neutrino masses as mβ < 2.0eV with m2
β

= ∑i |U2
ei|m2

i . Both the determination of the

neutrino mass hierarchy and pushing the upper limit for the direct measurement of neutrino

masses are currently highly investigated topics.

1.2.2 Beyond the standard model

While the discovery of the non-zero mass of neutrinos already provided a first step beyond the

standard model, current neutrino research plays a vital role in various fields of physics from

a grand unified theory to cosmology and new physics. Some of the open issues regarding

neutrinos are the nature of the neutrino as Majorana or Dirac particle, the invariance under

CP-transformation or the existence of further types of neutrinos, points of research which relate

to crucial questions of central physical models, see [9].

Chirality and CP-violation The difference between a neutrino and its antiparticle generally

lies in the sign of the lepton number and the chirality, a quantum number denoting the trans-

formation of the particle state by a right- or left-handed representation of the Poincaré group.

While chirality is equivalent to helicity for massless particles, the non-zero mass of neutrinos

allows for opposing chirality.

Charge transformation, from one particle to its antiparticle, is conserved together with parity,

the directional mirroring of the state, in the generally assumed in CP-symmetry. However, CP-

symmetry violation has been observed in K-meson decay, and can be assumed for neutrinos,

which opens the door towards additional neutrino types and properties.

Sterile neutrinos The formalism allows for various possibilities to further determine the nature

of neutrinos. Right-handed neutrinos could exist, which do not interact in weak interactions

and are therefore called ”sterile”. The existence of these neutrinos could offer explanations

for the huge discrepancy in mass between charged leptons and their neutrinos, or the observed

matter-antimatter asymmetry in the universe. As additional neutrino types would enter neutrino

mixing, their existence might be traced in oscillation experiments, some of which already report

to have found first hints. Therefore, also the current account of only three generations of

neutrinos might not tell the full tale of neutrino types.

4For a general overview of neutrino properties and current research, see [9].
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Figure 1: Neutrino interaction cross section as a function of energy, showing typical energy regimes accessible
by different neutrino sources and experiments. The curve shows the scattering cross section for ν̄e e− → e− ν̄e

on free electrons, for illustration. Plot modified from [1].

1.1 The Big Questions and physics opportunites

We are now poised to answer some of the most fundamental and important questions of our time. There
is a clear experimental path forward, which builds heavily on the recent successful history of this
rapidly-evolving field of particle physics.

What is the pattern of neutrino masses? Is there CP violation in the lepton sector? To what extent does the
three-flavor paradigm describe nature?

The current neutrino data allow for very large deviations from the three-flavor paradigm. New neutrino–
matter interactions as strong as the standard-model weak interactions are not ruled out, and the existence of
new “neutrino” states with virtually any mass is allowed, and sometimes expected from different mechanisms
for generating neutrino masses.

Even in the absence of more surprises, we still do not know how the neutrino masses are ordered: do we
have two “light” and one “heavy” neutrino (the so-called normal mass hierarchy) or two “heavy” and one
“light” neutrino (the inverted hierarchy)? The resolution of this issue is of the utmost importance, for both
practical and fundamental reasons. As will become more clear below, resolving the neutrino mass hierarchy
will allow one to optimize the information one can obtain from other neutrino experimental probes, including
searches for leptonic CP invariance violation, searches for the absolute value of the neutrino masses, and
searches for the violation of lepton number via neutrinoless double-beta decay. In addition, the mass hierarchy
will also reveal invaluable information concerning the origin of neutrino masses. If the mass hierarchy were
inverted, for example, we would learn that at least two of the three neutrino masses are quasi-degenerate, a
condition that is not observed in the spectrum of charged leptons or quarks.

6

Figure 1.5: Neutrino cross section and overview over neutrino sources and experiments in the

various energy regimes. From [9].

Majorana particle At the moment, it is not clear whether neutrinos and the corresponding

antineutrinos are two different kind of particles, so-called Dirac particles, or if they are actually

the same particle only with opposing chirality, i.e. Majorana particles. In this case, the ξ and

ζ mixing angle become physical. Evidence for the Majorana nature of the neutrino could come

from the observation of a neutrinoless double-beta decay in which the neutrinos from two β -

decay annihilate, which would also violate CP and lepton number conservation. However, so far

no conclusive evidence for a neutrinoless double-beta decay was discovered.

1.3 High-energy neutrino astrophysics

In the wide range of messengers from cosmic objects, neutrinos play a special role. Especially

their small cross-section is both as a blessing and a curse for high-energy astrophysics. On the

one hand, neutrinos can escape acceleration regions while charged particles and photons are

still trapped in the shock, as the first detection of astrophysical neutrinos from the supernova

SN1987A before the visual detection of the supernova showed. On the other hand, their de-

tection requires large-scale dedicated observatories to gather sufficient data to reach significant

results because of the low cross-section. The experiments scale also with the energy of the

targeted neutrino population due to the increasing length of the trajectory of secondary parti-

cles form neutrino interaction. Some of these experiments together with the according neutrino

cross section are listed in Fig. 1.5.
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Figure 3: Pre-trial p-value sky map of the Northern hemisphere scan in equatorial coordinates down to −5◦

declination. The pre-trial p-value is given as − log10(ppre−trial). The position of the hottest spot is indicated
by a black circle.

with an effective number of trials N of about 130 000.

3.2 A-Priori Source List

Weak sources suffer from the large number of trials of about 130 000 within the unbiased scan
and may appear non-significant after trial correction. However a standard IceCube and ANTARES
a-priori source list contains 34 promising candidates for high-energy neutrino emission in the
Northern hemisphere [8], Tab. 1, reducing the trial factor to about 34. The sources were selected
mainly due to their observation in gamma rays. They belong to various categories e.g. Galactic
pulsar wind nebulae and supernovae remnants or extra-galactic BL Lacs and FSRQs. We test each
source from this list individually. We select the most significant source and apply a trial-correction
using background scrambled samples as done for the unbiased scan.

4. Results

No significant clustering was found above background expectation. Both the unbiased scan on
the Northern hemisphere and the source list are compatible with background only.

The pre-trial p-value map of the unbiased scan is shown in Fig.3. The hottest spot in the scan
is indicated by a black circle and is located at right ascension α = 170.16◦, declination δ = 27.91◦.
The Galactic coordinates are bgal = 69.88◦, lgal = 205.45◦. The best fit signal strength is ns = 9.88
with a fitted spectral index of γ = 2.118. The T S-value is 17.36 which corresponds to ppre−trial =

10−5.14. The post-trial corrected p-value is 90.5% and is thus compatible with background only.
A zoom into the pre-trial p-value landscape around the hottest spot position is shown in Fig.4. In
addition positions for sources from the Fermi 2FGL, Fermi 3FGL and Fermi 3FHL catalogs are
shown [12, 13, 14]. The closest of these sources is 2 degree away.

The L fit results for each source of the source list are shown in Tab.1. Sources are sorted
by p-value and the best fit ns as well as the T S and the equatorial coordinates are given. The

511

Figure 1.6: Pre-trial p-value sky map of the Northern hemisphere scan in equatorial coordinates.

The position of the hottest spot is indicated by a black circle. From [11].

The presence or absence of neutrinos in cosmic accelerators is a decisive factor for the

understanding of particle interaction models in the acceleration regions, and unlike charged

particles and gamma rays, their interaction probability along the line of sight from extragalactic

objects is small, allowing for a directional determination of the source. In addition to that, the

measurement of neutrinos from known sources can contribute to some of the key questions of

neutrino physics introduced in the this chapter. In searches for neutrinos from theoretical sources

of e.g. dark matter interactions, high-energy neutrino observatories also extend their physics

agenda to new physics. Some research questions of the two largest neutrino observatories,

IceCube and ANTARES, are introduced here before the current status of the search for a diffuse

neutrino flux is highlighted.

1.3.1 Searches for astrophysical sources of neutrinos

The first evidence for astrophysical neutrinos, apart from supernova neutrinos from 1987A, was

discovered by the IceCube observatory in 2013 [10]. The South Pole-based Cherenkov detector

uses a similar detection strategy to ANTARES (see Chapter 2) in ice. The first claim of discovery

of astrophysical neutrinos in IceCube was triggered by the measurement of extremely high-energy

events with an almost negligible probability of being atmospheric neutrinos. These neutrinos are

reconstructed with energies in the PeV range and light up a larger part of the IceCube detector.

Cosmic propagation of neutrinos Charged particles loose the directional information over

large distances due to the alteration of their trajectory in magnetic fields, and both gamma rays

and cosmic rays suffer a high degree of absorption and attenuation. The GZK process [6], in

which photons from the Cosmic Microwave Background (CMB) interact with cosmic rays, leads

to a loss of energy for protons at highest energies such that after 50−100Mpc their energy has

dropped under the threshold of about 6× 1019 eV. On the other hand, gamma rays undergo
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pair production through the presence of extragalactic background photons, which stem from

the extragalactic photons, the CMB or radio background, depending on the energy range.

Astrophysical point source searches

The search for astrophysical sources of neutrinos drives the design of the large-scale neutrino

observatories, which aim to enhance the directional resolution of the detected neutrinos first,

and secondly the number of detectable neutrinos, as both high count rate and good resolution

are vital to statistically select actual cosmic neutrinos. In point source searches, a cumulation

of incident neutrinos from a given direction or region is targeted either by a random search, or

from prior knowledge of the position of a candidate list of possible neutrino sources. Neither

IceCube nor ANTARES have, to this date, found a significant single source of neutrinos, with

the ”hottest” spot in Figure 1.6 having a p-value of 90.5%.

Galactic neutrino emission

In addition to single point sources, the search for cosmic neutrino sources is further narrowed

down by targeting a specific region of assumed neutrino emission. In ANTARES, for which the

center of the Galaxy lies in the field of view, additional limits could be set on the maximum

flux of neutrinos originating from the center of the Galaxy, for which no significant excess of

cosmic neutrino candidates were found. Also, the so called Fermi-bubbles present a region of

interest, as these areas of high γ radiation originating from the Galaxy could also be sources of

neutrinos. Again, the current research can only put limit on the maximum flux [12].

Multi-messenger searches

The cosmic neutrino search can further be narrowed down if the observation of an astrophysical

event which is expected to produce neutrino and seen by cosmic ray, photon-based or other

observatories can be used as an external trigger. These include the search for neutrinos from

near-by supernovae, Gamma Ray Bursts or even gravitational waves. While a neutron star

merger GW170817 producing detectable gravitational waves did not come accompanied by a

neutrino [8], IceCube was able to allocate the first coincident neutrino event from an identified

astrophysical source since supernova 1987A to γ-ray blazar TXS 0506+056 in 2017 [13], which

was at the time in a flaring state and emitting very high-energy γ rays. Vice versa, high-energy

neutrino incidents are used as trigger for an according follow-up observation, combining efforts

in the wider astrophysical research community.

1.3.2 Diffuse cosmic neutrino flux analyses

Lacking the capacity to measure the individual neutrino fluxes from specified sources, one of

the most fruitful analysis approaches to cosmic neutrino detection lies in the analysis of the

diffuse cosmic neutrino flux, which targets the spectral distribution of the measured neutrinos

regardless of neutrino direction. Although the ANTARES detector did so far not collect enough

data to claim a discovery of astrophysical neutrinos, which is mostly due to its comparatively

smaller detection volume, the ANTARES collaboration had been able to set a strong upper limit

on the astrophysical neutrino flux [15] already during the developmental phase of IceCube.
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Figure 13. Results of different IceCube analyses measuring the as-
trophysical flux parameters Φastro and γastro. The contour lines
show the 90% CL. The result of this analysis (IC tracks, 6yr) is
shown by the red solid contour line. The contour obtained by the
previous measurement using through-going muons (Aartsen et al.
2015c) (IC tracks, 2yr) is the red dashed line. In addition, the results
for the most recent analysis of starting events (Kopper et al. 2015)
(IC HESE, 4yr), the complementary cascade channel (Lesiak-Bzdak
et al. 2015) (IC cascades) and an analysis combining different Ice-
Cube results (Aartsen et al. 2015a) (IC combined) are shown. The
result of this analysis (red, solid) and IC combined are incompatible
at 3.3σ (two-sided significance).

events above 100 TeV are down-going and 93% of these are
cascade-like. For the investigation of the tension in the ob-
served energy spectrum of astrophysical neutrinos, the as-
sumption of statistical independence is reasonably well justi-
fied but will result in a lower limit on the tension.

The combined analysis finds the smallest confidence re-
gion of the three aforementioned results. The p-value for ob-
taining the combined fit result and the result reported here
from an unbroken powerlaw flux is 3.3σ, and is therefore in
significant tension. For the discussion, it is important to high-
light the systematic differences between these measurements.
The threshold for the up-going muon signal is a few hundred
TeV while astrophysical starting events are detected above a
few times 10 TeV. It should be noted that for the overlap-
ping energy region > 200 TeV the measured fluxes for the
cascade dominated channels are in good agreement with the
results reported here, as shown in Fig. 5. As a conclusion,
we confirm for the Northern hemisphere a flux of muon neu-
trinos that is generally consistent with the observed all flavor
flux in the Southern hemisphere, but which is in tension with
the assumption of a single power law describing this and pre-
vious observations with a lower energy threshold at the same
time.

It is expected that for a galactic origin the neutrino flux
should be correlated with the galactic plane. It is gener-
ally assumed that the contribution from the galactic plane
and galactic sources is stronger in the Southern hemisphere,
which e.g. includes the galactic Center. The measured as-
trophysical flux is not strongly affected by a split in right
ascension (see Sec. 5.2), where one region includes the part
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Figure 14. Comparison of the measured diffuse astrophysical muon
neutrino flux (cf. Fig. 5) with theoretical neutrino flux predictions
corresponding to different source types (Kotera et al. 2010; Murase
et al. 2014; Bechtol et al. 2015; Senno et al. 2016). Since Murase
et al. (2014) predicts a lower and upper flux bound for neutrinos
originating from Blazars the central line between both bounds is
shown. The purple line shows the Waxman-Bahcall upper bound
(Waxman 2013).

of the galactic plane which is visible in the Northern sky and
the other does not. This can be interpreted as an indication
that the flux observed here is mostly of extra-galactic origin.

The observed tension may arise either from a spectral
break at lower energies for the same sources or from an addi-
tional flux component, e.g. expected from galactic sources or
the galactic plane, that is sub-dominant at the high energies
to which this analysis is sensitive.

Figure 14 compares the measured diffuse astrophysical
muon neutrino flux to theoretical flux predictions corre-
sponding to different source types. The measured flux is
within its uncertainties slightly below the Waxman-Bahcall
upper bound (Waxman 2013). Senno et al. (2016) predict
a diffuse neutrino flux originating from gamma-ray burst
which is currently not ruled out (Aartsen et al. 2015d, 2016b).
A flux of cosmogenic neutrinos as predicted by Kotera et al.
(2010) would only contribute subdominantly to the measured
astrophysical neutrino flux. Neutrino fluxes from blazars and
star-forming galaxies are predicted by e.g. Murase et al.
(2014) and Bechtol et al. (2015), respectively. Glüsenkamp
(2015) already constrains this blazar model. These fluxes
are of the same order of magnitude as the measured flux
within the given uncertainty band. However, due to the small
statistics at high energies we cannot differentiate if the mea-
sured astrophysical neutrino flux corresponds to a neutrino
flux originating from a specific source type or if it is a com-
bination of different source types.

5. ANALYSIS OF ARRIVAL DIRECTIONS AND
SEARCH FOR ANISOTROPIES

5.1. Arrival directions of highest energy events

The multi-PeV event discussed in Sec. 4.3 has a high prob-
ability of being astrophysical. Therefore, it is particularly

Figure 1.7: Results of different IceCube analyses measuring the astrophysical flux parameters

Φastro and γastro, with the contour lines showing the 90% CL. IC HESE, 4yr shows the latest

muon track analysis, IC cascades an analogous cascade analysis, IC combined an integrated

results of several analyses and IC tracks (2yr) and (6yr) shows upgoing muon track based

analysfs. From [14]

Neutrino spectrum measurements by IceCube

IceCube has provided various analyses on the spectral and spacial distribution of astrophysical

neutrinos. Dividing the data samples according to building phases of employed strings in the

ice and later detection years of the completed detector, and employing different veto strategies

for event filtering, IceCube has started to map out the parameter space for the astrophysical

neutrino spectrum [14]. Especially the measurement of several events in the PeV range can be

regarded as a first detection of astrophysical neutrinos dating back to 2013.

In Figure 1.7, the results of various IceCube analyses are shown together with a specialized

analysis for upgoing tracks only, i.e. neutrinos from the Northern hemisphere entering the

detection volume from below. The diverging best fit results show a harder neutrino flux spectrum

for the Northern hemisphere which excludes the galactic plane, indicating towards different

neutrino spectra from galactic sources compared to the overall spectrum.

In Figure 1.8, the unfolded neutrino spectrum containing these events can be seen, alongside

with the best fit for the conventional atmospheric flux and an upper limit on the prompt

atmospheric flux, which will be introduced in more detail in Chapter 2.3.1. A contribution

from these prompt atmospheric neutrinos, which could have an impact on the measurement of

astrophysical neutrinos due to its harder expected spectrum, was not found in the latest IceCube

measurements.
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Figure 5. Best-fit neutrino spectra for the unbroken power-law
model. The line widths (blue, red) represent the one sigma error
on the measured spectrum where the green line represents the up-
per limit on the prompt model (Enberg et al. 2008). The horizon-
tal width of the red band denotes the energy range of neutrino en-
ergies which contribute 90% to the total likelihood ratio between
the best-fit and the conventional atmospheric-only hypothesis. The
black crosses show the unfolded spectrum published in Kopper et al.
(2015).

4.2. Astrophysical flux

The best-fit for the unbroken power-law model of the as-
trophysical flux results in

Φν+ν =
(
0.90+0.30

−0.27

)
· (Eν/100 TeV)−(2.13±0.13) (4)

in units of 10−18 GeV−1 cm−2 sr−1 s−1. The statistical sig-
nificance of this flux with respect to the atmospheric-only hy-
pothesis is 5.6 standard deviations. The fit results are shown
in Fig. 5 and summarized in Tab. 3. The quoted errors are
based on the profile likelihood using Wilks’ theorem (Wilks
1938) and include both statistical and systematic uncertain-
ties. No contribution from prompt atmospheric neutrinos is
preferred by the best-fit spectrum and an upper limit, based
on the profile likelihood is shown in Fig. 5. For more infor-
mation about the upper limit for prompt atmospheric neutri-
nos see Sec. 6.

Table 3. Best-fit parameter values for
the unbroken power-law model. Φastro

is the normalization of the astrophysical
neutrino flux at 100 TeV and is given
in units of 10−18 GeV−1 s−1 sr−1 cm−2.
Φprompt is given in units of the model in
Enberg et al. (2008). The normalizations
correspond to the sum of neutrinos and
antineutrinos.

Parameter Best-Fit 68% C.L.

Φastro 0.90 0.62 − 1.20

γastro 2.13 2.00 − 2.26

Φprompt 0.00 0.00 − 0.19
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Figure 6. Two-dimensional profile likelihood scans of the astrophys-
ical parameter Φastro, γastro and the prompt normalization Φprompt

in units of the model in Enberg et al. (2008). The contours at 68%,
90% and 95% CL assuming Wilks’ theorem are shown.

Figure 1.8: Best-fit neutrino spectra for an unbroken power-law model. From [14]

Diffuse neutrino flux analyses in ANTARES

Concerning the investigation of a diffuse cosmic neutrino flux, the standard analysis of νµ muon

track events lies, in principle, at the core of most diffuse neutrino flux analyses in ANTARES.

While the first analysis specifically targeted muon track events, the following development of

cascade reconstruction lead to a separate analysis of neutrinos producing this event signature

[16], which will be discussed in more detail during the following work. In addition to that,

an ultra-high energy analysis targeted a νµ flux of cosmic origin in [17]. The details of these

analysis will be considered in Chapter 5 when developing the approach to a combined track and

shower diffuse neutrino flux search.

With the smaller instrumented volume of the ANTARES detector in comparison to IceCube,

the later analyses of ANTARES data will certainly not be able to reach a competitive sensitivity

to IceCube. However, this analysis will investigate the possibility to increase sensitivity in the

diffuse cosmic neutrino flux analysis by developing an integrated approach including all neutrino

types.

1.3.3 Neutrino physics and dark matter

The neutrino telescopes can also contribute to some of the research questions of neutrino physics

by using e.g. the constant background of atmospheric neutrinos as source. Neutrino oscillation

parameters can be targeted by using atmospheric neutrinos travelling through Earth and enter-

ing the detector at various angles, as their inclination reflects their different path length from
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the Earth’s surface. This also allows the search for sterile neutrinos, although the precision of

the study is naturally outperformed by dedicated oscillation experiments [18].

The search for dark matter is another well explored field of research in the high-energy neutrino

observatories, drawing on various theoretical predictions of neutrino production from dark mat-

ter interactions. Neutrinos are assumed to be produced by Weakly Interacting Massive Particles

(WIMPs) accumulating in massive objects, where their annihilation produces neutrinos. There-

fore, the Sun or Earth itself were proposed as sources of neutrinos from WIMP annihilation, as

well as the Galactic center or the Milky Way halo, and limits on the neutrino flx from these

regions were set by both ANTARES and IceCube [19].

As the current generation of neutrino observatories is continuously developed further, also ad-

ditional research goals are explored, extending the agenda from the pure astrophysical focus

towards particle physics and new physics goals.
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2 l The ANTARES detector

2.1 Measuring neutrinos

All neutrino detection must rely on secondary products of neutrino interaction. Here, not only

the interaction characteristics of neutrinos, but also of particles further down the reaction chain

are crucial for a good reconstruction of primary particle properties. These characteristics also

define the design of the apparatus to optimize its sensitivity towards this interaction signature.

Therefore, the question how to measure neutrinos is covered in the first chapter by first tracing

the steps from the neutrino interaction to the Cherenkov photon signature before embarking on

a description of the ANTARES detector and its data taking in the following chapter.

2.1.1 Neutrino interaction

As weakly interacting particles, neutrinos either exchange a W± boson in a charged-current (CC)

interaction νlN→ lX , or a Z0 in a neutral current (NC) interaction νlN→ νlX , see Figure 2.1.

Here, NC interactions will lead to the renewed emission of a neutrino with lower energy, a CC

interaction produces a charged lepton. While interacting in deep inelastic scattering with the

nucleon quarks, both interaction also causes a hadronic particle cascade alongside the neutrino

or lepton. Therefore, the interaction vertex of a neutrino can in all cases be detected as charged

particle cascade.

  

νl

(      )

Z  

0

νl

(      )

N X

(a) neutral-current interaction

  

W  

∓

l ∓

N

νl

(      )

X

(b) charged-current interaction

Figure 2.1: Feynman graphs of neutrino νl, l = e, µ, τ interaction through W± or Z0 exchange

with quarks of a hadron N.
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law dependence provides a reasonable approximation
(Gandhi et al., 1996):

�CC
�N ¼ 5:53Â 10À36 cm2

�
E�

1 GeV

�
�
; (90)

�NC
�N ¼ 2:31Â 10À36 cm2

�
E�

1 GeV

�
�
; (91)

where � ’ 0:363.
There is one peculiar oddity that is worth highlighting for

neutrino cross sections at such high energies. Neutrino-

electron scattering is usually subdominant to any neutrino-

nucleus interaction because of its small target mass. There is

one notable exception, however when the neutrino undergoes

a resonant enhancement from the formation of an intermedi-

ate W boson in "�ee
À interactions. This resonance formation

takes place at Eres ¼ M2
W=2me ¼ 6:3 PeV and is by far more

prominent than any �N interaction up to 1021 eV (see

Fig. 29). The mechanism was first suggested by Glashow in

1960 as a means to directly detect the W boson (Glashow,

1960). The cross section was later generalized by Berezinsky

and Gazizov (1977) to other possible channels:

d�ð "�ee
À! "�ee

ÀÞ
dy

¼2G2
FmeE�

�

�
g2R

ð1þ2meE�y=M
2
ZÞ2

þ
��������

gL
1þ2meE�y=M

2
Z

þ 1

1À2meE�=M
2
Wþ iÀW=MW

��������
2
�
; (92)

where gL;R are the left- and right-handed fermion cou-
plings, MW is the W-boson mass, and ÀW is the W-decay
width ($2:08 GeV). This resonance occurs only for
s-channel processes mediated by W exchange,

d�ð�le ! �leÞ
dy

¼ 2meG
2
FE�

�

1

ð1þ 2meE�y=M
2
ZÞ2

Â ½g2L þ g2Rð1À yÞ2�;
d�ð "�le ! "�leÞ

dy
¼ 2meG

2
FE�

�

1

ð1þ 2meE�y=M
2
ZÞ2

Â ½g2R þ g2Lð1À yÞ2�:

When compared to that of neutrino-nucleon scattering or
even nonresonant neutrino-lepton scattering, "�e scattering
dominates. Such high cross sections can often cause the
Earth to be opaque to neutrinos in certain energy regimes

and depart substantially from standard model predictions if
new physics is present (Gandhi et al., 1996).

A. Uncertainties and projections

For a more accurate prediction of the cross section, a well-
formulated model of the relevant quark structure functions is
needed. This predictive power is especially important in the
search for new physics. At such high energies, the neutrino
cross section can depart substantially from the standard
model prediction if new physics is at play. Study of such
high-energy neutrinos can be a possible probe into new
physics.

Direct neutrino scattering measurements at such extreme
energies are, of course, unavailable. Therefore, predictions
rely heavily on the existing knowledge of parton distribution
functions and, as the reader can imagine, extrapolation can
introduce substantial uncertainties to these predictions. The
best constraints on the relevant parton distribution functions
stem from data collected from high-energy ep scattering
experiments such as Hadron-Electron Ring Accelerator
(HERA) (Chekanov et al., 2003). The challenge rests on
the ability to fit existing data to as low values of x as possible.
At high energies, the propagator term limits the maximum Q2

to theMW;Z mass. The relevant range for x then falls inversely
with neutrino energy,

x$MW

E�

(93)

which, for EeV scales, implies x down to 10À8 or lower. The
ZEUS Collaboration has recently extended their analysis of
parton distribution function data down to x ’ 10À5, allowing
a more robust extrapolation of the neutrino cross section
to higher energies (Cooper-Sarkar and Sarkar, 2008).
Uncertainties in their parton distribution function translate
into Æ4% uncertainties for the neutrino cross section for
center-of-mass energy of 104 GeV and Æ14% uncertainties
at

ffiffiffi
s

p ¼ 106 GeV.
An equal factor in the precise evaluation of these cross

sections is the selection of an adequate PDF itself. The
conventional PDF makes use of the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi formalism (Altarelli and Parisi,
1977; Dokshitzer, 1977), which is a next-to-leading order

FIG. 29 (color online). Neutrino electron and nucleon scattering

in the ultra-high-energy regime (E� ! 104 GeV). Shown are the

electron interactions "��e
À ! "��e

À (crosses), ��e
À ! ��e

À (dia-

monds), "�ee
À ! "�ee

À (hollow circles), "�ee
À ! "��e

À (filled

circles), and the nucleon charged current (cross markers) and

neutral-current (filled triangles) interactions. The leptonic W reso-

nance channel is clearly evident (Butkevich et al., 1988; Gandhi

et al., 1996).

1336 Joseph A. Formaggio and G. P. Zeller: From eV to EeV: Neutrino cross sections . . .

Rev. Mod. Phys., Vol. 84, No. 3, July–September 2012

Figure 2.2: Neutrino cross-section for NC and CC interactions in the e and µ channel, from [20]

Neutral current interactions In neutral current interactions νlN→ νlX , the hadronic shower

constituents are the only measurable product of the interaction. Part of the neutrino energy is

here transferred to the hadronic cascade, depending on the neutrino energy on average between

25% and 50%. With a typical length of several metres, depending on the shower energy, but a

relatively small lateral distribution, the cascades allow a reconstruction of the deposited energy

with a comparatively high precision due to the full disposition within a short distance, but lower

accuracy on the neutrino direction due to the shorter lever arm.

Charged current interactions Additional information for reconstruction is available from the

charged lepton produced in charged current interactions νlN→ lX . However, topologies of the

secondary particle distributions differ greatly for the three neutrino flavours.

In case of e± production, Bremsstrahlung leads to a quick energy loss of the particle and causes

an electromagnetic cascade. As the electromagnetic cascade is not distinguishable from the

hadronic one in this type of detector, the observed cascade differs from a NC interaction such

that it contains now the complete energy of the interacting electron neutrino.

For neutrino detection, the muon channel is seen as the ”golden channel”. The resulting

µ± possesses such large momentum that it virtually shows no directional deviation through

scattering along its path, and looses its energy along a comparatively large distance between

meters up to several kilometres. In addition to that, its lifetime is long enough for it to rarely

decay along this path. These properties make the νµ events from CC interactions easy to detect

even if the interaction happened outside of the instrumented volume, and grant a much better

directional resolution than the other event channels.

In case of the tau channel, life is not that simple as the resulting τ± can, within a relevant

distance of several meters, either decay into a muon τ→ µντνµ , decay to an electron τ→ eντνe
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32. Passage of particles through matter 33

32.7. Cherenkov and transition radiation [33,77,78]

A charged particle radiates if its velocity is greater than the local phase velocity of
light (Cherenkov radiation) or if it crosses suddenly from one medium to another with
different optical properties (transition radiation). Neither process is important for energy
loss, but both are used in high-energy and cosmic-ray physics detectors.

θc

γc

η

Cherenkov wavefront

Particle velocity   v = βc

v =
 v g

Figure 32.26: Cherenkov light emission and wavefront angles. In a dispersive
medium, θc + η 6= 900.

32.7.1. Optical Cherenkov radiation : The angle θc of Cherenkov radiation, relative
to the particle’s direction, for a particle with velocity βc in a medium with index of
refraction n is

cos θc = (1/nβ)

or tan θc =
p

β2n2 − 1

≈
p

2(1 − 1/nβ) for small θc, e.g . in gases. (32.43)

The threshold velocity βt is 1/n, and γt = 1/(1−β2
t )1/2. Therefore, βtγt = 1/(2δ+δ2)1/2,

where δ = n − 1. Values of δ for various commonly used gases are given as a function of
pressure and wavelength in Ref. 79. For values at atmospheric pressure, see Table 6.1.
Data for other commonly used materials are given in Ref. 80.

Practical Cherenkov radiator materials are dispersive. Let ω be the photon’s frequency,
and let k = 2π/λ be its wavenumber. The photons propage at the group velocity
vg = dω/dk = c/[n(ω) + ω(dn/dω)]. In a non-dispersive medium, this simplies to
vg = c/n.

In his classical paper, Tamm [81] showed that for dispersive media the radiation is
concentrated in a thin conical shell whose vertex is at the moving charge, and whose
opening half-angle η is given by

cot η =

·
d

dω
(ω tan θc)

¸

ω0

=

·
tan θc + β2ω n(ω)

dn

dω
cot θc

¸

ω0

, (32.44)

where ω0 is the central value of the small frequency range under consideration.
(See Fig. 32.26.) This cone has a opening half-angle η, and, unless the medium is
non-dispersive (dn/dω = 0), θc + η 6= 900. The Cherenkov wavefront ‘sideslips’ along
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(b) Cherenkov radiation schematic

Figure 2.3: Path length of neutrino interaction products, i.e. µ, τ and electromagnetic and

hadronic cascades, in water, from [21], and schematic illustration of the Cherenkov radiation

mechanis, from [22].

and thus give rise to an electromagnetic shower, or decay to cause a ντ and a hadronic shower

through e.g K or π production. τ events are therefore either detected as muon events when

initial interaction happens outside the detection volume of the detector, as simple cascades in

case of a short τ track, or as so-called ”double-bang” events when the ντ interaction causes

a hadronic cascade and the τ travels a relevant distance before producing the second shower

when decaying.

The reconstruction approach for the direction and energy of the incident neutrino depend

heavily on their path length in the detector and light production mechanisms, which will be

further explained in the following chapter. A comparison of the average path length for the

secondary particles can be seen in Figure 2.3a.

Resonant interactions On top of the standard NC and CC interactions, resonant scattering

processes enter the neutrino cross-section, see Figure 2.2. Of those, the most dominant is the

Glashow resonance [23], produced by the interaction νe + e−→W− at an energy of 6.3PeV.

Decaying, amongst other channels, as W−→ ν ll−, all before mentioned event signatures can

stem from these resonant interactions, including hadronic cascades.

2.1.2 Propagation of charged particles

The detection of charged particles at high energies relies on Cherenkov radiation produced

by charged particle passage through a medium above its speed of light. Therefore, sources

of Cherenkov radiation are not only the charged leptons and the direct interaction secondary
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CHAPTER 2. THE ANTARES DETECTOR

32. Passage of particles through matter 31

Figure 32.23: The average energy loss of a muon in hydrogen, iron, and uranium
as a function of muon energy. Contributions to dE/dx in iron from ionization and
the processes shown in Fig. 32.22 are also shown.

The “muon critical energy” Eµc can be defined more exactly as the energy
at which radiative and ionization losses are equal, and can be found by solving
Eµc = a(Eµc)/b(Eµc). This definition corresponds to the solid-line intersection in
Fig. 32.13, and is different from the Rossi definition we used for electrons. It serves the
same function: below Eµc ionization losses dominate, and above Eµc radiative effects
dominate. The dependence of Eµc on atomic number Z is shown in Fig. 32.24.

The radiative cross sections are expressed as functions of the fractional energy loss
ν. The bremsstrahlung cross section goes roughly as 1/ν over most of the range, while
for the pair production case the distribution goes as ν−3 to ν−2 [74]. “Hard” losses
are therefore more probable in bremsstrahlung, and in fact energy losses due to pair
production may very nearly be treated as continuous. The simulated [72] momentum
distribution of an incident 1 TeV/c muon beam after it crosses 3 m of iron is shown
in Fig. 32.25. The most probable loss is 8 GeV, or 3.4 MeV g−1cm2. The full width
at half maximum is 9 GeV/c, or 0.9%. The radiative tail is almost entirely due to
bremsstrahlung, although most of the events in which more than 10% of the incident
energy lost experienced relatively hard photonuclear interactions. The latter can exceed
detector resolution [75], necessitating the reconstruction of lost energy. Tables in Ref. 5
list the stopping power as 9.82 MeV g−1cm2 for a 1 TeV muon, so that the mean loss
should be 23 GeV (≈ 23 GeV/c), for a final momentum of 977 GeV/c, far below the peak.
This agrees with the indicated mean calculated from the simulation. Electromagnetic and
hadronic cascades in detector materials can obscure muon tracks in detector planes and
reduce tracking efficiency [76].
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Figure 2.4: Average energy loss by muons passing through hydrogen, iron and uranium through

radiative processes and ionization. From [22].

particles, but any charged particles of sufficient energy emerging from electronic and hadronic

vertex cascades or from energy loss process of the neutrino-induced lepton.

Cherenkov radiation

Cherenkov radiation is emitted in the ambient medium of a charged particle through which

it passes at a velocity β surpassing the phase velocity vp of electromagnetic waves of the

medium [22]. It stems from the short-term polarisation of ambient atoms by the charged

particle, which thus emit electromagnetic waves which in turn interfere constructively due to

the faster passage of the particle than the light speed. The resulting radiation is produced in

a conical shell with its vertex at the particle path, propagating as a photon front with cone

opening angle η , see Fig 2.3b.

With the opening angle being dependent on the refractive index of the medium, n, and the

velocity of the passing particle, β , the Cherenkov angle θC can be calculated as cosθC = 1/nβ .

For the use in high-energy neutrino detection, the particle velocity can almost always be assumed

to be close to the speed of light in vacuum, i.e. v≈ c. As the refractive index of water as target

material is nH2O = 1.33, Cherenkov radiation is here produced at θC = 41.2◦. The number of

photons emitted at pathlength x and wavelength λ by a charge e is then given as

d2N
dxdλ

=
2πα

λ 2

(
1− 1

β 2n2

)
, (2.1)

with α the electromagnetic coupling constant. Considering the light absorption properties of

water favouring the propagation of visible light, especially of blue light, and the decreasing

photon density of Cherenkov radiation with increasing wavelength, the best trade-off between
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transparency of the medium and intensity of the radiation lead to the use of blue to violet light

in the experiment. Therefore, the construction of photon detection devices in ANTARES is

optimized to the according wavelength.

Energy loss processes

All charged particles suffer energy loss from various mechanisms and are sources of Cherenkov

radiation until the particle velocity becomes smaller than the speed of light of the medium.

However, in case of ANTARES, energy loss processes are best demonstrated with regard to

muons as the golden detection channel, where the measurement of the muon path length or

Cherenkov emission of energy loss processes along the path can be used to reconstruct the initial

muon energy with increased precision.

Energy loss processes for muons in the relevant GeV range undergo a significant transition

from a fairly constant energy loss below a critical energy Ecrit , stemming from ionization, to-

wards energy-dependent energy loss mechanisms above the critical energy caused by radiative

processes, see Fig 2.4. Therefore, muon energy loss is generally approximated as

−dEµ

dX
= a(E)+ b(E)Eµ , (2.2)

with constants a(E) describing the ionization loss component, and b(E) originating from brems-

strahlung, e+e− pair production and photonuclear processes [22]. These latter radiative pro-

cesses are characterized by stochastically distributed energy losses along the muon’s trajectory

overall increasing in intensity and decreasing in frequency for higher particle energies. These

can lead to sizeable electromagnetic showers along the path for sufficiently high muon en-

ergies and are, but for the continuous muon track, hardly distinguishable from electromag-

netic or hadronic vertex showers. From Equation (2.2), the critical energy, which is the

boundary between the dominance of constant and energy-dependent energy losses, can be ex-

pressed as Ecrit = a(E)/b(E). In water, a(E)H2O = 2.67× 10−3 GeVcm2 g−1 and b(E)H2O =

3.40× 10−6 cm2 g−1 [24] lead to a critical energy of Ecrit,H2O = 785GeV. For large-scale neu-

trino telescopes, muon energies from several GeV up to PeV are of relevance and therefore

energy reconstruction strategies need to draw on these the different energy loss characteristics

depending on the relevant energy range.

2.2 Building a high-energy neutrino detector

The primary goal of ANTARES lies the detection of high-energy cosmic neutrinos though

Cherenkov emission from their charged lepton counterpart, as introduced above. Therefore,

the construction of the detector calls for a transparent abundant medium for detection which

allows single photon measurement to high precision and minimizes the influence of other photon

and particle sources. The design decisions taken to optimize ANTARES for this purpose are

introduced here and can be found to greater detail in [25].

2.2.1 Detection principle

The optimal detection of Cherenkov emission calls for the employment of optical detection units

with single photon sensitivity in the relevant wavelength and high timing resolution, which must
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Figure 2.5: Schematic view of the detection principle, with solid lines symbolising charged

particles, dashed lines neutrinos; and schematic view of the detector layout.

withstand the environmental conditions of the deep sea. The spacing between the detection

unit is then optimized thus that the reconstruction results from Cherenkov radiation from the

relevant neutrino sources are optimized.

The reduction of the number of background particles, primarily from atmospheric muons, mo-

tivates the employment of the detector in the deep sea to maximize atmospheric particle ab-

sorption, decay and energy-loss before they enter the detector. However, even the employment

of ANTARES at 2.5km sea-depth in the Mediterranean Sea leads to an approximate ratio of

1 : 106 between neutrino-induced and atmospheric muons entering the detector from above.

Therefore, filtering of atmospheric muons is mostly achieved by introducing Earth as a parti-

cle filter. While neutrinos can mostly penetrate Earth depending on their energy, atmospheric

leptons are here completely shielded. Therefore, the detector is optimized to detect Cherenkov

radiation of particles entering the detector from below, see Figure 2.5a.

2.2.2 Components and Layout

Geometry

The 885 optical detection units, the so-called Optical Modules (OMs) of ANTARES, are dis-

tributed along twelve detection lines and situated in groups of three OMs in one Optical Module

Frame (OMF) containing a Local Control Module (LCM), see Figure 2.6b. The orientation of

the individual OMs shows a 45◦ inclination downwards from the horizontal axis, with the three

OMs per storey facing in opposite directions by 120◦. While OMs within a storey are deployed
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(a) Optical Module (b) Storey

Figure 2.6: Schematic view of an Optical Module (OM) and a single storey of 3 OMs. From [25]

at a relative distance of ≈ 1m, successive storeys per detection line are spaced by 14.5m along

the Electro-optical mechanical cable, which is held upright by a buoy and anchored to the sea

floor. The relative dimensions can be seen in Figure 2.5b. ANTARES also contains an acoustic

neutrino detection system which replaces the upper five storeys of a detection line and includes

several acoustic sensors on the additional Instrumentation Line (IL) holding additional instru-

mentation for environmental control. All lines are connected on the sea floor to the Junction

Box (JB) for power supply and data transmission, linking the detector along a single cable to

the shore.

Photon detectors

Each of the 885 OMs (see Figure 2.6a) contains one 10-inch photomultiplier tube (PMT)

which is placed within a pressure-resistant glass sphere withstanding up to 700bar, with the

intermittent space covered by optical gel. A single incident photon on the photo cathode area

is detected with a collection efficiencies above 90% within ±45◦ towards the PMT axis [26].

The incident photon leads to an electron cascade inside the PMT with a gain of 5×107 at less

than 2000V supplied voltage.

The transit time spread (TTS) of this single photon pulse is at about 1.3ns, which lies at

the same magnitude as the chromatic time dispersion in water [27]. A magnetic shield is

implemented using a grid of wires around the PTM bulb to decrease the effect of Earth’s

magnetic field, which would increase the TTS. A relevant impact on reconstruction is also to be

expected from so-called pre-pulses and after-pulses stemming from rebounding or misdirected

electrons in the electron cascade, which are limited to a maximum of 1% and 15% respectively

in order to ensure optimum timing measurement of single photons. Additionally, each OM also

contains an internal LED for calibration purposes.
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2.2.3 Signal read-out

Collection and transformation of photon signals

Within each OMF holding three OMs, further signal processing is performed within the LCM,

which contains various instruments: the local power box, a clock reference signal, the ARS

(analogue ring sampler) motherboard holding the front-end electronic of the OM, the DAQ

slow-control for local processing and memory and a compass system. Within an ARS , the

digitization of the charge and timing information of the PMT photon pulses takes place using an

Amplitude-to-Voltage converter (AVC) and Time-to-Voltage converter (TVC) before digitizing

the voltage through an analog-to-digital converter (ADC). Each motherboard contains two

alternately operating ARSs in a token-ring scheme in order to minimize the dead time, which

leads to a minimum of 15ns dead time between two consecutive ARS readouts. As each ARS

integrates PMT charge over a 25ns time window, the data from one ARS readout is the basic

photon detection unit and is called a photon hit, which after calibration of the ARS read-outs

can be assigned a hit time and amplitude. After a hit, an ARS requires 250ns recovery time

until the next possible hit detection.

All signals of the OMs are further transferred along the electro-optical cable of the detection

line and through the connection of the line base to the Junction Box (JB), which bundles the

signal and forwards it to the shore following an all-data-to-shore principle.

Calibration and additional sensors

In addition to the main photon detection infrastructure, several additional instruments com-

plement the detector, ranging from instruments for timing and OM position calibration over

various instruments for sea sciences to an acoustic neutrino detection system for ultra-high en-

ergy neutrino detection.

The OM positions are evaluated every two minutes using an acoustic beacon system with sig-

nalling acoustic transceivers at the line base and receiving hydrophones at various storeys along

the line. This information is correlated with the calculated line indentation from sea current

measurements, which serves as basis for the positioning of the OMFs. OM orientation within

the OMFs is finally determined with the help of the compass system within the LCMs.

Calibration of the time measurement and clock system utilizes two beacon systems employing

either Laser or LED as light sources. While LEDs are here used between storeys for short-

distance correlations, lasers are used to bridge the distance between the line bases and the OMs

for determination of the timing calibration along a line.

Further information about environmental conditions like sea current direction and velocity, and

water temperature are measured with according instruments on the instrumentation line, which

also hosts hydrophones for acoustic neutrino detection and instruments for sea science.

2.3 Detector operation in the deep sea

After setting up the detector in the Mediterranean Sea, several additional obstacles have to be

overcome to successfully detect neutrinos. First of all, the atmospheric particle background has

to be well understood in order to suppress it, as well as environmental conditions influencing
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Figure 4. Various estimates of the intensity of prompt atmospheric neutrinos from decay of
charm compared to conventional atmospheric neutrinos.

three thin continuous lines in the figure. (H4a differs from H3a only in the 3rd (extragalactic)
population, which is all protons for H4a.) For comparison, the fluxes of conventional atmospheric
neutrinos are shown by the broken lines for H3a and GST1.

Fluxes of νe and νµ from decay of charm are nearly equal, unlike the case for conventional
neutrinos, for which νe/νµ ≈ 0.04. For the examples shown here, the crossover energy at which
the prompt neutrino flux becomes larger than the conventional is between 10 and 100 TeV for
νe and between 1 and 3 PeV for muon neutrinos. The effect of the protons in the GST models
is again apparent in the increased intensity above 10 PeV. Sibyll 2.3 [19] includes production of
charm and gives a prompt flux within the range shown in Fig. 4.

A new calculation of prompt neutrinos by Garzelli et al. [23] that starts from next to leading
order QCD for hadro-production of charm gives results that are similar in magnitude to Fig. 4.
Reference [23] (also presented at TAUP 2015) includes an extensive evaluation of uncertainties
in the flux of neutrinos from decay of charm. Taken together, the recent calculations are in
broad agreement and predict levels of prompt neutrinos within a factor of two of the results
shown here.
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Figure 2.7: Estimates of prompt atmospheric neutrino fluxes (solid lines, thick ones using the

H3a conventional model as basis) compared to conventional atmospheric neutrino flux estimates

for νe and νµ (broken lines). From [28]

photon detection in the deep sea need to be studied. From the understanding of these additional

photon sources, event triggering mechanisms are developed to maximise the yield of neutrino

detections.

2.3.1 The atmospheric particle background

The largest number of leptons detectable in any high-energy Earth-bound detector generally

stems from interactions of cosmic rays with particles in Earth’s atmosphere. In the search for

neutrinos of cosmic origin, the most relevant background particles are atmospheric muons and

atmospheric neutrinos. They are produced in cosmic ray cascades involving pions π±, kaons

K± and heavier hadrons, which in turn decay to form the relevant background. In order to

establish the spacial and energetic distribution of muons and neutrinos, the primary cosmic ray

spectrum has to be convoluted with a summed contribution from these interaction channels,

which reflects the different energy dependence, decay kinematics and branching ratios [3].
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Figure 28.4: Vertical fluxes of cosmic rays in the atmosphere with E > 1 GeV
estimated from the nucleon flux of Eq. (28.2). The points show measurements of
negative muons with Eµ > 1 GeV [41–45].

28.3.2. Electromagnetic component : At the ground, this component consists of
electrons, positrons, and photons primarily from cascades initiated by decay of neutral
and charged mesons. Muon decay is the dominant source of low-energy electrons at sea
level. Decay of neutral pions is more important at high altitude or when the energy
threshold is high. Knock-on electrons also make a small contribution at low energy [61].
The integral vertical intensity of electrons plus positrons is very approximately 30, 6,
and 0.2 m−2s−1sr−1 above 10, 100, and 1000 MeV respectively [51,62], but the exact
numbers depend sensitively on altitude, and the angular dependence is complex because
of the different altitude dependence of the different sources of electrons [61–63]. The
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(a) atmospheric ν and µ production
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Figure 28.7: Vertical muon intensity vs depth (1 km.w.e. = 105 g cm−2of standard
rock). The experimental data are from: ♦: the compilations of Crouch [69], ¤:
Baksan [74], ◦: LVD [75], •: MACRO [76], ¥: Frejus [77], and △: SNO [78].
The shaded area at large depths represents neutrino-induced muons of energy above
2 GeV. The upper line is for horizontal neutrino-induced muons, the lower one
for vertically upward muons. Darker shading shows the muon flux measured by
the SuperKamiokande experiment. The inset shows the vertical intensity curve for
water and ice published in Refs. [70–73].

measured directly. What is measured is a convolution of the neutrino flux and cross
section with the properties of the detector (which includes the surrounding medium in
the case of entering muons).

Contained and semi-contained events reflect neutrinos in the sub-GeV to multi-GeV
region where the product of increasing cross section and decreasing flux is maximum. In
the GeV region the neutrino flux and its angular distribution depend on the geomagnetic
location of the detector and, to a lesser extent, on the phase of the solar cycle. Naively,
we expect νµ/νe = 2 from counting neutrinos of the two flavors coming from the chain of
pion and muon decay. Contrary to expectation, however, the numbers of the two classes
of events are similar rather than different by a factor of two. This is now understood
to be a consequence of neutrino flavor oscillations [81]. (See the article on neutrino

February 8, 2016 19:55

(b) µ absorption in water

Figure 2.8: Production of atmospheric neutrinos and muon in the atmosphere, and absorption

of atmospheric muons after passage through water. From [2]

Conventional atmospheric neutrinos

The ”conventional” part of the atmospheric muon and neutrino spectrum stems from meson

decay, i.e. π and K, which were produced from interaction of cosmic rays in the atmosphere,

predominantly protons and heavier nuclei. From this, the atmospheric neutrino spectrum is

generated as a superposition of ν and µ contributions following the spectral distribution of the

primaries, convoluted with the subsequent decay channel dynamics. Here, the kaon channel

plays an important role and accounts for 80% of muon neutrinos in the TeV range, producing

a spectrum that follows the spectral index λ of the primary spectrum as α = 1 + λ .

While the decay dynamics are comparatively well known, larger differences arise from the as-

sumption of the spectral distribution and composition of the primaries, e.g. two used models

from the Bartol group [29] and Honda et al. [30]. In addition to that, the hadronic interaction

model is constantly improving by integrating current research from the Large Hadron Collider in

the flux calculations. In Figure 2.7, spectra for a conventional neutrino flux can be seen, display-

ing the differing outcome of calculations including a differing spectral cut-off for each primary

nucleus group (H3a) and a proton-dominated primary spectrum above ∼ 107 GeV (GST1).

It should be noted that due to the different path lengths of interaction chain particles in the

atmosphere, the angular distribution of neutrinos is not isotrop but follows a secθ distribution

with an increasing rate of high energy neutrinos at large zenith angles [2].
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Atmospheric muons

Muons from cosmic ray interaction are produced high in the atmosphere and, together with

neutrinos, are the only interaction products able to reach a deep-sea detector. Their energy

distribution there reflects the effects of the primary production spectrum, energy loss and decay.

At the surface, the energy spectrum of high-energy atmospheric muons above 1TeV shows a

spectral index steeper by one power than the primary cosmic ray spectrum [2], following the at-

mospheric neutrino spectrum. Here, the integral intensity of vertical muons above 1GeV/c lies

at ∼ 70m−2 s−1 sr−1, with recent measurements favouring a lower normalization by 10− 15%,

and approximating a secθ distribution for θ < 70◦ [2].

A small contribution from charm interactions and heavier nuclei at high energies can also be

taken into account, however, in this work the small contribution of this decay channels will be

neglected due to the larger overall normalization error of the muon flux. At sea level, muons

and neutrinos are the dominant contribution of atmospheric cascades, see Figure 2.8a.

As already discussed in Section 2.1.2, muons lose energy through ionization and radiative pro-

cesses, which leads to a shift in the energy spectrum depending on the matter depth of the

measurement. While this process flattens out the spectrum at smaller energies, the spectrum at

more than 2.5kmw.e. still reflects the surface spectrum for Eµ > 0.5TeV with a normalization

reduced by two orders of magnitude compared to sea level, see Figure 2.8b.

Prompt neutrinos from charmed hadrons

The contribution to the atmospheric neutrino and muon flux from charmed hadron interactions

is negligible for the largest part of the energy range as charm interactions are much rarer than

kaon and pion interactions. However, in high-energy neutrino astronomy, the energy range of

the cosmic neutrino signal which is largely devoid of conventional atmospheric neutrinos, still

contains a non-negligible charmed component, called ”prompt” neutrinos. The crossover en-

ergy at which the prompt component becomes dominant over the conventional lies at about

10− 100TeV for νe and 1− 3PeV for νµ with a nearly equal magnitude of νe and νµ prompt

neutrinos [28].

The prompt component can be estimated from modelling the charm production in the atmo-

sphere relying on the different models of cosmic ray compositions similar to the conventional

flux. In Figure 2.7, the two main models are based on a QCD calculation developed by Enberg,

Reno and Sarcevic (ERS) and extended in [31] to BERSS. Changes to the critical energies for

charmed hadron interaction can severely influence the model outcome, which can be seen in the

alternate spectra of the BERSS model shown with the thin solid lines.

In the ERS model, the uncertainty range cited lies at about 50%, which together with the

varying assumption of the primary spectrum, also shows the general uncertainty on the prompt

atmospheric flux. As the analysis presented here predates limits and measurements made by

IceCube which lead to this recent remodelling of the prompt flux, a simplified version of the

ERS model with higher normalization was used.
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Figure 2.9: PMT mean rate, salinity, temperature and sea current measured at at the instru-

mentation line in 2010. From [32]

2.3.2 Environmental conditions

In addition to photons from charged particles of atmospheric origin passing the detector, also

the influence of background photons produced inside the detection volume has to be minimized.

These background photons stem from either radioactive decay of 40K in the sea water, or

bioluminescence from bacteria or larger organisms.

40K decays

The radioactive decay of 40K isotopes in the saline sea water leads to the emission of an elec-

tron above the Cherenkov threshold in 40
19K →40

20 Ca + e−+ νe. This creates a fairly constant

background of Cherenkov photons in the vicinity of the OMs which produce, inter alia, coin-

ciding hits in neighbouring OMs. Apart from being a nuisance to photon hit selection in event

identification, this background can serve as natural calibration light source to estimate the OM

efficiency, light attenuation and relative timing offset between neighbouring OMs. 40K decays

can, in addition to these calibration methods, also be used to estimate the light absorption by

sea water [33], assuming an isotropic distribution of the isotope.

Bioluminescense

The largest contribution to background photon hits in ANTARES stems from luminous deep-sea

organisms, with micro-organisms causing single photon hits and macroscopic animals leading

to so-called photon bursts from their signalling organs. It was shown that the activity due to

bioluminescence exhibits seasonal as well as short-term variations which relate to the sea current,

salinity of the water and temperature [32], see Figure 2.9, which is driven by convection processes

refuelling the deep seawater with cooled winter water from the surface.
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The large variation of background photon numbers poses not only a challenge to hit selection

procedures, but also leads to a constantly varying photon sensitivity of the detector’s OMs, as

photon bursts saturate PMT light yield to the maximum with subsequent periods of insensitivity

during the according dead times of the OMs.

These challenges are addressed by a constant measurement of detector status indicators and the

OM mean hit rates, which is also included in a detailed simulation of ANTARES data taking as

it is a strong indicator of data quality. In addition to that, various quality parameters have been

introduced, which help to estimate the general data taking conditions for any given period of

measurement. One of these quality parameters is displayed in Figure 2.9, namely the detector

mean rate, which is calculated the mean hit rate for all active OMs in the detector.

2.3.3 Neutrino event triggering

Photon patterns generated inside the detection volume have to be quickly identified as stemming

from relativistic charged particles and not environmental sources, and, depending on the physics

aim of the measurements, by their probability to originate from a lepton having entered the

detector from below. To this end, triggering mechanisms to identify the various event classes

within ANTARES have been introduced, which run online on a computer farm onshore, selecting

relevant fragments of the data stream as so-called events.

The triggering schemes usually draw on time and spacial proximity of hits, e.g. the standard

muon trigger, called 3N trigger, uses the possible causal relation between hits in neighbour-

ing OMs to identify potential event signal hits [25]. To be considered for the triggers, hits

must coincide in OMs of the same storey within 20ns or be large pulses of more than three

photo-electrons (p.e.). Five of these potential signal hits fulfil the trigger criterion if they are

neighbouring or causally related considering the their timing, distance and speed of light. This

trigger is sensitive to lepton events from all directions and shows a high purity with triggers

due to random coincidences less than 1%. In addition to the 3N trigger, additional schemes

rely on either looser or stricter coincidence or photon spacial distribution criteria, or include

a directional preference of the photon pattern to especially target neutrinos from the Galactic

centre.

A challenge to ANTARES event triggering and reconstruction arises from the fact that trigger

rates can vary strongly due to bioluminescence, and photon sensitivity of the OMs change over

time due to ageing and exposure to the environment. In order to balance out these effects and

deal with the limited storage capacity for data, triggers are usually switched on or off to keep

trigger rates at a constant level of a few Hertz.

2.3.4 Operational challenges

Ageing effects of the detector and occasional malfunctioning of OMs might also cause problems

in data analysis. In the search for high-energy neutrinos, any occurrence of a flash of light

within the detection volume could be misinterpreted as event. Indeed, flashes can be produced

by OMs themselves when suffering from a high-voltage surge, causing sparks, which has proven

to pose a problem in earlier analyses. These fake ”sparking events” can be identified by their

their position and the timing of the arrival of light [16] and need to be successfully suppressed

in a cosmic neutrino search.
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Figure 16: Average OM efficiency versus time for L1, L2, L3, computed with all the 40K
runs (DR+PR).
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Figure 2.10: Average OM efficiency for detection line 1 over nine years of data taking. From [34]

Another effect that has to be dealt with over the long run time of ANTARES is the ageing

of the OMs. This is on the one hand addressed by re-calibrating the voltage and readout of the

PMTs, on the other hand even this cannot prevent the loss of hit efficiency in the OMs in the

long run. The coincident photon rate from 40K decays is calculated by a Gaussian fit to the

relative timing distribution of hits in neighbouring OMs [34]. The peak hight here indicates the

coincidence rate which can be used as a proxy to OM efficiency, while the relative offset of the

peak gives the relative timing offset between OMs. The coincident rate for a fully functioning

pair of OMs lies at about 16kHz, however, over the span of several years a gradual drop in

the coincident rate can be observed, which is due to the diminishing OM photon detection

capacity. This drop of efficiency can be seen in Figure 2.10, and has to be modelled accurately

in simulations, a task that at the time of this analysis was not yet progressed far enough.
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Toolbox
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3 l Monte Carlo Simulation

A wide range of computational and mathematical tools is needed in the set-up of this analysis.

The methods range from a very detailed Monte Carlo simulation of particle interactions and

the ANTARES detector response, discussed in Chapter 3, to event reconstruction algorithms as

standard equipment of ANTARES analysis in Chapter 4. While these simulations and recon-

structions are widely used in ANTARES analyses, an integration of specific reconstructions of

the different neutrino event types to a new combined approach is called for to specifically tune

the analysis to a high sensitivity for a diffuse cosmic neutrino flux. To this end, a short toy

analysis study of the question how to actually include various event signatures in an overall cos-

mic neutrino search is presented in Chapter 5 before completing the toolbox by adding relevant

analysis-specific classifiers and estimators to it in Chapter 6.

The standard ANTARES simulation chain can best be introduced by a close look at its most

common implementation, the run-by-run simulation chain. This simulation procedure reflects

the complexity and temporal variance of environmental processes at the ANTARES site and

takes changes into account in OM status, background photon activity and the varying detector

geometry. The natural technical data taking cycles of the ANTARES detector, the so-called

runs, are dependent on the data writing procedures and are the time frames for which data

quality estimates are calculated. Both atmospheric muon background simulation and neutrino

event generation are provided for each run, including the full simulation of charged-current and

neutral-current neutrino events in the νe and νµ channel as well as atmospheric muons [35].

The main steps of the simulation chain are handled by different software packages, which will

be described in more detail below and are shown in Figure 3.1. The chain includes

• Generation of neutrinos or atmospheric muons with generation flux ΦGen at the surface

of a generation volume around the detector, using the GenHen and MUPAGE software

packages,

• Propagation of the particles towards the detector and production of secondary particles

and Cherenkov photons (KM3 package),

• Simulation of the detector position and incidence of photons in OMs (KM3),

• Simulation of the detector response for these photons (TriggerEfficiency), leaving only

triggered events based on hits and

• Standard event reconstruction (SeaTray).
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Figure 3.1: Schematic view of the simulation chain.

As these software packages are regularly updated to improve their agreement with the data

and follow the changing data taking conditions, different versions of the run-by-run simulations

exist, at the time of the analysis version 2 and 3.

3.1 Particle Generators

3.1.1 Neutrino generation with GenHen

Neutrinos are generated using GenHen [36], a package which produces interacting neutrinos ac-

cording to a given generation spectrum γ within a generation volume around the detector, with

the size of the volume depending on the neutrino energy, neutrino flavour and interaction type.

Of those events, the neutrinos producing muons reaching the can, which is defined as cylindrical

space around the detector within which light from particles is likely to reach the instrumented

volume, are processed further, including those neutrinos interacting within the can, .

For the propagation of particles towards the can, both scattering of the particles and the prop-

erties of the propagation media (water or rock) around the detector are taken into account. If a

particle reaches the can or if a neutrino interacts within it, the secondary particles produced at

the interaction vertex are stored and propagated until they exit the can, decay, or their energy

drops below the Cherenkov level.

While νe and νµ events are part of the standard production, most ντ interaction channels were

only implemented recently. This poses a problem for an all-flavour analysis which will be ad-

dressed by introducing a specialized ντ production and estimation procedure in Chapter 7.2.1.

Each detectable event is assigned a generation weight w2 for easy recalculation of the event’s

contribution to an arbitrary neutrino flux.
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Generation weight The calculation of w2 is based on the neutrino energy E and zenith angle

θ , which is viewed within the generation of an overall flux with spectral index γ [37]. It takes

the can volume V or, in case of νµ generation, the effective surface w1 and effective muon range

Rµ as V = w1Rµ into account. The generation weight w2 is then given for a given angular and

energy phase space as

w2 = V ×2π(cosθmax− cosθmin)× (E1−γ
max−E1−γ

min )

1− γ
Eγ ×σ(E)×ρNA×Pearth×N (3.1)

with ρNA giving the number of target nuclei per cubic metre, and a normalization factor N.

The weight w2 can now be used to reweight the event distribution for any given differential

flux Φ(E) given in units of GeV−1 sr−1 s−1 m−2 year−1 before penetrating Earth by assigning the

weight w3 = w2×Φ(E).

Atmospheric fluxes from parametric formulae The calculation of neutrino event weights

for standard and prompt atmospheric fluxes is performed by applying parametric formulae [38] of

the flux models introduced in Chapter 2.3.1. The relative neutrino event probabilites are tabled

according to neutrino type, energy and zenith angle, and actual event weights are interpolated

from neighbouring entries in the table. As this weight calculation is available as stand-alone

software package5, it can also be applied at a later stage starting from the w2 weight of the

event, allowing for the testing of a wide range of different flux models and the addition of new

flux assumptions.

Particle propagation: Music A simulation for muon propagation in media is applied using the

MUSIC code [39]. It contains all relevant processes of muon interaction, including the angular

deviation and lateral displacement of muons due to multiple scattering, and stochastic simulation

of radiative loss processes like bremsstrahlung, pair production and inelastic scattering.

As shown in Chapter 2.1.2, energy losses of muons can generally be viewed as an superposition

of a roughly constant energy loss through ionization and an energy-dependent loss through

radiative processes Therefore, the simulation treats the energy loss −〈dE
dx 〉 = α(E) + β (E)E =

−〈dE
dx 〉const−〈dE

dx 〉stoc in two parts, with the stochastic processes added randomly according to

the established characteristics depending on the muon energy on top of the constant ionization

loss, which is calculated from the Bethe-Bloch formula. The two energy loss parts are generally

added per muon path segment, using

〈dE
dx
〉= E

N
A

∫ vcut

0
dvv

dσ

dv
+ E

N
A

∫ 1

vcut

dvv
dσ

dv
(3.2)

with A being the mass number of the material, N the Avogadro number, v the fraction of

the transferred muon energy and dσ

dv the cross-section of the process. The muon cut energy is

chosen as vcut = 10−3, which is taken from a trade-off between simulation accuracy and duration.

Differences in the choices of simulation parameters lead to variations in muon reach, which are

exploed further in [39] and describe parametric uncertainties in the simulation of energy loss

processes.

5The neutrinoflux package, http://icecube.wisc.edu/∼tmontaruli/neutrinoflux/NeutrinoFlux Teresa.html
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3.1.2 Muon generation using MUPAGE

In the simulation of high-energy atmospheric muons, only particles with a primary energy above

500GeV are considered as only those would reach the ANTARES site. While a full particle-

tracking simulation of atmospheric showers using the CORSIKA simulation code [40] can be

used to produce atmospheric neutrino as well as atmospheric muon events, the full simulation of

atmospheric showers is time consuming for ANTARES due to the need of run-by-run simulation.

Therefore, the MUPAGE code [41] was introduced, in which muon events are generated accord-

ing to energy and zenith distributions from parametrizations of a full shower simulation. Here,

the parametric formulae are derived according to vertical depth, zenith angle and multiplicity of

the air shower from a full simulation of primary cosmic ray interactions above the sea surface,

drawing largely on MACRO data6. For muons exceeding a threshold energy of 500GeV, the

particles were propagated through water using MUSIC.

Although this simulation method is quick, the atmospheric muon simulation is also limited by

storage capacity and processability, as atmospheric muon events constitute the predominant

event class in data taking by about 1 : 106. This makes it mandatory to understand the topol-

ogy of atmospheric muon events well in order to issue a reliable estimate of the atmospheric

muon contribution in low statistics analysis.

In the standard run-by-run production, atmospheric muon simulation does not include muon

bundles with high multiplicity m, i.e. muons originating from the same atmospheric shower,

but is limited to muon bundles of m≤ 200. This necessitates the introduction of a specialized

atmospheric muon production in this analysis for events with multiplicity m> 200, for which sim-

ulation details can be found in Appendix A.1.2. Muon simulations for ANTARES are described

in more detail in [42].

3.2 Particle Propagation and Photon Production

Having produced all primary particles and propagated to the detection volume, the photon yield

from the particle, its production of secondary particles and the probability to actually measure

photons from them needs to be added to the chain. The simulation of the full photon yield

from passing particles is implemented in the KM3 code. As single photon tracking would call

for massive parallel computing which is not available at the current stage, the distributions of

Cherenkov photons and induced by energy loss processes of passing µ± are drawn from pre-

produced photon tables. Thus, for each optical module, the number of incident photons is

calculated, taking the relative distance of the OM from and orientation towards the muon track

or electromagnetic shower into account.

Water properties Photon propagation in sea water is subject to absorption and scattering

processes off its molecules and macroscopic particles in the water. The simulation of these

effects is implemented using the ’partic’ model, which lists both absorption and scattering

length Labs and Lscat for sea water for a given wavelength λ , as well as allows for the application

of scattering length of light in sea water separately for water Lw and immersed particles Lp [43],

considering the relative proportion of ions in the water. The scattering parameters used can be

6see M. Ambrosio et al., Phys. Rev. D56 (1997) 1407, 1418 and Phys. Rev. D60 (1999) 032001.
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Figure 2: Scattering parameters from Table 1 (see that caption for more details).

O H Na Cl Mg

A 15.9994 1.00794 22.9898 35.4527 24.3050
Z 8 1 11 17 12

w (%) 0.8542 0.1074 0.0132 0.0237 0.0015

Table 3: Composition of seawater by element, as used in GEANT within gen. w is the weight fraction.

.

2.2 Composition of the water (hardcoded)

The composition of the water is defined via calls to GEANT 3.21, which uses the chemical
composition defined in Table 3. The density of seawater is set at ρ = 1.039839 g/cm3.

5

Figure 3.2: Scattering parameters of the ’partic’ model, with scattering and absorption param-

eters bscat = 1/Lscat and babs, and water and particle scattering parameters bw and bp, and

fraction of scattering due to sea water η ; from [43].

seen in Figure 3.2. The accuracy of this water model has been re-evaluated various times using

in-situ optical properties measurements, e.g. in [44], showing uncertainties in absorption and

scattering length at the order of 10-15%.

Optical module acceptance For the calculation of the detected number of photons per OM,

the glass and gel absorption of photons and the angular and quantum efficiency of the PMT have

to be taken into account. The relevant parameters where determined from OM measurements

before deployment of the detector. The total photon acceptance per angle is then simulated by

directly applying the measured values for quantum and angular efficiency (see Figure 3.3), and

by calculating glass and gel absorption from their respective thickness along the optical path.

3.3 Detector Response

At this stage, the incidence of single photons at the PMT in each optical module has been

generated, leaving the simulation of PMT effects, analogue-digital conversion and processing

of the individual signals by the triggering software to produce data that fully mimics the actual

measurements. The effects of the PMT readout, addition of further sources of PMT hits from

optical background and technical effects, and the processing of this data through the ANTARES

read-out and triggering scheme is implemented as part of the TriggerEfficiency program [45],

which delivers ’events’ in a similar format for both simulations and the actual ANTARES data

taking procedure. These events are in both cases reconstructed by the same algorithms, which

are implemented in the SeaTray analysis framework [46] and will be discussed in Chapter 4.
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Figure 3.3: Logarithmic angular efficiency and quantum efficiency of the optical modules as

simulated in KM3. From [43].

PMT effects Within the PMT, the incident photon causes an electron cascade which is

dependent on the applied voltage and PMT quantum efficiency and leads to an electronic

pulse best simulated as a Gaussian distribution. The pulse magnitude is fairly proportional to

the number of simultaneously registered photons for a small number of photons, while a large

number of photons leads to a saturation of the PMT available charge. Therefore, photons in the

PMT are simulated by mapping the hits to a Gaussian distribution of equivalent charges, which

are then time-smeared according to the transition-time spread (TTS) of the PMT. Optionally,

a relative quantum efficiency can again be applied at this stage.

PMT effects also include so-called after-pulses, which originate from stray electrons from the

PMT electron cascade, or from slow-moving ions in the PMT. These early or late after-pulses

can be added optionally as 0.5% and 1% contribution of hits respectively. The charge of these

fake hits is adapted according to black box measurements of OMs7.

Digital conversion through ARS simulation During the now following simulation of the

ARS digital readout, the charge from all hits arriving during the gate time of one ARS are

integrated. Here, the walk-effect due to the delay of the crossing of the charge threshold for

ARS readout originating from the Gaussian smearing of the charge pulse is taken into account

in calculating the timestamp and TVC time interpolation. The digitized charge value is from

the AVC is determined by applying the charge calibration of the ARS.

7see Creusto, A. and Gauchet, L., Black box set-up and first results on the ANTARES optical module, internal

ANTARES note ANTARES-OPMO-2012-001, 2012
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Background photon addition While the simulation chain so-far processes explicitly photons

originating from the generated particles, the photon background present in measurements has

to be added as well. For this, various strategies exist, the easiest of which is the addition of

single hits with a random distribution in time following from the observed single rate of the

PMT, assuming that the rate was caused by K40 decays and bioluminescence. Here, it has to

be taken into account that late after-pulses are also part of this photon background due to their

timing which makes correlation to the original hits difficult, and they have to be considered

as part the rate. However, as the photon background also contains bursts of lights as shown

in Chapter 2.3.2, the exact simulation of environmental effects is difficult, which lead to the

inclusion of background hits with varying charge which is derived from the observed hit charge

distribution at the time of the measurement. This ensures a relatively accurate depiction of the

random photon background.

Adaptation to detector conditions Experience showed that a detailed adaption of the sim-

ulation to both environmental conditions and changing technical parameters of the detector is

necessary to reach a solid agreement between simulation and measurement. The adaptation of

the background hit rates, ARS calibration and PMT efficiency to the specific detector conditions

provides an adaptive and meticulous simulation of the temporal variation during data taking. It

will be seen later that the accuracy of this part of the simulation chain has a high impact on

the viability of the analysis.
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The triggered events from both data taking and simulation are starting point for a series of

reconstruction techniques for various event type hypothesis. While muon track reconstruction

algorithms were the first to be developed in ANTARES and are therefore well established, various

cascade and energy reconstruction methods have been introduced in recent years. As their wide

range of parameters which enhances relevant features for this analysis is an asset that will have

to be used in the following tool development, a short but not exhaustive overview over the

various reconstruction algorithms is given here.

4.1 Muon track reconstruction

Muon track reconstruction techniques generally rely on the hypothesis of photon emission under

the Cherenkov angle along the straight muon track. They usually involve a first rough guess

of the track location drawing on a strongly restricted hit selection of hits of high charge or

coincidence most likely originating from a passing muon and employ, in a second step, a more

sophisticated reconstruction of the track parameters involving refined hit selections and often

a minimization of parameter probability functions. In ANTARES, two muon reconstruction

methods of long standing, Aafit and BBFit, are employed in most analyses, although additional

reconstructions have been developed lately.

4.1.1 Aafit

Strategy The Aafit reconstruction strategy is described in [47] and [48] and consists of a

prefit on large hits only and a full likelihood fit taking a larger hit selection into account. The

algorithms draw on the time residual of hits r which is defined as the difference between the

actual measured time of the hit and the theoretical arrival time of photons from a given track

under the assumption of Cherenkov emission, tres = tmeasured− texpected. The prefit stage builds

on an M-estimator fit which varies the χ2 fit using χ2 = ∑Nhits
t2
res,i by assigning lower weights

to large residuals.

While this prefit delivers good results close to the actual track, the full likelihood fit using the

likelihood logL = ∑Nhits
logP(tres.i) of the probability density function for the residuals P(tres)

can increase accuracy significantly when using the prefit results as starting assumptions. Nine

different starting tracks are entered into the pre-final fit,he track with the largest likelihood

is finally passed to an improved pdf fit considering even background hits to produce the final

reconstruction.
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Hitselection The preselection of hits is done starting from the hit of the highest charge and

includes all hits within a time window of |∆t| ≤ d
vc,group

+100ns. For further use, all hits occuring

on an OM within 300ns are merged into one hit at the time of the first hit, but the information

on the magnitude of the pulse is not used any further [49], leaving the following steps less

sensitive to errors in the modelling of the hit charges and after-pulses.

Quality parameters The quality parameter Λ is deduced from the final likelihood L, the

number of agreeing fits Ncomp and the number of degrees of freedom Ndof as Λ = logL/Ndof −
0.1(Ncomp−1).

The angular error estimate β , on the other hand, is calculated from the error matrix of the

directional reconstruction by using β = [σ2
θ

+ σ2
φ

sin2(θrec)]
1/2.

4.1.2 BBFit

Strategy The BBFit reconstruction algorithm [50] is suited to reconstruct both shower- and

track-like events. The algorithm distinguishes between single- and multiline events and per

default attempts both a track and a so-called bright-point fit. The fitting procedure relies on

a simple χ2-fit including the hit amplitude and either a single point or line of photon emission.

In case of the track reconstruction, a linear pre-fit is used as starting point for the track χ2-

minimization, which is done for each line. In case of more than one detection line with selected

hits, these individual results are combined to a common solution for the multiline fit. An example

can be seen in Figure 4.1.

Hitselection The hits considered for the reconstruction undergo a merging procedure for all

hits on one storey. To this end, all hits occuring within 20 ns on the OMs of the same storey are

merged to one and a bonus charge is added if hits stem from different OMs. If this storey hit

exceeds a charge of 2.5p.e. photo-electron equivalent, it is selected if fulfilling the coincidence

criterion which demands hits on adjacent or next-to-adjacent floors (T3). Starting from these

T3 hits, additional hits are added to the selection if they could have originated from the same

track. If the number of found hits exceeds 5, the minimization of the line fit including hit

positions and timing is started.

Quality parameters The quality parameter of the strategy is the resulting χ2 of the final fit

steps, namely Q = ∑Nhit
(texp− ti)2/σ2

i + N, with N including information of the hit charge and

travel distance and timing uncertainty σi.

4.1.3 Additional track reconstructions

Two additional track reconstruction methods, based on the grid search algorithm FilteringFit,

have been implemented in ANTARES more recently [51]. While GridFit optimizes its per-

formance for low-energy events, KrakeFit targets mostly high energy events. In both cases,

FilteringFit is preceded by a hit selection, and followed by an M-estimator fit using the photon

probability density functions as implemented in AAFit. The main difference between the two

methods lies in the hit and track selection algorithms. In both cases, the final quality parameter
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Figure 4.1: zt-graphs of hits on four detection lines with z giving the vertical distance from the

centre of the line (crosses - unselected hits, bulletmarkers - triggered hits), solid lines showing

reconstruction result, i.e. best fitting hit time and location expected for Cherenkov photons for

BBFit track (black) and cascade (green) reconstruction.

is called r logL variable, the reduced log-likelihood of the final step likelihood, which is defined

by the final likelihood value L divided by the number of degrees of freedom of the fit Ndof

GridFit quality An additional quality parameter is introduced in GridFit. It is conceptually

close to the angular error estimate β of Aafit, but uses the width of the minimum (WOM) of

the result of the directional fit, which as approximated by an ellipse.

Muon suppression parameter: Ratio Due to the comparatively long processing time of the

fit, a precut for atmospheric muons had to be introduced. It compares the number of hits in

the upper half of the detector to those in the lower half, defining RGrid = ΣNup/ΣNdown.

47



CHAPTER 4. EVENT RECONSTRUCTION

Figure 4.2: Overview over the work flow for the Dusj cascade reconstruction. From [16].

4.2 Cascade reconstruction

In contrast to muon track reconstructions, a cascade reconstruction has to deal with a source

extending only over of a few meters, which usually is assumed to be point-like in the first

reconstruction step. Therefore, a cascade fit generally involves a vertex position and a directional

fit. In ANTARES, two cascade reconstruction algorithms have previously been used for a diffuse

neutrino flux search, called Dusj and Q strategy.

4.2.1 Dusj cascade reconstruction

The Dusj strategy [16] consists of three main steps: A first, a hit selection is applied, followed

by two consecutive maximum likelihood fits for first the vertex position and interaction time

and second the direction and energy of the shower, before finally various quality parameters are

calculated, see Figure 4.2.

Quality parameters Again, likelihood-based parameters are deduced from the different fitting

steps, like the r logL for the vertex fit which is here called vertex log-likelihood (VLLH), and the

corresponding degrees of freedom of the fit Ndof . Also, an estimate of the fit quality is introduced

from χ2 = 1
Nhits

ΣNhits
t2
res parameter, which evaluates the time residuals tres of the photons, i.e.

their actual compared to their expected arrival time. Finally, the quadrupole moment of the

hit distribution is calculated, which serves as an estimate for the elongation of the shower hit

distribution.

48



4.3. ENERGY RECONSTRUCTION

4.2.2 Q-Strategy and BBFit Bright Point

The Q-strategy [52] also relies on a consecutive fitting of firstly the vertex position (here using

an M-estimator) and a further hit selection, starting from that vertex, to finally reconstruct the

shower direction. The energy reconstruction is here performed separately. This strategy also

provides a likelihood-parameter from the directional fit.

Although not performing a complete shower fit, the BBFit bright point fit [53] follows closely

the procedure of the BBFit track fit regarding hit selection and optimization procedure, but

assumes a point-like source of light. Its output includes the time and position of the bright

point and is therefore comparable to the vertex fit of the full cascade reconstruction chain. Its

quality parameter is again the χ2-based quality parameter calculated in analogy to the BBFit

track reconstruction, see above.

4.3 Energy reconstruction

Energy reconstruction of events can only be achieved by analysis of photon distribution and

number within the detector and depends strongly on the neutrino event signature. For muon

tracks, energy reconstruction is largely achieved by measuring the fraction of light emitted by

radiative processes for particles with energies above a few TeV [54] along a part of the track,

see Figure 4.3. Energy reconstruction for cascades mostly relies on Cherenkov photons from

secondary particles, where the detector can serve as a calorimeter to measure the total amount

of light produced in the neutrino interaction.

4.3.1 Number of Hits and Timing Structure

Number of hits A first estimate of neutrino energy can be calculated from total amount of

photons measured in the detector, as high energy leptons produced inside or passing through

the detector emit a comparatively larger amount of photons. Naturally, this number is highly

dependent on the detector geometry and localization of the neutrino event within the detector.

However, Nhits has so far served in many analyses as an energy proxy as well as a selection

criterion for well reconstructible neutrino events.

Time residuals and R parameter Regarding the delay of the OM hits with respect to the

expected photon arrival time of Cherenkov photons from the reconstructed lepton track, the

time residual tres = ttrue− tCherenkov already introduced above, can also serve as basis for the

calculation of event energy. For cascade events, the larger lateral distribution of particles from

radiative processes in high-energy events leads to a larger amount of photons with large time

residual. For muon tracks, the photons of radiative processes, which can be regarded as cascades

along the muon track, lead to a similar contribution of late photons. This fact is exploited in the

R parameter estimate, a muon energy estimate which sets the number of hits detected in the

successive readout cycles of the photo-multipliers in relation with the overall number of OMs

with hits by calculating R = Nhits/NOM. As two readout cycles are separated by a dead-time of

250ns, this parameter is most effective for high-energy events.
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Figure 4.3: Number of Cherenkov photons from the primary particle and radiative processes

along an exemplary muon track as modelled using the KM3 code.

4.3.2 dE/dx and ANNergy

Two more sophisticated muon energy reconstructions are used in ANTARES, on the one hand

the energy-loss estimator dE/dx [55] and the ANN energy reconstruction [56] involving artificial

neutral networks.

Energy loss estimator dE/dx The energy loss is calculated by relating the total charge

produced by the photon hits in the PMTs, ∑A, to the number of PMT readouts and the

effective track length Leff of the muon track within the detector, which is given by the length of

reconstructed track passing through a cylinder around the instrumented volume of ANTARES.

It is also scaled by the overall efficiency ε of the detector towards Cherenkov photons from the

given track, taking into account the angular acceptance and distance of the individual optical

modules from the muon track. With this, the energy loss ρ is then given by ρ = 1
Nhits

∑A
Leff ε

, from

which the mean energy of neutrinos leading to an equivalent energy loss is calculated.

Neural network estimator ANN The non-linear function approximation achieved in an arti-

ficial neutral network is mostly dependent on the input parameters and their according prepro-

cessing, as will be elaborated in Chapter 6. For the ANN energy estimator, over 50 different

input parameters are used which range from parameters describing the distribution of hits in the

detector by their time, location and charge, to track-related parameters like average time resid-

uals. The training was performed on a charged-current muon neutrino simulation and several

neural networks were trained to take into account the varying detector conditions. Therefore,

as these events also include vertex cascades of muon neutrinos, the estimator can also be used

to reconstruct the energy of cascade events, although not being optimized for this purpose.

4.3.3 Cascade energy reconstruction

Energy reconstruction for cascades is included in the same reconstruction packages as the di-

rectional and vertex reconstruction. The approach to modelling the light emission from the
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vertex can be divided into two extreme cases, either assuming that the photons only originate

at the Cherenkov angle from a track along the shower direction, or assuming to come from

an isotropically radiating photon point source. For Dusj [16], the assumption of an isotropic

point source is used, which, together with a restrictive hit selection, creates a relatively stable

algorithm. However, the Q strategy evaluates the by weighting the total charge of all selected

hits according to the summed distance of the hits from the bright point, leading to a less robust

algorithm [52].

4.4 Further useful parameters

Random Decision Forest A Random Decision Forest (RDF) package was introduced in

ANTARES [57] to serve for the classification of various event types. Apart from the out-

put parameters of the RDF giving the percentage of trees in the forest agreeing on the same

classification, the standard RDF for the classification of neutrino-induced signal events from

atmospheric background events also comes with over a hundred predefined input variables, of

which some are tested for use in the following analysis.

Hit distribution parameters Both track and shower reconstructions employ their own hit

selection algorithms which, depending on the aim of the reconstruction, range from very loose

hit selection criteria to very stringent selections. Parameters derived from hit selections therefore

contain information on both the topology of the event, and the energy deposited inside the

detector. For the various hit selections, the total number of hits Nhits, the number of lines with

hits Nlines, the number of hits with single hit charge A > 2.5p.e. and the total charge of the hits

Atotal will be considered.
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The main goal of any diffuse flux analysis lies in reaching a high sensitivity towards the cosmic

neutrino flux, which is achieved by effectively de-selecting background events from signal events

while maintaining a high signal number. As previous analyses only targeted one neutrino event

type and these analyses already showed that the ANTARES sensitivity for a diffuse neutrino

flux can be improved by sophisticating the analysis method, two questions must be answered

concerning the strategic approach to the analysis: First, should the optimization aim rather

for a rejection of the background-only hypothesis while expecting not to reach a sensitivity

high enough to discover a signal, thus setting an upper limit on the actual flux assumption, or

should it primarily aim to discover a given flux? This decision is will influence the choice of the

optimization parameter.

Secondly, how should the event selection be approached? One could either first select well-

reconstructed track and cascade events according to the established signature-specific event

selection strategies and then combine the resulting events, or introduce common event selection

criteria which are sensitive to high-energy neutrino events regardless of their event signature.

Depending on the quality of this selection technique, the second approach could extend the

selection to include formerly discarded events. This section addresses these two questions before

the specific tools for the combined analysis are introduced.

5.1 Analysis goal and optimization parameters

With the foreknowledge of both theoretical models of cosmic neutrino generation and flux pre-

dictions at Earth and the actual measurements from IceCube available, both the setting of an

upper flux limit for the Southern Hemisphere and aiming for high signal detection efficiency are

equally interesting targets for the analysis. While the second strategy employs the model discov-

ery potential D(nsig,nbkg) to calculate the optimum relation between the number of background

events nbkg and signal events nsig in the event selection for a signal flux Φ, the first approach

uses the model rejection factor R(nsig,nbkg). In analysis steps which call for lesser accuracy

but higher computational speed, a simple optimization parameter S (nsig,nbkg) will be used to

substitute these two parameters.

Model discovery potential The model discovery potential as considered in [58] assumes the

existence of a flux, which should be measured with the confidence level 1−β with a certainty

that leaves the probability of error comparatively small. The probability of measuring a number

of events nobs is then calculated by the Poissonian probability P(nobs|nsig + nbkg). The least
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detectable signal of this flux is then defined by the number of events nlds for which the condition

1−β = P(n≥ nobs|nlds + nbkg) (5.1)

is met. The model discovery potential is then defined as

D(nsig,nbkg) = nlds/nsig. (5.2)

Model rejection factor The model rejection technique [59] assumes that the chance of mea-

suring a theoretical flux is small, and therefore the method seeks to set the most stringent

limit on a given flux assumption, which should be excluded at a confidence level l. For this,

the average upper limit is calculated by using the Feldman-Cousins confidence interval upper

limit µl(nobs,nbkg) which describes the probability of a measured number of events nobs being

in agreement with a background-only measurement, and weighting the possible observations by

their Poissonian probability

µl(nbkg) =
∞

∑
nobs=0

µl(nobs,nbkg)
nnobs

bkg

nobs!
e−nbkg . (5.3)

The model rejection factor is then defined by

Rl(nsig,nbkg) = µl(nbkg)/nsig. (5.4)

As the full calculation requires a comparatively long computing time, a simplified extrapolation

from tabled values has been used during the development of the analysis, described in detail in

the Appendix A.2.1.

Simple Optimizer Instead of the sophisticated model rejection or discovery methods, a simple

function approximating the behaviour of the two cut optimizing function was introduced, which

was already employed at the development stages of the classification methods and which was

also used in the cut optimization procedure as comparative parameter. This simple optimizer is

defined as

S (nsig,nbkg) =
2√nbkg

nsig
(5.5)

A comparison of the enumerator of all three cut optimization functions is shown in Figure 5.1.

5.2 Analysis strategy study

In the previous analyses targeting either only cascade neutrino events [16] or only muon track

events (e.g. [17]), the analysis approach was an obvious one: depending on the reconstruction

methods, a combination of reconstruction quality and zenith angular selection was used to

suppress the background of downgoing atmospheric muons against the upgoing neutrino events,

followed by a selection of high-energy events to emphasize the cosmic neutrino candidates

against the atmospheric neutrino background, see Figure 5.2.
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Figure 5.1: Comparison of least detectable signal (dots), average upper limit (crosses) and

f (x) = 2
√

n (solid line), the cut optimization functions used in the following procedure.

These two tasks of atmospheric muon suppression and high-energy neutrino selection stay the

same for an analysis addressing all neutrino flavours. The selection strategy could combine the

two individual analyses, if the data set can be separated easily enough into a track-dominated and

a shower-dominated sample, to which the signature-specific selection procedure is applied, and

then adding up the remaining events. This approach would obviously select those events which

are either well-reconstructed showers or tracks and focus on clearly distinguishable signatures.

As an alternative approach, multivariate parameters for atmospheric muon suppression and high-

energy neutrino selection could be introduced, focusing the cut optimization on common event

features for both tracks and showers.

In order to chose one of the two approaches, a toy analysis was perform to estimate the potential

of the two analysis chains.

Toy analysis Based on simulated runs equivalent to 39 days of data taking, event numbers

were scaled to equal 1600 days, which is close to the expected amount of data for this analysis.

The test flux was set as ΦtestE2 = 1.1×10−8 GeV−1 sr−1 s−1 cm−2. In the following section, a

comparison is performed between a shower analysis (S) and track analysis (T) based on previous

ANTARES analysis, a combined analysis using a combination of these two chains (C1) and a

combined analysis involving multivariate tools (C2). In both combined analyses, the actual cut

values were found by optimization on the model rejection factor, leading to a quite different

outcome of the combined analyses in comparison to the previous signature-specific analysis

chains. Also, the combined analyses were performed on simulation equivalent to 100 days, as

the multivariate tools had to be trained on a sufficiently large subset of the test data.
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Figure 5.2: Schematic displaying the options for the combination of track and shower analyses.

5.2.1 Separate track and shower analyses

Toy track analysis (T) The previous track studies have been performed on one [15] up to four

years of data (see [60], [61] and [17]). Although all analyses use slightly different approaches,

in the end they generally rely on the Aafit reconstruction algorithm and a corresponding error

estimate. Therefore, the toy track analysis here uses the reconstruction agreement between

Aafit and Bbfit zenith angle reconstruction ∆θ = |cosθAafit − cosθBBFit| and the difference

between the track and shower quality parameter ∆χ2 = |χ2
track−χ2

bright| as introduced in [17]. As

energy estimate both the R-parameter and dE/dx energy estimate are used in the optimization,

leading to two different comparison results. The contribution of atmospheric muons is calculated

from a fit to the energy reconstruction parameter distribution of atmospheric muon events to

extrapolate the low statistic sample to the cut value. The model rejection factor minimization

leads to

Track quality cuts ΛAafit >−6.2, βAafit < 0.3◦, ∆χ2 > 3,

Zenith angle 150◦ > θAafit > 81◦ with reconstruction agreement ∆θ < 0.2 and

Energy cut log10(EdEdx,R/GeV) > 4.9.

While, in [17], a sensitivity of 3.6×10−8 GeV−1 sr−1 s−1 cm−2 is given for 933 days lifetime,

this toy analysis would reach 2.7−4.0×10−8 GeV−1 sr−1 s−1 cm−2 for the equivalent time and is

therefore compatible to this latest analysis. For 1600 days of equivalent data taking, a sensitivity

of 2.0−2.9×10−8 GeV−1 sr−1 s−1 cm−2 could then be reached.
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T with dEdx T with R S C1 C2

Nµatm 12.2 8.2 2.4 10.3 2*

Nνtrack(Bartol) 2.4 6.11 0.86 7.43 2.6

Nνshower(Bartol) 0.0 0.0 1.1 0.9 1.1

N†
νtrack 3.0 4.4 0.06 5.5 2.4

N†
νshower 0.0 0.0 3.3 3.8 3.6

R†
90% 2.6 1.8 1.5 0.94 0.90

Table 5.1: Event numbers and model rejection factor of the toy analyses, tested on simulation

sample of 39 days (T,S) or 100 days (C), and scaled to 1600 d livetime, with (*) estimated

atmospheric muon contribution (†) on a test flux of ΦtestE2 = 1.1×10−8 GeV−1 sr−1 s−1 cm−2

Toy shower analysis (S) Although other studies targeting shower-like events have been

performed before, the most sensitive and well validated analysis has been put forward in

[16]. Therefore, the model shower analysis follows closely the cuts used therein, though

hugely simplified to the main cut steps and disregarding muon contamination estimates, the

filter introduced for sparking events, ντ contribution and other finer details. The close out-

come of the test analysis in this process is a good indication for the validity of these model

analyses, with ΦE2 = 2.2× 10−8 GeV−1 sr−1 s−1 cm−2 given in [16] for 1247 days and ΦE2 =

2.0×10−8 GeV−1 sr−1 s−1 cm−2 reached here with these cuts:

Shower quality cut Dusj VLLH< 7.9, number of strings with hits Nstring > 2
Zenith angle θDusj > 94◦

Energy cut log10(EDusj/GeV) > 4.0

For 1600 days, the shower analysis would therefore reach a sensitivity of about ΦE2 = 1.6×
10−8 GeV−1 sr−1 s−1 cm−2.

5.2.2 Combining tracks and showers

Combining now these two analysis chains introduces the challenge of combining two relatively

distinct sets of parameters describing different event topologies. While the one approach empha-

sises the distinct differences between track and shower signatures in following the two signature-

specific analysis chains, the other relies on features that are common to both signatures in

comparison to background events. Considering the relative small size of ANTARES and com-

mon features of subshowers in both track and shower events, both approaches might have their

advantages.

Using initial event classification (C1) An initial event classification can easiest be introduced

by utilizing a reconstruction quality parameter. Here, the vertex likelihood VLLH of the Dusj

shower reconstruction is used to split the data set into a shower dominated and a track dominated

subset using

• for the track subset VLLH> 7.9 and VLLH< 7.9 for showers,
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leading to relatively pure subsets. On the shower subset, the further cuts of the above toy

shower analysis were applied, as were the toy track cuts on the track set. For higher accuracy,

simulation of 100 days data taking was used. In the end, event numbers from both analysis

branches were again added up, shown as C1 in Table 5.1. This kind of analysis would reach a

sensitivity of ΦE2 = 1.0×10−8GeV−1cm−2sr−1s−1.

This kind of combination would therefore increase the sensitivity compared to a separate track

or shower approach.

Using multivariate classification (C2) In order to estimate the feasibility of a multivariate

approach, some out-of-the-box multivariate tools were trained using the ROOT TMVA pack-

age [62], which is introduced in more detail in the following section, on part of the available

simulation. As the signature specific event selection takes place in the first analysis step address-

ing the atmospheric muon rejection, all atmospheric muon suppression parameters from the T

and S toy analysis were used to train a Boosted Decision Tree (BDT), a neural network, Fisher

discriminant and a Likelihood discriminator, which are alse explained in the following section. In

combination with each of the above used energy estimates, a two-dimensional parameter scan

on the multivariate tool and the energy estimate using model rejection was performed to find

the cut value combination leading to the lowest model rejection factor. The results for the best

cut combination on the Fisher discriminant and EdEdx is shown as C2 in Table5.1. As scanning

yielded an atmospheric muon contribution of 0, but with low statistical accuracy, an atmospheric

muon contribution of 2 was assumed, as a single atmospheric muon in the simulation carries a

weight of 3. With these assumptions, the multivariate analysis would outperform the combined

analysis with initial event classification. Within a reasonable margin of error allowing for e.g. a

larger muon contribution, these two analysis chains reach at least the same sensitivity.

These toy analyses showed a number of key points for a combined analysis: Firstly, an event type

combination for the diffuse cosmic neutrino search should increase the sensitivity in comparison

to the separate searches. Secondly, a multivariate approach to combination seems to offer at

least the same sensitivity as pursuing separate analysis chains for track and shower events, as

the above multivariate classification was far from optimized on the specific task. Last but not

least, the previous analysis chains offer a starting point for the development of the classifiers by

suggesting parameters which are specifically useful for the two main tasks of atmospheric muon

and atmospheric neutrino suppression. The development of these tools will therefore be taken

up in the next section.
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Finding the ideal separation between signal and background events can be viewed as searching

for the boundary layer in a multidimensional space spanned by the features, i.e.observables and

reconstruction parameters derived from them. Various methods ranging from simplistic linear

cuts to sophisticated functional structures have been developed to this end, such that the search

for the best cut parameters turns into the tuning of a multivariate tool adapted to the require-

ments of the task at hand. In this section, the development process of multivariate tools is first

introduced before applying it to the tasks of background suppression for the diffuse flux analysis.

The TMVA package [62] offers a comprehensive collection of multivariate methods which

are suited to break down the high-dimensional task of background suppression and signal op-

timization to a simple final cut on the output of a multivariate classifier. The performance

of the multivariate classifier depends on the input parameters to the method, the method’s

capability of modelling the functional dependence between the input and the required output

of the method, and the properties of the set of data from which the model is derived. A short

introduction to the methods here tested is given in the first subsection. In the subsequent

sections, the optimization criteria and methodology is developed before finally the performance

of the optimized multivariate techniques is evaluated.

6.1 Multivariate classification methods

6.1.1 Statistical approaches to parameter modelling

In general, the classification problem can be described as assigning an event of class ωi to the

correct class with probability p(ω), such that the error of this assignment is minimal when

considering a vector of observables x of the event. This is expressed in Bayes’ rule for minimum

error [63] of classifying events in C classes as

p(x|ωi)p(ωi) > p(x|ωk)p(ωk) k = 1, ...,C;k 6= i. (6.1)

In order to minimize the classification error, two approaches can be chosen. The respective

probability density function (pdf) P(x) can either be reconstructed through functional modelling

of the pdf, or a decision boundary between the classes is constructed disregarding the actual

functional dependence. In the first case, parametric and non-parametric pdf modelling methods

are employed, where either a prior assumption of the pdf is used as starting point in parametric

modelling, or no prior assumption is available to use in non-parametric modelling. In the second
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case, a decision boundary between the classes is constructed in a discriminant analysis which

disregards the actual form of the pdf but models the decision boundary purely from the observed

parameter correlations. In the simplest case, the boundary can be assumed as linear, in more

complex cases various discriminant functions and/or a combination of various discriminators are

included.

For all different TMVA methods, the actual adaption of the method lies in the minimization

of the error between model and true pdf as found in a given set of data. This so-called

training data provides the reference for the true dependencies between the observables and the

classification classes. In case of pdf modelling, an adaption of the model is achieved through

training algorithms employing (6.1).

Parametric modelling Parametric modelling involves foreknowledge of the functional depen-

dence between the observables x and the class probability p(ωi). The free parameters a of the

function p(ω) = f (a,x) are then adapted by minimizing the error for a given dataset. Typical

functions employed contain linear or quadratic functions and are considered as Gaussian clas-

sifiers. Due to their design, these classifiers encounter problems if the function assumed does

not fit the actual classification problem and if the observables show high covariance. As the

problem at hand is too complex for analytical pdf estimation, these methods will play no further

role here.

Non-parametric modelling If no prior knowledge of the functional dependence is available,

the pdf can still be modelled e.g. by employing spline function modelling to parameter his-

tograms, as implemented in the TMVA package as Likelihood method. Another approach is

the k-nearest-neighbour method, see Fig. 6.1a, in which the probability density is estimated

by calculating the volume dx around each event containing the k events nearest to it in the

parameter space and evaluating the fraction of events of the given classes C within this volume.

These methods thus also adapt to event distributions which exhibit irregular features not easily

captured by parametric modelling.

Linear discriminants In linear discriminant analysis, the aim is to find a weight vector w
applied to the parameter vector such that wT x+w0 > (<)0 if the event is part of class ω1(ω2).

The simplest application of this can be found in a single perceptron where the error of the

weight vector is calculated as the distance of misclassified events to the decision boundary. In

the Fisher criterion, the decision boundary is chosen by evaluating the ratio of the between-class

over the within-class variance,

JF =
|wT (m1−m2)|2

wT SW w
, (6.2)

where m1 and m2 are the group means and SW the pooled within-class covariance [63]. In

concept similar methods are the H-matrix calculation, which assumes a Gaussian distribution of

the input variables, and support vector machines (SVM), see Fig. 6.1d, for which few support

events are used to construct a hyperplane which maximizes the distance of the events to this

plane according to the linear discrimination criterion.

On the boundary between linear and non-linear methods lies the functional discriminant analysis
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(a) k-nearest neighbour estimate (kNN) (b) Multilayer perceptron (MLP)

(c) Decision Tree (d) Support Vector Machine (SVM)

Figure 6.1: Schematic of various multivariate methods, from [62]

(FDA), in which the discriminant function can be chosen not only to involve linear terms, but

also terms of higher order polynomials or other functional dependences.

Non-linear discrimination The step from linear to non-linear discrimination is that of a single

decision boundary to a multitude of decisions which are performed either in parallel and/or

consecutively. In multi-layer perceptrons (MLP, also known as artificial neural networks, see Fig.

6.1b), decision units, so-called perceptrons, perform linear discrimination of y = f (wz) depending

on the perceptron input z. Each perceptron either passes their output value y to perceptrons

in the consecutive layer, which provide their decisions based on the weighted combined input

of the previous layer’s output, or the last layer single perceptron provides the decision. These

arrays of perceptrons are thus able to adapt to highly non-linear decision boundaries.

A simpler construction of decision boundaries is performed in the nodes of a decision tree, see

Fig. 6.1c. Here, each tree node deals only with the decision on one parameter xi ≶ ci with
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classification boundary ci, where each layer after the first node contains maximum 2i nodes,

each node classifying only one subgroup of events with similar classification in the previous layers

until a stop criterion is met. While this single tree structure naturally reaches only a limited

accuracy, the parallel training of many trees as in random decision forests (RDF) or boosted

decision trees (BDT) however provide a method to enhance the concept to high precision, as

the decision on the class then is drawn from the overall result from differently trained trees.

Additional techniques Some additional methods are offered by the TMVA package which are

either not suitable for the problem at hand or cannot be sorted into the categories above. Of

these, two methods were considered in the analysis which lie on opposite ends of multivariate

methods regarding complexity: on the one hand, Rectangular Cut optimization implements min-

imization rules for finding the optimal one-dimensional cuts c in the parameter space such that

xi > ci. It can thus be compared to the classical analysis approach implementing independent

cuts on observables. On the other hand, the Rulefit algorithm employs a multitude of different

decisions drawn from the nodes of a RDF trained on data subsamples, which are recombined

according to an optimization criterion.

In addition to these methods, most methods can also be boosted in order to increase their

separation power, meaning they are repeatedly applied, where the output of previous applica-

tion of the method serves as input to the next application, sometimes with increased weights

to misclassified events to emphasize their characteristics. Apart from boosting, bagging is also

used to increase classifier stability. Here, the training data is re-sampled for parallel trained

methods, and the result given as the average of the various method representations.

Table 6.1: Comparison of properties of the different TMVA methods, from [62]

6.1.2 Data preprocessing

In order to adapt parameters for use in multivariate methods, the parameter can be normalized,

sets of parameters decorrelated or parameters transformed to different distributions. While

normalization is a straight-forward scaling of the parameter range to fit within [−1,1], variable
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decorrelation and transformation can be performed in various ways.

Variable decorrelation In linear decorrelation, the covariance matrix C is used to transform

the set of parameters to a decorrelated set by employing a diagonal matrix D and unitary matrix

S to D = STCS such that C′ = S
√

DST . The decorrelation is then performed as x 7→ (C′)−1x [62].

In principal component decomposition, the decorrelation is applied such that the input param-

eters xl are transformed to principal components xPC,k, which are ordered according to their

variance in the sample and obtained by employing the data sample means x and eigenvectors

v(k) as

xPC,k =
nvar

∑
l=1

(xl− xl)v(k)
l , ∀k = 1, nvar. (6.3)

Here, the matrix of eigenvectors V follows the relation C ·V = D ·V . For Gaussian distributed

variables, this transformation eliminates linear correlations [62].

Variable transformation As decorrelation works best on uniformly and Gaussian distributed

variables, the input distribution is transformed into a uniform distribution by smoothing out its

histogram. If Gaussian transformation is required, the input variable x is then transformed from

the probability density function x̂ employing

x 7→
√

2 · erf−1
(

2 ·
∫ x

−∞
x̂(x′)dx′−1

)
. (6.4)

Whether data preprocessing is required not only depends on the method, but also on the number

and correlation of the input parameters employed. The following search for a well-performing

MVA method therefore considers different preprocessing options as well as different methods.

6.1.3 The pattern recognition cycle

The step between the theory of multivariate methods to the reality of the adapted tool lies in a

repeated application of what is called the pattern recognition cycle, which can be seen in Figure

6.2. After definition of the aim of the multivariate tool, the available data is explored in order

to find suitable parameter candidates for this task. Here, reliability of the parameters as well

as their relevance for the task are crucial and will be explored in the following section. This

is followed by the actual cycle of feature extraction and preprocessing of the data used for the

training of the classifier, the actual training and an assessment of the trained tool to re-enter

the parameter adapting and selection. Here, a quality criterion has to be chosen to compare the

performance of the multivariate tools before restarting the cycle by optimizing the parameter

selection, preprocessing the parameters and training the tools.
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Figure 6.2: Overview over multivariate methods (adapted from [63]) and the pattern recognition

cycle.

6.2 Parameter selection

The parameter selection process consists of three steps: Firstly, the number of candidate pa-

rameters is extended to encompass the feature space as widely as possible. Starting from the

extended set, the choice is secondly limited by evaluating the stability of the parameters, their

suitability for the tasks and their correlation. Thirdly, candidate parameters for atmospheric

muon suppression and cosmic signal selection are chosen according to their suitability for the

task and serve as a basis for the construction of multivariate tools in the following chapter.

6.2.1 Expanding the parameter space

In order to systematically approach the vast possibilities for input parameters to the multivariate

tools, they are here introduced as grouped according to their function and former use. A full

list of parameters considered within the selection process can be found in the Appendix A.4.1.

”Classical” parameters All parameters used in the previous diffuse neutrino flux analyses were

introduced as parameter candidates, which included mainly quality parameters of the track

and shower reconstruction methods (and combinations of them such as ∆χ2 as difference

between track and shower quality in BBFit, see [17]) as well as the event’s reconstructed

direction and reconstruction quality, and several energy reconstruction parameters and

estimates.

Additional reconstruction parameters In addition to the parameters used in previous analy-

ses, basically all quality parameters of the event reconstruction methods were considered,
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as well as some input parameters to the multivariate methods used in the RDF directional

selection and ANNergy energy reconstruction.

Parameters employing hit selections Both track and shower reconstructions employ their

own hit selection algorithms which, depending on the aim of the reconstruction, range

from loose correlation criteria to quite stringent filters. Parameters derived from these

hit selections contain information on both the topology of the event, depending on the

selection, and the energy deposited inside the detector. For the various hit selections the

total number of hits Nhits, the number of lines with hits Nlines, the number of hits with

more than single hit charge N(A > 2.5p.e.) and the total charge of the hits Atotal was

included in the parameter candidate list.

Topological parameters In order to estimate the reconstructability of an event from its po-

sition inside the detector volume, two coverage parameters were introduced. Assuming

an idealized shape for track and shower events, the first parameter uses a cone from the

reconstructed shower vertex with an opening angle equalling the Cherenkov angle and

variable length s, the second assumes a cylinder of radius r around the track hypothesis.

For both shapes, the percentage of active optical modules within this event boundary is

calculated. It can thus be used as weight parameter to the hit selections introduced above.

However, these parameters later proved to be not well represented within the simulation.

Parameters for track enhancement During training of the MVA method for atmospheric neu-

trino suppression, it became apparent that additional parameters are needed to increase

the method sensitivity towards high-energy track signatures. To this end, the ANN energy

reconstruction [64] was applied on various hit selections and Aafit and Dusj directional

estimates. The input parameters used for the neural net in ANN evaluate hit timing

and amplitude of the used hit selection in relation to the reconstructed track and include

parameters like the number of hits and their amplitude within a given distance from the

track estimate, number of storey and strings with hits from the hit selection and mean

and RMS of arrival times and distances towards the tracks for the hit distributions. All

parameters are described in detail in in [56].

6.2.2 Evaluating the parameter space

In this step, the above list of parameters needs to be reduced to a manageable size, which was

achieved deselecting parameters according to quality criteria introduced in this step.

Due to the large variation of detector conditions, those parameters used in the multivariate tools

should be comparatively stable towards these changes, and be well represented within simula-

tion. Therefore, a sample of 56 runs8 was used for basic performance tests of the observables.

Observables showing a good representation in simulation and a stable agreement between sim-

ulation and measurement (P1) are then analysed in subgroups of similar parameters types (e.g.

directional parameters, energy related etc.). The goal of this step lies in firstly finding parame-

ters which by themselves show a different distribution for signal and background, and which will

8sample of runs with run numbers ending in 0, taken at approximate equal intervals between 2007 and 2012,

for which run-by-run v2 simulation is available
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secondly add additional information to the parameter set as no strong linear correlation exists

to the well classifying parameters in the subgroup (P2).

Therefore, each parameter to be considered as candidate parameter is judged and (de)selected

according to the following criteria:

P1: Simulation reliability The observable distribution must be well represented in simulation

and therefore show a good agreement between data and simulation in MUPAGE from

run-by-run simulation version 2 [35], and a stable performance throughout the runtime

must be seen.

P2a: Separation power The observable must discriminate by itself well between signal and

background events using the simple optimizer S or/and

P2b: Orthogonality Within a given parameter set, the observable must add valuable informa-

tion, i.e. show a reasonable orthogonality towards the remaining parameters in a principal

component analysis.
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Figure 6.3: Selection criteria for parameter candidates evaluated using 56 runs, here with

Nhits,Aafit: a) general data/MC agreement b) data/MC agreement for all runs in the test sample

c) simple optimizer for neutrinos from atmospheric muon background, scaled to 1600 days d)

simple optimizer for cosmic neutrinos from atmospheric background, scaled.
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Agreement in data and simulation (P1) Firstly, the one-dimensional parameter distribution

is viewed for muon simulation and data of all sample runs and a by-eye evaluation of the

agreement is performed, see Figure 6.3a, rating the agreement between good and unsuitable

for analysis. Then, the distribution is compared for simulated atmospheric muons and data for

each of the test runs separately and the run-by-run histogram agreement A2 is calculated as

A2(xdata,xsim) =
nbin

∑
i=1

nbin

∑
j=i

(ndi/Nd−nsj/Ns)
2

( j− i + 1)2 , (6.5)

assuming two histograms of the distribution of parameter x from data and simulation, of the

same number of bins nbin and the same parameter range holding the events Nd and Ns with entries

ndi and nsi for bin i respectively. In Figure 6.3b, one can therefore judge the stability of data

and simulation agreement for the different detector conditions. Later in the development of the

TMVA tools, this comparison is also performed on a small sample of runs already available from

run-by-run simulation version 3, which lead to the deselection of formerly selected parameter

candidates.

Separation power (P2a) To evaluate the suitability of the observable for distinguishing be-

tween the cosmic signal and the atmospheric muon and neutrino background, the cumulative

distributions for the test sample for atmospheric muons, atmospheric neutrinos and cosmic

neutrinos is plotted, and for each bin S (Nν ,atm,Nµ,atm) and S (Nν ,cos,Nν ,atm) calculated. Pa-

rameters achieving a comparatively low value in S are then added to the parameter candidate

list, as this indicates that a single parameter cut would already increase the sensitivity of a signal

selection based singly on this parameter.

Orthogonality (P2b) Parameters of similar function (e.g. event directional estimates, en-

ergy estimates etc.) passing P1 are allocated to a subsample and a Principle Component

Analysis (PCA, documented in [62] as preprocessing method) is performed for events of the

simulated muon sample and neutrino sample. The PCA here serves firstly to identify the pa-

rameter of the subgroup mostly representing the relevant feature, which is that of the largest

eigenvalue. Secondly, its covariance matrix can be used to identify correlation between pa-

rameters. Here, a different two-dimensional behaviour between two observables for muons and

neutrinos can be used as indication to include both parameters on the ground of their com-

bined event discrimination power. This was evaluated by calculating the difference in covariance

∆C = |Cov(xi,x j)sample1−Cov(xi,x j)sample2| for the background and signal sample as shown for

one subgroup in Figure 6.4b. In this example, this would lead to the selection of the recon-

structed zenith of the BBFit track reconstruction, as it by itself shows a large ∆C compared

to the other reconstructions. Having selected BBFit track, the Krake fit shows the largest ∆C
compared to BBFit track, but relatively good agreement with other reconstructions, and is

therefore selected to complement the information gained from the BBFit track.

Later in the process, the various preprocessing transformations introduced in Section 6.1.2 were

used to evaluate parameter correlations within the sample of input parameters for the multivari-

ate tool. These correlation measures here only serve as indicators, as basically all parameters

show higher importance in one or more preprocessing scenarios, as seen in Figure 6.4a, which

makes it difficult to abandon any with this observation alone.
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Figure 6.4: Input parameter evaluation by a) comparing parameter importance for different

preprocessing scenarios (identity transformation, linear decorrelation, principle component de-

composition, Gaussian decoupling and decorrelation) and by b) calculating ∆C for a subsample

of parameters.

6.2.3 Reducing the parameter space

After application of the aforementioned quality criteria, parameters were mostly selected accord-

ing to their estimated performance, although these criteria were used as a guideline rather than

a strict rule. In order to ensure continuity with formerly performed analysis, parameters used

before were therefore included although their performance might not have been as good as those

of newly added parameters. Also, the necessity to add parameters emphasizing features of high

energy track events over shower events arose during multivariate tool development, which lead

to the inclusion of such parameters without evaluation of their performance in the P2 criteria,

as they were obviously needed to cover an afore neglected part of the parameter space. These

considerations lead to the list of parameter candidates given in Table 6.2. A full record of the

selection process results for all parameters can be found in Appendix A.4.1.

9methods: Cuts=rectangular cut optimization, Likelihood=Likelihood method, PDERS=multidimensional

likelihood estimator, KNN=k-nearest-neighbour, HMatrix=H-Matrix, LD=linear discriminant, Fisher=Fisher

discriminant, BoostedFisher=boosted application of Fisher discriminant, MLP=multi-layer perceptron,

FDA=functional discriminant analysis, SVM=support vector machine, BDT=boosted decision tree, Rule-

Fit=Rulefit, combination of various techniques, see 6.1.1; preprocessing : D=linear decorrelation, PCA= principle

component decomposition, G=Gaussian transformation see 6.1.2; specification depending on the method; opti-

mization task: 1=atmospheric muon suppression, 2=atmospheric neutrino suppression
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parameter type atm. µ suppression atm. ν suppression

directional Aafit θ cs Aafit θ ,ϕ s

BBFit θ cs Dusj θ ,ϕ s

Dusj θ cs BBFit θ s

GridFit θ s

energy-like ER
s ER

cs

EANN
s EANN

cs

Aafit Nhits
c EdEdx

cs

Dusj Nhits
cr EDusj

cs

(ANN < A > all hits) s3 (Dusj ∑A) s3

Aafit Nhits
n

Dusj Nhits
n

categorization Aafit λ c GridFit width of min sr

Aafit β c Dusj fit d.o.f s

(BBFit track χ2) cd

(BBFit bright χ2) cd

Dusj VLLH c

Gridfit ratio s

Krake rlogL sr

(Dusj shower rχ2) s3

topological Dusj convergence z s (ANN track length) s3

dE/dx track length s (ANN event duration) s3

ANN RMS(dcher)
s

Table 6.2: Parameter candidates for the analysis according to the following selection criteria:

c = classical from former analysis, s = for good separation power, r = as good representation for

parameter subsample, n = new parameter for track enhancement, d = deselected later because

of data/MC discrepancy, 3 = deselected for disagreement with run-by-run simulation v3

6.3 Tools assessment

After obtaining the parameter candidates, the tools development was performed in two stages,

the first of which involved general testing of the MVA methods and comparison of their per-

formance on a comparatively small event sample from 50 runs. At the second stage, the best

performing parameters and methods from this broad scanning were retrained on a sample of

about 5% of the available simulated data under conditions close to the final set-up. In both

cases, the tools and parameter quality criteria introduced here were used. For details on the

training and evaluation, see Appendix A.5). In the following part, a short-hand for the individ-

ual setup of the classifiers will be used, calling a method as ”method name + preprocessing +

specifications (+ optimization task)” 9.

Precuts After testing the reliability of possible cut parameters, some primary cuts on the

parameters were introduced in order to reduce the parameter space to the relevant part, i.e.

reducing the contribution of atmospheric muons without relevant impact on neutrino events.
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Figure 6.5: ROC curves for various methods in first test training.

This was accomplished for the following testing phase of TMVA methods by more restrictive

cuts on reconstructed zenith angles.

Precut test1 Dusj θ > 0.2rad
Precut test2 Aafit θ > 1.2rad, Gridfit θ > 1.2rad, Krakefit θ > 1.2rad, BBFit θ > 1.2rad

These cuts were only used for the testing and replaced later during the optimization process

for the final analysis classifiers by optimized cuts. Note that at the tools development stage

also more parameters were considered than listed as final candidate parameters in Table 6.2

to evaluate the reliability of the methods independent of the more concrete input parameter

choice.

6.3.1 Method evaluation

At the first stage, the method evaluation parameters consisted of their ROC curves and separa-

tion power using the simple optimiation function S .

The ROC(Receiver Operator Characteristics)-curves show the background rejection versus the

signal efficiency of the classifiers. Here, curves reaching closest to (1,1) in both background re-

jection and signal efficiency obviously perform best. In addition to that, the simple optimization

function S (Eq. 5.1) is used to evaluate the discrimination power of the optimizers for various

cut values in a cut value scanning, see Figure 6.5. This parameter has already been used in the

evaluation of the separation power of single parameters, where a low value of S here indicates

a good separation of signal from background for the specific method at the selected cut, see

Figure 6.6.
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Figure 6.6: Nevents and S of various methods at different cut values.

First method deselection Some first conclusions were drawn from these tests. Firstly, linear

discriminants did not necessarily perform worse than non-linear methods at this stage, which

shows that a larger part of the input parameters performs (at least after parameter preprocessing)

such that these simple and easy-to-train methods can be used further. Secondly, methods

involving probability density function modelling like PDERS did not work well and would need

far more consideration of the parameter space. Furthermore, multi-layer perceptrons did partially

perform well, but here a lot more fine-tuning would have to be invested to show the method’s

full capabilities, which in such a broad scan proves disadvantageous. Last but not least the

k-nearest neighbour method did not, even with this small training sample, manage to suppress

all background events at the highest possible accuracy and therefore was also not considered

further.

Also, a reduction of the number of input parameters to the methods was tested, which showed

a better performance of the pdf modelling methods for smaller sets of input parameters (e.g. 7

parameters), while non-linear methods like boosted decision tree did not alter their behaviour

much with different numbers of input parameters.

6.3.2 Method-based parameter selection

After a rough selection of multivariate tools suitable for this analysis, the question has to be

addressed which parameters of the above selected are actually necessary and relevant within

the multivariate tool. As both linear and non-linear classifiers show potential for the task, the
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selection of the most suitable parameters for each method go hand in hand with the optimization

of the classifier set-up themselves. As different input parameters are needed for the different

classification tasks, quality parameters Q(y) will be defined according to the task of atmospheric

muon suppression and atmospheric neutrino suppression in the next section. They will be used

to evaluate the suitability of the classifiers and the relevance of parameters within the given

parameter set. As some methods are computationally more demanding, the parameter set was

specified on two quickly trainable methods. Within the group of non-linear classifiers, the BDT

was chosen, while the Fisher linear discrimination could be used to evaluate the classification

gain from assuming linear correlations within the parameters.

Parameter selection procedure 1: building up the parameter space Employing the pa-

rameter Q(y) as quality criterion of a classifier x 7→ y with classification output variable y, the

following parameter selection procedure on a parameter vector x of length n was introduced

using the BDT classifier. In this procedure, the parameter set is build up starting with one

single parameter and adding parameters, until the best performance is reached.

1. For all xi, Q(y = xi) is evaluated, and the parameters ranked by Q(xi) > Q(xi+1).

2. The quality Q(x0) of parameter x0 with best performance is set as benchmark. Each

remaining parameter xi>0 is paired with x0 as xtest,i = (x0,xi 6=0).

3. The TMVA method is trained on xtest,i and Q(y(xtest,i)) is evaluated.

4. The parameter xi with largest Q(y(xtest,i)) is added to the parameter list xopt = (x0,xi), if

Q(y(xtest,i)) > Q(x0).

5. The process is repeated by training the method now on xtest = (xopt,x j) for the remaining

parameters and comparing their quality, adding the best performing parameter to xopt and

so forth.

6. The process is stopped if no increase in quality can be achieved by adding another pa-

rameter.

It has to be noted that this process is, due to computational limitation, only performed with

a small subsample of runs, and BDT performance might vary slightly for successive trainings.

Also, in order to avoid a bias on the initial parameter x0, the process has to be redone starting

from e.g. x1.

Parameter selection procedure 2: reducing the parameter space For linear classifiers, a

similar procedure was adapted as described above for the non-linear method, with the exception

that, due to the bad performance of these classifiers for less than three parameters, the scanning

started using the full parameters list x without prior parameter ranking, and the list of parameters

was successively reduced.

1. The TMVA method is trained on xtest,i = (x0, ...,xn−2) excluding each one parameter xi in

turn.

2. Q(y(xtest,i)) is evaluated and the parameter xi deselected to arrive at xopt = (x0, ...,xn−3)

for xi with Q(y(xtest,i)) < Q(xtest,j 6=i)∀ j.
3. The process is repeated with the reduced parameter vector until the maximum quality

Q(y(xopt)) is found.
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Figure 6.7: Angular distribution of events in simulation and reconstructed by Aafit before cuts

for 40 runs.

6.4 Atmospheric muon classifier

6.4.1 Some heuristic considerations

Atmospheric muon suppression is, due to the design of the detector, largely achieved by accurate

estimate of the arrival direction, deselecting track-like events originating from above. As can be

seen in Figure 6.7, the largest problem then lies in deselecting those atmospheric muons which

have falsely been reconstructed as upgoing. For these events it can be considered helpful that

atmospheric muons generally arrive at the detector at energies which lie below the threshold for

catastrophic energy losses, producing mostly primary Cherenkov radiation and ionization. If, at

the same time, these events only pass the detector, the amount of light deposited is compara-

tively low, which makes them distinguishable from high-energy neutrinos.

Two signatures from atmospheric muons pose the largest problems: on the one hand muons

with zenith angles close to the horizon might, if only slightly wrongly reconstructed, enter the

selected event sample. On the other hand muon bundles with higher multiplicity produce muons

entering the detector closely together, which can produce patterns that are not easily identifiable

as single track event any more. While the first issue is targeted during the development of the

classifier, the issue of high multiplicity muon events will be explored at another stage of the

analysis.

It should be noted that atmospheric muons are generally not assigned a good reconstruction

quality by shower reconstructions due to their different event topology. Also, track reconstruc-

tions generally reaches lower quality parameter values for muons entering the detector from

above due to the downwards oriented OMs which gather less light from these events. There-

fore, both track and shower reconstruction qualities serve as muon indicators.
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parameter x Q(x) (single) parameter x Q(x) discarded

Aafit β 1.83 Aafit β 1.83 Dusj VLLH

Aafit λ 1.47 + Gridfit ratio 5.92 Dusj θ

Gridfit ratio 0.69 + Aafit θ 8.66 Aafit λ

Gridfit θ 0.51 + Dusj shower rχ2 9.89 BBFit θ

... Aafit θ 0.17 + Gridfit θ 10.74 EANN

ER 0.08 + ER 11.65 Dusj position z
... ANN RMS(dcher) 0.002 + ANN RMS(dcher) 12.1 Krake rlogL

Dusj shower rχ2 0.0001 + dE/dx track length 12.8 Aafit Nhits

dE/dx track length 1.1×10−5 + Dusj Nhits* 13.6*

Table 6.3: Scanning results for atmospheric muon suppression. On the left, ranking of single

parameters according to their bulk separation Q(x), on the right Q(x) for the BDT output

parameter (*) after adjusting precuts.

Optization parameter Q For the suppression of atmospheric muons, the aim of the parameter

optimization is the general deselection of atmospheric muon events for a larger part of the feature

space. At the same time, the remaining neutrino events should be selected effectively and still

be distributed over a large part of the remaining feature space. The output variable of the

multivariate classifier should exhibit a large bulk separation between the TMVA output parameter

distribution for signal and background events. The quality parameter therefore selected to

describe the separation is

Q(x) =
|µ(xsig)−µ(xbkg)|

|RMS(xsig + RMS(xbkg)| . (6.6)

Here, µ(x) is the mean of the parameter distribution and RMS(x) its spread calculated as

root-mean-square.

6.4.2 Feature extraction

Precuts In order to focus on the most important part of the feature space, additional cuts

on the parameters specifically relevant for atmospheric muon reduction were introduced as part

of the preprocessing for the input parameters of the classifier. They were also used to exclude

regions of bad agreement between data and simulation. Note that, during preprocessing of the

simulated events, missing angular reconstructions were assigned θreco = 4 in order not to exclude

an event due to only one missing reconstruction.

Precut 1 Dusj θDusj > 1.2
Precut 2 Aafit θAafit > 1.4
Precut 3 Gridfit θGridFit > 1.4
Precut 4 Aafit β < 0.1
Precut 5 Gridfit ratio 0 < g < 2.5
Precut 6 Dusj Shower identifier rχ2 < 3000

Scanning setup Using Q(x), the parameters listed in Table 6.2 for muon suppression were

ranked by their bulk separation calculated from a test sample, with atmospheric muon events
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considered as background and atmospheric neutrino events as signal. Subsequently, a parameter

selection process was performed as described in Section 6.3.2 as procedure 1, starting from the

best separating parameter and adding to the parameter set until the optimal performance was

reached.10

Scan runs Table 6.3 shows the best result of the training after repetitive trials including tests

of several precuts on input parameters like Precut 1-6. The application of parameter precuts

increased the overall performance of the best result of the parameter scanning process from

Qnocuts = 9.8 to Qprecuts1−6 = 12.8, clearly showing the necessity for this step.

As the analysis aims to maximise the number of both track and shower events after this muon

suppression cut, the scanning was also performed using only track or only shower events as signal.

Although these specialized classifiers probably focus on areas of the feature space more specific

to the two event topologies (the shower selection e.g. focusing more on a vertex reconstruction,

the track more on reconstruction precision), both classifiers performed worse than a classifier

trained for both event types simultaneously. It can be expected that this classifier in the end also

selects events that show large similarities between track and shower events, e.g. track events

that show a large subshower from radiative processes which can be interpreted as shower by

itself.

For cross-validation, the same scanning was also performed starting with Gridfit ratio as first

scanning parameter, which selected the same parameters.

Result As can be seen in Table 6.3, nine parameters were selected for the BDT. These included

two track zenith angle estimates, one track and one cascade reconstruction quality parameter,

a track energy estimate and the number of photon hits measured in all PMTs in a cascade,

one atmospheric muon suppression parameter and two geometrical parameters describing the

extension of the event within the detector and the time residual distribution of the photons.

Although being the result of an automated process, this selection makes sense if seen in the

context of ’classical’ muon suppression methods. The agreement between zenith estimates

helps in the deselection of wrong directional reconstructions, the quality parameters test the

agreement with a neutrino-like event, the track length puts the Nhits parameter into context

while the two parameters measuring the time residuals of photons to the track hypothesis (which

is also the case for the R energy estimate) give information on both the energy of the event and

presence of (sub-)showers. GridFit ratio naturally is a atmospheric muon suppression parameter

and adds to the task as such.

6.4.3 Method tuning and final training

Method selection Various methods were tested using the before selected nine input param-

eters. While likelihood estimators, the kNN method as well as multilayer perceptrons failed to

achieve a good separation, linear discriminant estimators, RuleFit and boosted decision trees

showed a better performance. As the performance of these three methods reached roughly the

same level, BDTs were chosen as method for further fine-tuning, as linear discriminants do not

10The classifier used for this testing was a standard BDT without parameter preprocessing and 600 trees with

a depth of 3.
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Figure 6.8: Correlation between two different BDT setups for muon events from the test sample.

offer many optimization options except for preprocessing and boosting and the optimization of

RuleFit proved difficult.

BDT tuning The design of a BDT can be changed by using different tree structures, node

setup and minimizers, which were tested and optimized in repetitive trainings and which are

given in detail in Appendix A.5.2. Here, apart from the separation Q(x) also the signal efficiency

ε0.02% at a muon suppression of 2× 10−4 is considered, as not only bulk separation, but also

signal efficiency at nearly no background is needed. The testing lead to the following conclusions:

preprocessing Both PCA and Gaussian decoupling as parameter preprocessing increase the

signal efficiency, a combination of both does not further increase performance, therefore

a Gaussian decoupling is used.

separation type The separation function used in the tree nodes shows no impact on BDT

performance.

boost type Bagging improves separation and is used. AdaBoost, an adaptive boost algorithm

emphasizing misclassified events in repetitive trainings was used, employing a higher learn-

ing rate with larger number of grid points (50) in parameter range performs best.

tree depth and number An increase in tree depth and number of trees increases separation

due to the increased accuracy of training adaption and is fixed to Ntree = 1200 with a

depth of 7 each after repetitive trials.

Note that generally the signal efficiency of the various set-ups did not vary significantly, however,

bulk separation is largest for these BDT choices. As the method performing best on its own

for atmospheric muon suppression does not necessarily have to be the best choice when used

in combination with a cosmic neutrino selector, various BDTs using similarly successful set-ups

were trained for later comparison.
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Figure 6.9: Output parameter of BDTGauss1 method on 1490d lifetime.

Final training The various versions of the BDTs were trained on a set of randomly selected

runs from the run-by-run production v2.x.1 with roughly 40 days of lifetime, after application

of the aforementioned precuts. Atmospheric muons produced using MUPAGE [41] were used as

background, while the signal was formed by GenHen [36] events including all event types from

νe and νµ , which were weighted according to the Bartol atmospheric neutrino flux [29]. An

exemplary output of the muon suppression BDTs can be seen in Figure 6.8.

Performance The resulting muon suppression (Figure 6.9) outperforms all single parameter

cuts which could be applied to the sample, of which the most effective in this context was GridFit

ratio. For GridFit, no parameter cut can be found which completely reduces atmospheric muons,

which is the case for the BDT 1 methods.

The BDT set-ups selected for the final training naturally lead to roughly similar classification,

as can be seen in Figure 6.8, but also certain differences are apparent. It shows that muons

reconstructed with high signal likeness i.e. high BRT output value, seem to be interpreted

differently in the various BDTs, which emphasizes the necessity to try various versions of the

atmospheric muon suppression methods in combination with the cosmic neutrino selector.

The BDTs favours neither the shower or track topologies when deselecting atmospheric muons

below the level of the atmospheric neutrino component. It should be noted however that in the

region of high event energies where the cosmic neutrino signal will be dominant in the analysis,

high-energy shower neutrino events are starting to dominate against the muon events, see Figure

6.9.
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Figure 6.10: Simulated event energy and number of hits from the Aafit selection as exemplary

energy estimate.

6.5 Atmospheric neutrino classifier

6.5.1 Again heuristic considerations

Atmospheric neutrino suppression can only be achieved by estimating the respective event en-

ergy, as particle energy is the main characteristic distinguishing neutrinos of atmospheric origin

from those of cosmic origin (see Figure 6.10). As various sophisticated energy estimators were

developed within ANTARES for the different event types, this estimator should draw on the

capacity of these established methods. Nonetheless it is not limited to these methods, and

can include further energy- and event type related parameters to serve as generalized cosmic

neutrino classifier.

Energy-related parameters must draw on the particle energy deposited in the detector from neu-

trino interactions, which is seen as additional light yield originating from photons from either

the Cherenkov emission from secondary particles at the interaction vertex or as radiation from

energy loss processes along the muon track. Additionally topological parameters describing ex-

tension of the event and direction, and parameters evaluating its compatibility with track and

shower hypothesis could prove useful to put the light yield into perspective with regard to the

event topology.

Optimization parameter Q The task of signal extraction demands a high purity in the final

event sample. As experience with former analyses shows that the model rejection or discovery

procedure leads to event samples with a few remaining background events over which the
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Figure 6.11: Signal efficiency ε0.1% comparison of final TMVA methods for atmospheric neutrino

suppression; methods trained including additional parameter cuts as listed in Table 6.4 are

labelled ’new’ or ’alt’.

contribution of cosmic events is evaluated, the signal efficiency ε is introduced as optimization

parameter Q in the tools development cycle. For a given parameter x, the signal efficiency is

defined as the fraction of signal events which fulfil the condition to be selected by a cut xcut,pbkg

over the total number of signal events Nsig. The cut value xcut,pbkg is defined by the parameter

value for which a fraction of the background events pbkg are selected.

εpbkg
(x) =

N(xi,sig > xcut,pbkg)

Nsig
. (6.7)

The background is chosen such that a handful of atmospheric events would remain with pbkg =

0.001, as this corresponds roughly to the area of the cut value for the given sample. The quality

criterion is therefore set as Q = ε0.001. The use of this quality criterion reflects the difference

of the task of cosmic neutrino selection to the previous development of an atmospheric muon

classifier, where a rough overall separation of the signal and background distributions was called

for. Here, the enhancement of the signal contribution in the tail of the event distribution is the

goal of the following multivariate tool development.
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Figure 6.12: Fisher discriminant output for 1490 days lifetime.

6.5.2 Feature extraction

Preprocessing To enhance the parameter space for energy estimation, various input parame-

ters of the ANN energy estimator [56] are added, applied on hit selections from the Dusj and

Aafit reconstruction. These are the following:

P1 the number of triggered hits

P2 the number of all hits within a time window of [−20,+300]ns around the triggered hits

P6 the number of storey layers with hits of the Dusj hit selection

P7 the number of strings with hits of the Dusj hit selection

P15 time difference between first and last hit of Dusj hit selection

P19 fraction of Dusj hits arriving with time residual from shower assumption within [−10,+250]ns]
P21 the average amplitude of Aafit selected hits arriving with time residuals from the recon-

structed track within [−10,+40]ns, measuring the amplitude of direct hits.

In order to ensure easier interpretation of the relevant input parameters, the below listed cuts

and transformations were applied on the training sample after testing their effect on a BDT

performance. Setting energy-related parameters to logarithmic scale enhances the onset of

energy loss processes at higher energies, facilitating a better training of the classifier on these

relevant features. Last but not least, the additional cuts mainly exclude regions in the feature

space with non-relevant neutrino contribution and help to easily purify the sample.

Replacing missing parameter values for failed reconstructions: θDusj = 2, VLLH= 11, λ =

−6, P6 = 4
logarithmic x′ = log(x): P1, P2, P21, VLLH, EANN, EDusj, EdEdx

additional cuts θBBFit > 1.4, λ >−8, VLLH< 30

Scanning procedure First training of multivariate tools on the parameters in Table 6.2, here

called x1, showed a strong emphasis on the selection of shower events. In order to increase
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Figure 6.13: Correlation of two well-performing Fisher disciminants.

the chance of well separated track-like events, x1 were combined with additional parameters

showing a high signal efficiency for track-like events xt+ introduced in the previous paragraph.

The scanning process was repeated for the extended set xext = (x1,xt+), which resulted in a

better overall performance of the final parameter set. As a separation of track- and shower-like

event signatures could also be considered at this stage, the parameter selection was repeated

separately including only parameters related to a track event hypothesis xext,track, and those

related to shower reconstruction xext,shower, and the combined signal efficiency calculated for

events classified as signal by either or both of the classifiers. However, this procedure resulted in

a lower signal efficiency compared to the training on a final selection form a combined parameter

set xext. For the final parameter set, scanning procedure 2 from Section 6.3.2 was used in a first

scanning including only x1, resulting in a parameters set which was joined by those parameters

which remained after scanning procedure 2 on the extended parameter set xext, ensuring that

a robust overall classifier on x1 was further enhanced by those additional parameters which

increase the performance from the extended set xext.

Result The resulting parameter set of 10 input parameters, see Table 6.4, again reflects well

the task at hand. Not only are three different energy estimators, EANN, EDusj and EdEdx selected,

but also three parameters related to the amount of light detected, namely P1, P2 and P21 as

introduced above, which are part of the xt+ parameters. In addition to that, the Dusj zenith

angle estimate θDus j contributes directional information, while the number of storeys P6 add

information about the extension of the event inside the detection volume. Finally, as was the

case in the atmospheric muon suppression parameters, two reconstruction quality parameters

are added, with Aafit λ expressing the track-likeness of the event, and Dusj VLLH its agreement

with a shower hypothesis.
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6.5.3 Method tuning and performance

First training with a wide range of different classifiers showed that, in addition to BDTs, likeli-

hood methods performed well for this task, which lead to further tests of the input parameter

preprocessing with these likelihood methods. However, after parameter preprocessing and scan-

ning, discriminant methods like the Fisher discriminant or H-matrix outperformed the likelihood

methods. Both BDTs and Fisher discriminants were therefore selected as main methods and

tested with different set-ups, which already have been described for the BDT for atmospheric

muon suppression.

Fisher discriminant optimization In the case of linear discriminants, the possibility of method

optimisation is much more limited. The different parameter preprocessing options were tried,

as well as changing the probability density function modelling by using different spline function

options. Finally, a varying number of Fisher discriminants was boosted. In order to compare

the effects of the above introduced parameter transformations on the classifier performance, the

methods were trained both without and including the these transformations.

As linear discrimination is only one of the simplest cases of functional discriminant analysis, sev-

eral other functions were tested to replace the linear function inherent to the Fisher discriminant.

However, the application of higher order functions proved to be difficult and no discriminator

was found that outperformed the simple Fisher discriminant.

Tool performance As with the atmospheric muon discriminator, all selected methods were

trained on simulated events equivalent to about 40 days data taking. One example of corre-

lation between the trained methods can be found in Figure 6.13. It should be noted that the

atmospheric neutrino classifier can serve to an extent for atmospheric muon suppression, as

atmospheric muons also possess generally lower energies, which gives a good starting point for

the combination of both classifiers in the following section.

An overview over all parameters, processing steps and trained methods can be seen in Table

6.4.
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atmospheric muon suppression cosmic neutrino selection

input parameters Aafit β Dusj energy estimate EDusj

Aafit θ Dusj θ

Gridfit muon estimate g ANN energy estimate EANN

Dusj Shower identifier rχ2 Aafit λ

Gridfit θ Dusj shower rχ2

R energy estimate ER Aafit Nhits

dE/dx track length estimate ldEdx all event hits Nhits

Dusj number of selected hit Nhits,Dusj all event hits 〈A〉tcher<40ns

ANN RMS(dCherenkov) dE/dx energy estimate EdEdx

Dusj number of storeys Nstorey

transformations Aafit θ if nan, θ := 4 Dusj VLLH if nan, VLLH:= 11
GridFit θ if nan, θ := 4 VLLH′ = log(VLLH)

all parameters if nan, x :=−1 Aafit N′hits = log(Nhits)

all energies if nan, E := 100 Aafit λ if nan, λ :=−6.0
E ′x = log(Ex/GeV) Dusj θ if nan, θ := 2

all event hits N′hits = log(Nhits)

all hits 〈A〉′tc<40ns = log(〈A〉tc<40ns)

E ′Dusj = log(EDusj)

parameter cuts Dusj θ > 1.2 BBFit θ > 1.4
Aafit θ > 1.4 Aafit λ >−8
Gridfit θ > 1.4
Aafit β < 0.1
Gridfit muon estimate 0 < g < 2.5
Dusj Shower identifier rχ2 < 3000

TMVA methods BDT Fisher

BDTGauss FisherG

BDTbestOf BDT

BDTbestOfbagged BDTGauss

BDTbestOfbaggedCross BDTbestOfbagged

BDTbestOfbagged3 BDTbestOf

boosted Fisher discriminant

Table 6.4: Input parameters, parameters transformations and TMVA classifiers for atmospheric

muon suppression and cosmic neutrino selection
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7 l Event selection and simulation additions

Data taking and simulation for ANTARES have already been introduced in Chapter 2 and

Chapter 3, respectively. Now, for the task of searching for a diffuse flux of cosmic neutrinos,

this data needs to be filtered such that known variations in detector conditions are manageable

and accounted for when applying the event selection for the diffuse search. In order to assure

agreement between simulation and measurement, on the one hand, data quality evaluation and

selection are necessary, while on the other hand the standard simulation has to be extended to

include all event types and those contributions which, at that point, are not included in the

standard simulation.

To meet the first concern, a data quality assessment on top of the standard quality param-

eters in ANTARES was introduced in order to include considerations in the quality assessment

based on the parameter space relevant for the multivariate tools. For the second part, a ντ

simulation and estimate was added, high multiplicity muon bundles simulated, the atmospheric

muon contribution modelled and a prompt neutrino flux added.

Depending on the availability of measurements and their respective simulation, ANTARES data

from the years 2007-201311 is considered in this analysis. It should be noted that for 2013 a ver-

sion upgrade took place in the simulation, leading to a heterogeneous mixture of run simulations

for the complete period.

7.1 Data selection

The run selection had to address the fact that firstly not all available data runs were suitable

for analysis, depending on detector conditions or possible technical problems, and secondly that

for those runs not necessarily a full run simulation was available. Starting from the full number

of runs available in the data base and deselecting only those which were acoustic or bio-camera

runs, the remaining runs were assigned analysis-specific quality estimates in addition to the not

always available classical ANTARES data quality flags and selection categorizations. In contrast

to the standard run quality classification in ANTARES, which relies on detector conditions like

bioluminescence indicators and OM availability, the quality indicators here are based specifically

on the distribution of the relevant observables for the analysis in the simulation. This assumes

that even runs which showed difficult detector conditions can still be well included in the analysis

if the relevant parameters are well enough represented in the simulation.

11runs 25656 - 74348
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Figure 7.1: Schematic overview over the event selection, parameter transformation and multi-

variate tool application.

7.1.1 Preselection from the full data sample

In order to reduce both data and simulated events to a manageable amount, those events were

discarded at a first processing of the fully reconstucted runs which were unlikely to enter the

analysis. As only well reconstructed upgoing neutrino events are looked for, only those are

selected which are either reconstructed as upgoing by the two track reconstruction methods

Aafit and BBFit, or which are reconstructed by both cascade reconstruction methods. Due to

the larger neutrino direction uncertainty of the cascade reconstruction, no angular criterion is

applied for reconstructed showers. So, in the following procedure only events are considered for

which

P1 either θAafit > 1.2 and θBBFit > 1.2
P2 or Dusj and Q strategy are successful.

As well-reconstructable high-energy events should be easily recognised also by a strict trig-

gering algorithm, the events considered for the analysis was restricted to

P3 only 3N triggered events,

a trigger which is described in more detail in Section 2.3.3. After this event selection, the

additional reconstructions needed for the expansion of the parameter space for the multivariate

tools as introduced in Section 4 is applied to the event samples before entering the run quality

evaluation.
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7.1.2 Data quality assessment

The following quality assessment builds on both standard ANTARES run quality parameters, and

the introduction of the data-Monte Carlo ratio and A2 parameter as additional analysis-specific

parameters.

Standard parameters At the core of the standard run quality assessment, described in [65],

lies the introduction of a data quality flag, the quality basic Qbasic, which assumes a value

between minimum 1 and best 4 according to the environmental conditions measured by the

baseline and burst fraction for the given run, which are determined from a Gaussian fit to the

distribution of rates for all OMs as median and fraction above a given threshold. This parameter

is also dependent on the number of active OMs in the detector NOM, which naturally decreases

as the detector ages. Also, an estimate for the bioluminescence activity in the detector can be

assumed to be relevant for the data quality. Here, the mean rate Fhits of hits averaged over all

active OMs in the detector is used.

Data-simulation ratio Ndata/MC As the Monte Carlo simulation is done on a run-by-run basis,

a first criterion for the accuracy of the simulation is given by the ratio between the number of

data events and the number of simulated events Ndata/MC = Nevts,measured/Nevts,simulated after

the three preprocessing cuts P1-P312. Keeping in mind that this can only provide information

about the good representation of atmospheric muons due to the small number of neutrinos in a

single run sample, the restriction to 3N triggered events ensures a relatively stable performance

of this parameter.

Standardized parameter histograms In order to evaluate the agreement of observable be-

haviour in data and simulation for each run, several quality parameters based on the binned

data were introduced. The quality parameter follows the idea of bin-per-bin comparison of two

histograms introduced in Equation 6.5. As this selection criterion should reach roughly the same

sensitivity to discrepancies between measurement and simulation, but shape and distribution of

the observables varied largely, the binning of the individual histograms was adjusted using the

spread ξ (x) of the observable histogram for standardization.

The spread ξ and mean m of the distribution of observable x is evaluated from the number of

bins Nbins, with bins i holding a number of entries xi such that

m(x) =
∑Nbins

ixi

∑Nbins
xi

(7.1)

ξ (x) =

√
∑Nbins

(i−m(x))2xi

∑Nbins
xi

. (7.2)

The binning and range of the relevant parameters in the histograms was then adjusted thus

that a comparable spread of the distribution was achieved for all observables.

12This parameter was corrected for runs from the 5-line period for the ”trigger bug” in the measurements for

this time period.
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Figure 7.2: Data processing schematic

not used stage 1 stage 2a stage 2b

measurement 1163 (113.2 d) 8676 (913.5 d) 5267 (557.9 d) 1388 (286.1 d)

genhen νµCC v2 770 (74.1 d) 8676 (913.5 d) 4232 (451.5 d) 597 (69.7 d)

genhen νe,µNC 689 (66.0 d) 8676 (913.5 d) 3641 (384.0 d) 526 (61.6 d)

mupage v2 717 (68.7 d) 8676 (913.5 d) 3659 (385.8 d) 534 (62.0 d)

mupage v3 475 (64.7 d) 4556 (473.9 d) 2465 (270.0 d) 840 (212.8 d)

N3Ntriggered 6.9×107 2.7×108 1.5×108 1.0×108

Table 7.1: Number of runs and lifetime for measurements and simulation sets selected by the

run matching process for simulation of run-by-run simulation version 2 (v2) and 3 (v3).

Area difference In order to evaluate the agreement of the one-dimensional distribution of each

input parameter between data and simulation, the histogram comparison estimate A2(xdata,xMC)

(Equation 6.5) introduced already for the investigation of parameter performance stability in

the previous chapter is applied here as well.

Here, some parameters proved to be more sensitive to detector alterations than others, with all

parameters showing a generally good agreement. At this level, some discrepancies were found

especially for the dE/dx energy estimate, but were considered to have a minor impact on the

overall agreement of the final classifiers. For all other observables, a good agreement was found

for the majority of runs, which lead to the discarding of a given run only if A2 deviated from

the average any of the remaining observables by a given percentage.
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7.1.3 Primary selection: data and simulation agreement

These quality parameters were now used in the run matching procedure, see Figure 7.2. Starting

from all runs of which processed data is available, at first all those runs should be used for which

both data and simulation exist and are well in agreement. Agreement is here defined by

RS1 a 0.75 < Ndata/MC < 1.25

RS2 For all relevant parameters, A2(xdata,xMC) < 0.2.

The relevant parameters here include those that enter the analysis by serving as input parameters

to the later discussed multivariate tools or which are used during the processing steps. If these

run selection criteria RS are met, the according run in data and simulation is selected as stage

1 run. As runs without simulation from run-by-run version 2 are not considered, stage 1 runs

contain no runs from 2013.

7.1.4 Secondary selection: run matching

If a data run is not selected, the rest of available simulations is used as a database to find a

matching simulation run. A run counts as similar if its number of active OMs NOM and optical

mean rate Fhits averaged over the whole run are similar within a given margin. The number of

events in the mupage sample of the matched simulated run with duration d′MC is then scaled

to the duration ddata of the search run by dscale = ddata/d′MC. The scaled simulation is then

compared to the data run by the same criteria as the original run simulation would have been.

For the run matching procedure, the run matching criteria RM therefore are

RM0 |NOM−N′OM|< 85 and |Fhits−F ′hits|< 30kHz

RM1 0.75 < Ndata/(N′MCdscale) < 1.25 (like RS1)

RM2 For all relevant parameters, A2(xdata,x′MC) < 0.2

If the criteria are fulfilled, the data run is added to the selected sample, while at the same time

the weight of events in the comparison Monte Carlo run is scaled to add the additional lifetime

of the matched data run. These additional runs are considered as stage 2 selected runs.

In order to reduce computing time, this matching process was first performed between runs

within a data taking interval of several month, i.e. within 500 neighbouring runs (stage 2a).

Only then, the remaining unmatched runs from these subgroups were compared to simulation

with a larger time distance to the original data taking run, i.e. 2500 runs (stage 2b). This

second matching included all runs from 2013, as no simulation from 2013 was available, see

Figure 7.3. On the other hand, no stage 2b could be assigned for the early data taking period

with 5 active lines, as criterion RM0 could not be fulfilled for runs involving a different number

of detection lines.

The number of runs and their according lifetime selected at the two stages, with the two

different time windows for matching in stage 2 denoted as 2a and 2b, can be seen in Table 7.1.
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Run selection: Statistics

6

not selected
stage 1
stage 2a (500 runs)
stage 2b (2500 runs)

All runs in data production 
2007-2013

● Stage 1: runs with same 
data & MC

● Stage 2 (500 runs):
different data & MC runs, 
found within 500 
neighbouring runs

● Stage 2 (2500 runs):
different data & MC runs, 
found within 2500 runs, for 
runs > 50000 taken from 
complete runrange 50000-
75000

17 events 0 events

Figure 7.3: Accumulated data taking livetime in days over runnumber.

7.2 Simulation extensions and adaptions

In the standard simulation, some event contributions are either under-represented or missing,

as the full simulation would either be too computationally extensive or has not yet been imple-

mented. These unavoidable deficits are addressed in the following part before entering a full

parameter cut optimization procedure for the complete analysis chain in the next chapter.

Firstly, the event contribution from ντ -induced events has only been implemented during the

finishing stages of the analysis and was therefore not available in the regular simulation. As

an estimate for the ντ contribution was already introduced in [16], two approximations of it

are available and used here, namely the earlier estimate from νe and νµ simulations and the

extrapolation from a small ντ simulation.

Secondly, two limitations of the atmospheric muon simulation have to be overcome. Here, the

equivalent lifetime of the atmospheric muon simulation covers only 1/3 of the data taking,

which makes an interpolation of the atmospheric muon number in the area of low statics for

the classifier distribution necessary. In addition to that, quite rare muon bundles from the same

atmospheric shower producing more than 200 atmospheric muons are not simulated in the stan-

dard production and have to be added from a specialized mupage simulation.

Last but not least, although measurements from IceCube point towards a comparatively low flux

of prompt neutrino events, the contribution from prompt atmospheric neutrinos as introduced

in Section 2.3.1 is added as conservative estimate.

7.2.1 τ neutrinos

The two estimates available for the number of ντ events both lack the precision of the full

simulation, on the one hand due to the rough estimates of used for the extrapolation from νe

and νµ simulation, on the other hand due to lack of some interaction processes and a partially

faulty implementation of ντ interactions in genhen. Therefore, the difference between the

outcome of the two methods is introduced as estimate of the error on the ντ contribution, while
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(a) extrapolated ντ (b) simulated ντ

Figure 7.4: Distribution of cosmic tau neutrinos ντ for two classifiers, either as extrapolated

from νe and νµ or as simulated by a toy simulation. Due to an error in the weighting of events

in the simulation, the total number of events per bin is overestimated.

choosing the interpolation as estimate basis due to its smoother distribution at low statistics. A

comparison of the distribution of events for two classifier parameters can be seen in Figure 7.4.

Extrapolation of ντ estimate from νe and νµ simulation Before any ντ simulation became

available in ANTARES, the estimation of this event class from the existing neutrino simulation

had been used in the prior shower analysis [16]. While the estimation procedure there showed a

high degree of sophistication, a simplified version of this method will be implemented here, as

the results can be checked against the small simulation sample.

Cosmic ντ events As the ratio between the different neutrino flavours of the cosmic flux is

νe : νµ : ντ = 1 : 1 : 1 due to neutrino mixing, the cosmic ντ contribution from neutral-

channel (NC) events can be approximated as average of the νe and νµ channel,

Nντ NC = (NνeNC + Nνµ NC)/2. (7.3)

The same is generally true for the charged-current (CC) channel. However, the Glashow

resonance leading to an excess in the νe-channel by a branching ratio ηGlashow has to be

taken into account. Furthermore, the τ lepton can decay both producing only a shower, or

an additional muon in the reaction τ−→ µ−+ νµ + ντ . This occurs at a branching ratio

of 17.4%, with showers making up ητ,shower = 82.6% of the events. Therefore, shower

events from ντ CC-interaction occur approximately with

Nντ CC = NνeCC(1−ηGlashow)ητ,shower and Nντ CC = NνeCCητ,shower. (7.4)

Depending on its energy, the tau’s lifetime allows it to travel only a few meters before

the second interaction. These events resemble neither a shower nor an extended track,

which makes it more challenging to add these events here. However, as a preliminary

ντ simulation was available for the analysis allowing to study these events, no further

estimate for these decay channels is added here. Also, the deficit in energy transferred to

the shower in case of ντ production is considered negligible for this estimation.

93



CHAPTER 7. EVENT SELECTION AND SIMULATION ADDITIONS

(a) m≤ 200 (b) m > 200

Figure 7.5: Distribution of atmospheric muon events in the two classifier types, with multiplicity

m above and below 200. The box indicates the classifier cuts established later in the analysis

chain.

Atmospheric ντ events The same considerations as for the cosmic ντ contribution are also

viable for the atmospheric component, with the exception that no events from standard

atmospheric showers are expected. However, the prompt component would contribute

events with an expected magnitude of νe : ντ ≈ 17 : 1, which, considering the initially low

contribution of the prompt atmospheric flux, would result in such a low event number

that it is neglected here.

Following the above described approach, the ντ contribution was calculated in the following

steps for the number of events Nντ
after a given classifier cut resulting in Nνe electron and Nνµ

muon neutrinos.

• N′ντNC
= (NνeNC

+ NνµNC
)/2

• Scaling events in the energy range of the Glashow resonance to even out the Glashow

peak, thus that N′
ντCC

= f (NνeCC
), see above.

• NνντCC
= NντCC

+ N′
ντCC

• Reduce by event number decaying to muons N′ντCC
= NνντCC

·ητ,shower

• This leads to the final Nντ
= N′ντNC

+ N′ντCC
.

Obviously, this estimate has to be considered as a rough approximation only. Future analysis

will be able to rely on a full ντ simulation, making this estimate obsolete.

τ simulation Implementation of τ neutrino decay channels was improved during the course

of this analysis, so that the run production of 119 runs can be used to test the contribution of

these events. Seven decay channels were implemented here, see Appendix A.1.2. However, as

the event weights allocated here contained some faulty functions, the sample cannot be seen as
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(a) extrapolation BDT (b) extrapolation Fisher

Figure 7.6: Distribution of number of atmospheric muon events and 2d Gaussian fit to the

distribution for the BDT and Fisher discriminant.

reliable. Although a correction to the weights was manually added which shifts faulty excessive

weights close to the expected values, the simulation at this stage needs the comparison to the

extrapolation to arrive at a more reliable conclusion. It can be seen in Figure 7.4 that some

differences exist between the estimate from νe and νµ and the simulation, especially in the

distribution in the relevant parameter area. Therefore both an extrapolation from the small τ

run sample and from the extrapolation procedure are applied and their difference taken into

account as error. Due to the large uncertainties, the estimate will only be added after the

optimization procedure.

7.2.2 Atmospheric muons

High multiplicity muon bundles In former track-based diffuse cosmic neutrino searches, the

contribution of high multiplicity muon bundles was considered relevant, as these bundles would

lead to bright events easily mistaken as high-energy neutrino events. Therefore, a mupage

sample was produced using the run-by-run version 3 chain, which consisted only of events with

multiplicity m > 200 and Eprimary > 3TeV, see Appendix A.1.2. The mupage livetime of the

119 runs was increased to generate the equivalent of 1 year of high multiplicity mupage events,

and the TMVA methods and their corresponding pre-cuts were applied on this simulation as

introduced above. The resulting high multiplicity events were added into the atmospheric muon

estimate, scaling the corresponding weights to match the full sample. As can be seen for

two examples from Figure 7.5, events with high multiplicity show a similar two-dimensional

distribution in the classifiers as those events with lower multiplicity and do not reach the area

of potential event selection cuts.

Extrapolation of atmospheric muon number As the atmospheric muon simulation covers

only 1/3 of the actual livetime of the runs, the contribution from atmospheric muons has

to be extrapolated by a fit procedure. As the search for final selector cuts relies solely on

the atmospheric muon classifier x1 and atmospheric neutrino classifier x2 developed above, a
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simultaneous fit of the atmospheric muon contribution as a product probability density function

using two Gaussian functions g(x,m,σ) = 1
2πσ2 exp(−(x−m)2/2σ2) for the two selectors is

introduced. The fit procedure to the function

P(x1,x2) = g(x1,m1,σ1)×g(x2,m2,σ2) (7.5)

also provides an error estimate for the atmospheric muon contribution taken from the errors

of the fit procedure on the Gaussian mean m and width σ . The error on the number of

atmospheric muons is then calculated by varying the parameters m and σ by their error from

the fit procedure and assuming the difference between the original fit and the variation as error

on the atmospheric muon number. An exemplary fit result used later in an analysis on 10% of

the full sample can be seen in Figure 7.6. In this approach, the two-dimensional fit might be

strongly determined by muon events with high classifier values, leading to a more conservative

estimate due to an overestimation in one particular classifier dimension, see Figure 7.6b. For

the final fit, all available muon events from run-by-run simulation version 2 and 3 and the extra

sample of high multiplicity events was used to increase the accuracy of the estimate.

7.2.3 Prompt atmospheric neutrinos

As introduced in Chapter 2.3.1, an additional and energetically harder flux above the standard

atmospheric neutrinos is expected to stem from charmed interactions. This contribution of

prompt neutrinos has not yet been observed, and in [66], the model by Naumov13 predicting a

comparatively high flux was already excluded. Due to the disputed contribution on neutrinos

from prompt atmospheric interactions [67], the following analysis chain was first set up without a

prompt neutrino estimate. Only in the final parameter scanning, a prompt contribution following

the model by Enberg, Reno and Sarcevic [31] is used as estimate.

13 E. Bugaev, V. Naumov, S. Sinegovsky, and E. Zaslavskaya, Il Nuovo Cimento C 12, 41 (1989).
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8 l Search for cosmic neutrinos

The rough procedure of the diffuse cosmic neutrino flux search could already be seen in the toy

analyses carried out in Chapter 5. Now, with tools for the suppression for atmospheric muons

and atmospheric neutrinos available, a choice of the measurements and simulations used for

the analysis having been made and the simulated event samples adjusted such that all relevant

event contributions are included, the search for the best event selection parameters and cut

value can be finalized. As before, this optimization includes both the model rejection and model

discovery factor as optimization parameters. An overview of the event contributions from the

different simulation sets entering the analysis can be seen in Figure 8.1.

In Chapter 6, the training of a set of classifiers for the two selection task was described,

with small variations in the multivariate tool setup between the individual classifiers. In order to

select of the best performing classifiers, a smaller and simplified simulation sample was used for

computational reasons, before the final event classifier cuts were set using the full simulation.

Having found the event selection cuts, the error of the various event contributions is estimated.

In order to cross-check the congruency of the final procedure optimized on the simulation with

measurements, the analysis is tested on a sub-sample of roughly 10% of the data to ensure the

validity of the procedure regarding known differences between simulation and measurement.

8.1 Classifier selection

The classifier selection procedure relies on a two-dimensional cut parameter optimization on

model discovery D and model rejection R on a simplified set of simulations equivalent to

88 days data taking. Here, each possible combination of an atmospheric muon classifier and

an atmospheric neutrino classification parameter (xi,y j) is tested, using six atmospheric muon

classifiers and 15 atmospheric neutrino selectors. A list of all classifiers and summary of the

simulated event set can be seen in Table 8.1.

Scanning procedure In Figure 8.1, the distribution of classifier values of event numbers of the

various signal and background contributions is shown for an exemplary set of classifiers (xi,y j).

In the simplified optimization procedure, only simulated νe and νµ events and the full sample

of atmospheric muons without any extrapolation are considered.

For each classifier, a range of event selection cuts c was tested, and the remaining simulated

event numbers Nsig(x > ci,y > c j) and Nbkg(x > ci,y > c j) obtained. From these, the model

rejection factor Ri j(N̂sig,ij, N̂bkg,ij) and model discovery potential Di j(N̂sig,ij, N̂bkg,ij) were calcu-

lated for each cut parameter combination. For comparability, the resulting event numbers were
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Figure 8.1: Schematic overview over the model rejection and discovery optimization scanning.

Each bin entry in the histograms above the line shows the number of events for the given classifier

values shows and simulation sample, those in histograms below the line show the optimizer

results calculated from the sum of the above shown event numbers, integrated for all bins lower

than the given bin. The prompt atmospheric muon component and muon extrapolation were

only added in the final cut parameter optimization, and the ντ component after the scanning.

scaled to an equivalent of 1600 days data taking, N̂ = N×d1600d/dsimulation.

After discarding all cut combinations resulting in a number of muon background events too

large for calculation of the optimizers, or leaving a too low number of cosmic neutrino events

N̂sig < 0.5, the minimum values Dmin and Rmin 14 for the best classifier combination were

extracted to compare their performance.

Scanning results The minimal model discovery Dmin and rejection Rmin for each classifier

combination can be seen in Figure 8.2. Firstly, it can be seen that some classifiers generally

perform worse in combination with others (BDT1, BDT2, BDTGauss2, BDTbestOf2, BDT-

Gauss2alt) and are therefore discarded. For the remaining methods, performance between model

discovery and rejection vary. Regarding the atmospheric neutrino classifiers, shown along the

x-axis in Figure 8.2, it should be noted that the linear classifiers like Fisher discriminant perform

at least equally well as the mathematical more complex BDTs. This can be seen as indication

14For computational speed, the MRF extrapolation, see Appendix A.2.1, was used.

98



8.1. CLASSIFIER SELECTION

1.53945 1.49855 1.30876 1.33881 1.25107 1.11513 1.20261 1.21058 1.25771 1.24195 1.22868 1.17674 1.2936 1.21233 1.12716

1.48435 1.56166 1.19471 1.13434 1.10535 1.08937 1.14081 1.12249 1.07988 1.11049 1.07111 0.99895 1.16795 1.11997 1.08613

1.40487 1.55272 1.24791 1.23906 1.1325 1.05455 1.07372 1.06274 1.08789 1.07835 1.08131 1.02115 1.19425 1.12233 1.04156

1.41927 1.52142 1.24356 1.22093 1.21929 1.1687 1.19815 1.10882 1.17716 1.1056 1.1201 1.02389 1.18451 1.11692 1.01832

1.45469 1.42717 1.229 1.15383 1.17528 1.12702 1.18065 1.05609 1.11468 1.07062 1.06334 1.0757 1.18517 1.11129 1.03228

1.43467 1.40686 1.2287 1.22573 1.11978 1.13642 1.19223 1.09448 1.11673 1.11312 1.10989 1.01237 1.19826 1.09436 1.03722

BDT2
BDTGauss2

BDTbestOf2

BDTbestOfbagged2

Fisher2
FisherG2

LD2 Fisher2alt
FisherG2alt

LD2alt
BoostedFisher12alt

BDT2alt
BDTGauss2alt

BDTbestOfbagged2alt

BDTbestOf2alt

BDT1

BDTGauss1

BDTbestOf1

BDTbestOfbagged1

BDTbestOfbagged31

BDTbestOfbaggedCross1

1

1.1

1.2

1.3

1.4

1.5

(a) MRF Rmin

2.10804 2.16873 1.93379 1.37683 1.76485 1.27944 1.71392 1.64819 1.30181 1.70289 1.78013 1.64681 1.69924 1.65097 1.54605

2.08388 2.14476 1.74488 1.31211 1.65537 1.43202 1.50837 1.56779 1.34718 1.60705 1.56603 1.52111 1.67072 1.63561 1.52191

1.98047 2.17816 1.79714 1.34214 1.61061 1.30744 1.61651 1.50287 1.53133 1.54644 1.50121 1.54568 1.63418 1.57986 1.48567

2.05311 2.16597 1.77869 1.31432 1.67458 1.44321 1.62747 1.60114 1.46055 1.57781 1.59934 1.50648 1.61514 1.58085 1.50649

2.03258 2.07812 1.80037 1.29959 1.67347 1.4255 1.63227 1.49841 1.38501 1.53704 1.51156 1.52747 1.6573 1.6267 1.52077

2.05734 2.08242 1.80605 1.3127 1.68876 1.38507 1.61212 1.5464 1.37574 1.57731 1.58169 1.5222 1.61758 1.64198 1.49634

BDT2
BDTGauss2

BDTbestOf2

BDTbestOfbagged2

Fisher2
FisherG2

LD2 Fisher2alt
FisherG2alt

LD2alt
BoostedFisher12alt

BDT2alt
BDTGauss2alt

BDTbestOfbagged2alt

BDTbestOf2alt

BDT1

BDTGauss1

BDTbestOf1

BDTbestOfbagged1

BDTbestOfbagged31

BDTbestOfbaggedCross1

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

(b) MDP Dmin

BDT2
BDTGauss2

BDTbestOf2

BDTbestOfbagged2

Fisher2
FisherG2

LD2 Fisher2alt
FisherG2alt

LD2alt
BoostedFisher12alt

BDT2alt
BDTGauss2alt

BDTbestOfbagged2alt

BDTbestOf2alt

BDT1

BDTGauss1

BDTbestOf1

BDTbestOfbagged1

BDTbestOfbagged31

BDTbestOfbaggedCross1

0

2000

4000

6000

8000

10000

12000

(c) cut distance ∆N2

Figure 8.2: Result of the cut optimization procedure for classifier selection.
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TMVA method 1 x TMVA method 2 y simulation details

BDT1 BDT2, BDTGauss2 dgenhen = 88d
BDTGauss1 BDTbestOf2, BDTbestOfbagged2 dmupage = 1430d
BDTbestOf1 Fisher2, FisherG2 dreference = 1600d
BDTbestOfbagged1 Fisher2alt, FisherG2alt Φν ,bkg = ΦBartol(νe + νµ)

BDTbestOfbagged31 LD2, LD2alt Φν ,sig = Φλ=2.5(νe + νµ)

BDTbestOfbaggedCross1 BoostedFisher12alt, BDT2alt

BDTGauss2alt, BDTbestOf2alt

BDTbestOfbagged2alt

Table 8.1: Methods list and simulation details for the classifier scanning. For more details on

the simulation, see Appendix A.6.1, for details on the TMVA methods used, see Appendix A.5.2.

that the complex BDT does generally not uncover non-linear correlations between the input

parameters that enhance the classification result above that of linear classifiers.

Several classifier combinations show good results for both D and R and therefore a suited for the

analysis. However, even if the results for both optimization parameters are good, they also need

to agree on the cut values, as a single pair of cut values should at the same time optimize both pa-

rameters. Therefore, the squared difference of signal and background events remaining after the

optimal model rejection and model discovery cut ∆N2 = (N̂minD
signal − N̂minR

signal )
2 +(N̂minD

bkg − N̂minR
bkg )2

for a signal flux with λ = 2.5 is used as an estimate of the cut agreement between both methods,

see Figure 8.2c. Last but not least, a by-eye-comparison of the distribution agreement between

simulation and measurement for the considered parameters added to the decision process for

the final classifier selection.

Classifier selection Starting the selection from the atmospheric neutrino classifiers and re-

garding their result of Rmin in Figure 8.2a, most Fisher-classifiers seem suitable, but the best

performance here can be seen with some alternatively trained BDTs. The latter, however, show

no good result in Dmin in Figure 8.2b. Of the Fisher methods, both FisherG2 and FisherG2alt

perform well for both optimizers.

Following the same priorities, the atmospheric muon classifier that performs well model re-

jection in combination with the FisherG2 and FisherG2alt classifiers are the BDTGauss1 and

BDTbestOf1. Comparing results for the four possible combinations of these four classifiers,

it can be seen that both (BDTbestOf1, FisherG2) and (BDTGauss1, FisherG2alt) could serve

as well-performing classifiers. As the BDTGauss1 classifier generally shows a better agreement

between data and simulation, the combination (c1,c2) =(BDTGauss1, FisherG2) is preferred,

keeping in mind that the alternative combinations reach a similar performance and could replace

this selection, should problems arise later in the analysis.

8.2 Application to the full simulation

The definite setting of the parameter cuts now utilised the full simulation of stage 1 runs as

introduced in Chapter 7. The atmospheric muon simulation was replaced the numerical estimate

drawn from the two-dimensional Gaussian fit of the muon distribution using all available mupage
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(a) MRF R (b) MDP D

Figure 8.3: Model rejection factor and discovery potential (for 3σ at 50%) for various parameter

cut configurations. The compromise was set at BDTGauss1 > 0.345 and FisherG2alt > 0.52

samples, and a prompt component was added, see Table 8.2. With smaller intervals between

the tested cut values, the full minimization of D and R was run as shown in Figure 8.1. In

this procedure, (BDTbestOf1, FisherG2) reaches the best model discovery, while (BDTGauss1,

FisherG2alt) yields the minimum in model rejection. Together with the considerations given

in the last paragraph, (BDTGauss1, FisherG2alt) were therefore selected as definitely final

optimizers used in the analysis chain.

For this final classifier combination, the optimizer landscapes seen in Figure 8.3 allow slight

variations for the final cut values, as Dmin is reached for (c1 = 0.345,c2 = 0.43) within a wider

range of parameter cuts leading to roughly similar values, and the best model rejection Rmin

lies at (c1 = 0.345,c2 = 0.52). Leaning towards a strong model rejection, and seeing that model

discovery D for the optimal rejection cut is not far from the minimum, the final parameter cuts

were set as

TMVA1 BDTGauss1 > 0.345 and

TMVA2 FisherG2alt > 0.52.

The resulting event numbers when applying these cuts to the full set of simulations including

stage 2 runs are shown below in Table 8.3. For these event selection cuts, a sensitivity towards

the IceCube-like test fluxes ΦIC2.0 and ΦIC2.5 with an unbroken power law spectrum with λ = 2.0
and λ = 2.5 can be reached at the level of the flux itself: Φ90%C.L.,IC2.0 = 1.03ΦIC2.0 and

Φ90%C.L.,IC2.5 = 0.97ΦIC2.5.

8.3 Error estimates

Uncertainties in the event number estimate can stem from various sources: limited accuracy

of the flux model, omissions or inaccuracies in the simulation chain, and errors of the methods

used in the analysis chain. The probability to measure the given event number is assumed to be
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TMVA method 1 x TMVA method 2 y simulation details

BDTGauss1 FisherG2alt dgenhen = 913d
BDTbestOf1 FisherG2 muon extrapolation

dreference = 1728d
Φν ,bkg = ΦBartol+Enberg(νe + νµ)

Φν ,sig = Φλ=2.5(νe + νµ)

Table 8.2: Method and simulation details for the parameter cut scanning.

Gaussian distributed, leading to the addition of uncertainties εi following the standard deviation

as ε =
√

∑ε2
i . As the exercise to account for all types of uncertainties can naturally be driven

to great detail, only the leading errors known at the time of the analysis will be considered here,

with the resulting errors shown in Table 8.3. In all cases, the more conservative assumption

leading to a larger background contribution or including the larger error was chosen. Considering

this conservative approach, also correlations between the various errors are not considered.

8.3.1 Atmospheric νe and νµ

Flux uncertainties The atmospheric neutrino flux models mostly diverge on the spectrum

of the primary particles used, as was already seen in Figure 2.7. Here, the models of Honda

et al. [30] and the Bartol group [29] are used. The error on the flux model can therefore be

derived from the difference in expected event numbers in the selection. Note that while the cut

optimization shown above was performed using the Bartol flux, the procedure was also cross-

checked using the flux model from Honda, which yielded comparable event selection cuts.

Considering the prompt component of the atmospheric neutrino flux, the assumption from

Enberg, Reno and Sarcevic was included in the final scanning above, although in [14], a 90%C.L.

limit on the prompt flux is set at 0.5×ERS. The error on this flux considered here therefore

lies at the same level as the assumed signal.

Detector simulation The detector simulation has been tested in many comparisons between

measured events and simulation and errors can be assumed to be relatively small. As the

reliance on the hit timing and, more difficult to reproduce, amplitude is crucial especially to

high-energy neutrino searches, the effect of water properties on the hit distribution and num-

ber is evaluated with a specialized toy-simulation, the details of which are listed in Appendix

A.1.2. In [68], the absorption length λabs and scattering length λscat measurements allow for an

error of roughly 10%, which was implemented in the toy simulation and simulation sets were

produced using run-by-run simulation version 3 with λabs/scat = 1± 0.1λabs/scat. As the event

numbers above are drawn from run-by-run simulation version 2 and only few runs were used,

only the absolute difference between ∆Nabs/scat = N1.1λabs/scat−N0.9λabs/scat is used as error as

εabs/scat = 1/2∆Nabs/scat, scaled and assumed symmetrical around the expected event number.

It should be noted here that, while the absorption length shows direct proportionality to the

number of photons detected, a change in the scattering length has rather an effect on the con-

tainment of photons within the detection volume. The effect of a shorter absorption length can

approximately mimic a reduced photon sensitivity, which has to be assumed over the long run-
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name BDTGauss1 FisherG2alt

original [0.0,0.75] [−0.4,1.2]

smaller Fisher [0.0,0.75] [−0.3,1.0]

smaller BDT [0.1,0.7] [−0.4,1.2]

smaller [0.1,0.7] [−0.3,1.0]

Figure 8.4: Extrapolated muon number and error for different fit intervals.

time of the detector, but for which no implementation in simulation is yet included in this study.

It can be seen that error from absorption length variations is by far the largest, and although

comparisons between simulation and measurement below show that the simulated absorption

length is probably more accurate, the scale of the error estimate shows that inaccuracies in

photon absorption and photon detection efficiency play a large role for the neutrino detection

sensitivity.

Analysis procedure As the analysis procedure mostly relied directly on the simulation, errors

either stem from uncertainties in the simulation chain itself, or from the additional estimates or

steps in the analysis procedures not directly relying on the simulation. Here, the run matching

procedure introduced to use data runs without matching simulation has to be considered. An

error for the run matching procedure introduced by scaling the event numbers for selection 1

or 2 respectively to the full livetime, N1/2only = N1/2×dfull/dselect1/2, giving an estimate of how

large the event number would be for an selection 1/2 - only sample. This gives an indication for

the effect of the different run conditions allocated to the respective samples and their impact

on the overall event numbers. The error is then calculated as ε1/2 = |N1only−N2only|.

8.3.2 Atmospheric muons

Using the MUPAGE program [41], the choice of the atmospheric muon flux model is fixed to

the parametrization from full atmospheric cascade simulation that served as the basis for the

initial program development, dating back roughly a decade. Certainly, different flux models

and measurements would allow a more precise parametrization according to newer information,

which might vary around 10− 15% in normalization from the original formula, see Chapter

2.3.1. However, comparison between measurement and simulation have shown that the far

greater uncertainty in the atmospheric muon count stems from environmental variations and

data taking conditions. In the relevant high-energy tail of the atmospheric muon spectrum, the

fact that the simulation only amounts to 1/3 of the full event sample certainly gives the leading

error stemming from the low statistics and the resulting modelling of the atmospheric muon

distribution in the analysis chain. The error from the muon estimate is therefore the only error

considered for atmospheric muons.

103



CHAPTER 8. SEARCH FOR COSMIC NEUTRINOS

Flux type Nevents ε εi

N2.5νµ,CC 2.60 1.21 0.2d + 0.88c1 + 0.81c2

N2.5νµ,NC,νe 4.85 2.24 0.5d + 1.65c1 + 1.43c2

N2.5ντ 1.63 0.99 0.99 f

N2.0νµ,CC 3.38 1.32 0.3d + 0.57c1 + 1.15c2

N2.0νµ,NC,νe 4.02 1.85 0.3d + 1.21c1 + 1.37c2

N2.0ντ 1.11 0.8 0.8 f

IceCube 2.5 Ncos 9.08 4.44

IceCube 2.0 Ncos 8.51 3.97

NHondaνµ,CC 10.27 7.51 1.13a+0.2d + 6.96c1 + 2.57c2

NHondaνµ,NC,νe 3.85 2.73 1.47a + 1.52d + 1.73c1 + 0.11c2

NEnbergνµ,CC 0.46 0.46 0.46b

NEnbergνµ,NC,νe 1.0 1.0 1.04b

Nµ,atm 3.19 1.52 1.52e

atmospheric 18.77 13.22

Φ90%C.L. IceCube 2.5 0.97

Φ90%C.L. IceCube 2.0 1.03

Table 8.3: Signal and background expectation including error estimates for 1757.5 days of

ANTARES lifetime, and sensitivity towards the test fluxes. Signal event numbers are given for

an IceCube-like flux with λ = 2.5 (IceCube 2.5) and λ = 2.0 (IceCube 2.0), see Appendix A.3.1.

Error estimates are drawn from a) difference between the atmospheric muon model by Honda et

al. and the Bartol group, b) the assumption of a non-existing prompt component, c1) error from

absorption length variation εabs, c2) error from scattering length variation εscat, d) difference

between selection 1 and selection 2 estimates ε1/2, e) variation from muon model fit processes

and f) the difference between ντ estimate and simulation

Error from muon estimate To account especially for the high-energy contribution for atmo-

spheric muon events, high multiplicity muon bundles have been added to the simulated sample

to increase the statistical representation of this contribution and to include it in the atmospheric

muon model used in the analysis. The error of the model can be derived from the fit errors on

the fit function parameters, which are relatively small for the used fit. However, the choice of the

fit parameter interval has a far larger effect on the muon model and therefore estimated muon

number. In Figure 8.4, the effect of varying fit intervals can be seen on the muon estimate. As

this error is by far larger than the actual fit error, the largest deviation of the muon number

estimate of an alternative muon distribution fit to the number from the original model is used

as error, i.e. εµ atm = Noriginal−NsmallerBDT.

It should also be noted that, of the simulated atmospheric muon sample, exactly one muon

survives the event cuts, giving a muon estimate from simulation of Nµ atmsim = 3, which is well

in agreement with the muon model estimate for the given cut value and indicates a suitable fit

model.
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Figure 8.5: Comparison between measurement and simulation in the test sample for the atmo-

spheric muon suppression parameter after primary cuts.

8.3.3 Tau neutrinos

As the missing ντ component in the simulation has to be replaced by either the extrapolation

procedure or toy simulation introduced above in Section 7.2.1, and both lack accuracy either

due to the estimation process or the simulation challenges (see Appendix A.1.2), the method

producing the lower signal estimate, i.e. the extrapolation method, is used to obtain the event

number, while the difference to the number obtained from the toy simulation is used as error.

8.4 Test on a data subsample

Before applying the cuts on the full data sample, the reliability of the method with regard

to deviations between the simulation and data has to be shown within reasonable boundaries.

As this analysis was developed as blinded analysis on simulation only, roughly 10% of the

data is selected to be compared to the simulation as test sample. In order to ensure a good

representation, only runs with run numbers ending in 0 were selected, which amounted to 155.8

days. In this test, the expected event distribution for the classifiers as well as for the input

parameters to the multivariate tools enter the comparison between simulation and the test data

sample. Finally, the number of detected events within the test sample is compared to the

expectation.

8.4.1 Reduced event samples for measurements and simulation

As the cut for atmospheric muon suppression is set such that only very few atmospheric muon

events remain, the application of the cuts should lead to an almost pure atmospheric neutrino

sample. Therefore, the BDTGauss1 parameter should foremost show a good agreement in
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Figure 8.6: Comparison between measurement and simulation in the test sample the atmospheric

neutrino suppression parameter applying BDTGauss1 > 0.345

magnitude and slope of the parameter distribution around the cut value, while the FisherG2alt

is required to exhibit a good agreement where cosmic neutrino events become dominant at high

classifier values. In Figure 8.5, the comparison between measurement and simulation can be

seen for the complete test sample for BDTGauss1, showing a satisfactory agreement around

the intended cut value, and in Figure 8.6 the distribution of the FisherG2alt parameter for the

remaining neutrino events. Here, a slight underfluctuation can be observed for high parameter

values in the atmospheric neutrino classifier. As this estimate relates strongly to neutrino

energy, is shows a tendency in measured events to lead to a lower reconstructed energy than

in simulation. However, as the purpose of the analysis is the general discovery of a cosmic

neutrino signal and comparison between measurement and simulation is still within reasonable

boundaries, it can be regarded as more conservative estimate and was therefore approved for

unblinding. In the test sample, two events were found, which showed normal unexpected input

parameters or hit distributions, and are most probably neutrino-type events. This cross-check

was also used to rule out the influence of so-called sparking events, which is explained in the

next paragraph.

8.4.2 Representativeness of the subsample

As the test is performed to check the plausibility of the results of the analysis for this small

subset, the adequacy of the test sample to represent the complete sample has to be confirmed

first. One indicator for the good representation of the test sample can be seen in an agreement

of the classifier cut values if the cut optimization procedure performed above for the complete

simulation set would be restricted to the simulation of the test sample. Indeed the optimization

arrived at the same parameter cut values as using the full simulation set. In the test sample,

two data event were found after applying all parameter cuts. Assuming a 10% contribution
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Figure 8.7: Events from run 38355, classified as sparking for the atmospheric muon classifier,

compared to expectations from simulation.

from Table 8.3, 2 events from background would be expected. With a 27% probability of this

outcome in a Poisson-distributed variable, the result is not the most probable, but surely within

reasonable expectations. Therefore, the analysis was considered reliable enough to be extended

to the full set of measurements.

8.4.3 Detector malfunction: ”sparking” events

Events triggered by sparking optical modules posed a problem in previous analyses, most of all

to the shower analysis. A spark produced in a failing OM lights up a large part of the detector,

and therefore leads to a triggered hit pattern interpreted as ”event” with a large number of

photons. Depending on the reconstruction, these pseudo-events can be misinterpreted as high-

energy neutrino events. In order to avoid the introduction on an additional filter criterion for the

sparking events, a short investigation was carried out to ensure no influence of the phenomenon

on the analysis. The influence of sparking events on this analysis was evaluated on the one

hand by excluding those runs from the test sample which were already identified as containing

sparking events, and on the other hand by reconstructing four sparking events identified in

a previous shower analysis. Of these four events, none could successfully be reconstructed

with both classifiers, as either BBFit or Aafit reconstruction did not succeed or result in a

reconstructed zenith angle θ < 1.2, leading to deselection of the event. In the runs containing

sparking events, the majority of sparking events was naturally assigned a high value for the

FisherG2alt-parameter. However, as can be seen in the exemplary run in Figure 8.7, these

events are not classified as neutrino-like by the BDTGauss1-parameter. Overall, no event was

found in the known sparking runs that would not be selected as neutrino-like by the atmospheric

muon classifier.
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9 l Analysis results

After the validation of the analysis with a subsample of data runs, the analysis chain was applied

to the full set of measurements. It will be seen that a far lower number of events is found in the

full sample than previously expected. Therefore, a closer look is taken at the events remaining

after the final cuts, and the cause for this deficit is traced and considered as a result of the run

matching process introduced above. Following this assumption, the analysis was finally reduced

to the selection 1 subsample, which is used to set a limit on the assumption of the cosmic

neutrino flux.

9.1 Results from the full sample

The full set of measurements, subdivided in sample 1 and 2 with 913.5 days and 557.9 days of

data taking, was subjected to the full analysis chain, see Figure 8.1. For the main cut steps,

i.e. the preprocessing selection focusing on well-reconstructed upgoing events, the application

of both the atmospheric muon classifier and the atmospheric neutrino classifier separately to

evaluate their specific impact, and the complete set of cuts can be seen in Table 9.1.

Selection parameter distribution It is well known for diffuse neutrino searches in ANTARES

that a crucial element in the solidity of the analysis lies in the agreement between simulation

and measurement especially regarding the luminosity of an event or its related energy estimates,

which has caused problems already in earlier analyses. Therefore, the agreement between simu-

lation and measurement should indicate a reliable representation of the cut parameters at least

around the cut value. In Figure 9.1, the classifier distributions can be seen to fulfil that re-

quirement quite well, especially for the selection 1 runs. It can also be seen that, firstly, the

atmospheric muon classifier cut leads to a generally lower number of events in the neutrino-

dominated sample of selection 2, which indicates a worse representation of high-energy events

in this sample, as can also be seen in Table 9.1 and in the increasing discrepancy between

simulation and data for large classifier values in Figure 9.1c.

In Table 9.1, the effect of the application of the atmospheric neutrino classifier without prior

application of the atmospheric muon classifier is also shown, which leads to an atmospheric

muon dominated sample focusing on high energy events. Here, at least for atmospheric muons,

a tendency of the classifier is exhibited to identify less high-energy events than expected in data,

especially in the selection 2 runs. While this cut step was not part of the investigation before

unblinding, it brings ex post an indication towards a deficit of high-energy event identification.
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Figure 9.1: Agreement between data and simulation for all events from data selection 1 and 2

for the BDT method for atmospheric muon suppression and the Fisher discriminant for cosmic

neutrino identification after a cut on BDT > 0.345.
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9.2. A CLOSER LOOK AT THE FINAL EVENTS

Event type prep. P1-3 TMVA 1 TMVA 2 all cuts

N2.5νµ,CC 74.0 (57.4) 23.3 (17.8) 2.93 (2.53) 1.40 (1.13)

N2.5νµ,NC 42.0 (32.8) 17.1 (13.3) 4.68 (4.00) 2.64 (2.27)

NHondaνµ,CC 6.51(4.94)×103 1.35(1.06)×103 12.6 (11.9) 5.27 (4.83)

NHondaνµ,NC 717 (597) 164 (133) 3.87 (3.83) 2.37 (2.32)

NEnberg 16.3 (16.8) 9.2 (5.86) 1.41 (0.97) 0.79 (0.53)

Nµatm 1.73(1.25)×106 147 (76) 13.5(13.0)×103 3 (0)

measured 1.56(1.18)×106 1.74(1.05)×103 9.73(5.19)×103 12 (5)

Ndata/Nsim 0.90 (0.94) 1.04 (0.83) 0.70 (0.40) 1.05 (0.65)

Ndata/Nsim total 0.92 0.95 0.56 0.89

Table 9.1: Event number expectations from simulation and measurement after different cut

stages for all selection 1 (selection 2) runs. A cut on the atmospheric neutrino selector alone

was not part of the analysis chain and is added here for comparative purposes. Ndata/Nsim is

calculated for background simulation only, which lacks the ντ estimate.

Final selected events In total, 17 events were found after application of the final event

selection cuts, of which some reconstruction parameters can be seen in Table 9.2, with event

displays and a longer parameter list given in Appendix A.7. In selection 1 runs, 12 events

were found with a background-only expectation of 9.51 events from atmospheric fluxes after

addition of all atmospheric neutrino flavours and the muon number extrapolation, see Table

9.3. However, overall only 17 events were discovered, which is actually less than the 18.8 events

expected for background only events for the full sample, see Table 8.3. Therefore, while the

selection 1 result matches expectations for the emergence of a cosmic neutrino flux quite well, the

selection 2 casts serious doubt on the reliability of the representation of these measurements in

simulation. This calls for a closer investigation of the resulting events selection, their properties

and the cause for the observed deficit. As a first indication, it is noteworthy that no events were

found after run 68234, which was taken in December 2012, leaving the whole year 2013 without

any selected event. Therefore, an actual change in the observables used in the analysis can

be suspected for these late data taking periods which leads to a deterioration of the selection

quality. As the drop is not seen in the simulation, this change is most likely not represented in

the matched runs, which generally stem from an earlier data taking period.

9.2 A closer look at the final events

When the properties of the final events are explored further, it should be noted that conclusions

drawn from the final event sample on the one hand lack statistical significance, and on the other

hand properties of this sample are naturally result of the design of the study and reflect in some

aspects rather the set-up of the analysis chain than general properties of neutrino measurements

in ANTARES. It should be noted that some of the selected events have already been included in

the cosmic neutrino candidates of former analysis, especially the latest diffuse flux search based

on shower-like events and the latest point-source search.
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r θDusj θAafit Ea
Dusj Ea

ANN λ VLLH BDT Fisher ref.

1 26397 3.05 2.08 4.0 662.3 -5.04 7.93 0.36 0.55 [16] (2)

2 33176 2.46 2.51 1.1 187.6 -4.96 7.91 0.43 0.57

3 35473 1.24 1.73 4.7 190.5 -4.71 10.36 0.35 0.52

4 35958 2.25 2.12 1.4 183.5 -4.95 8.62 0.43 0.54

5 40213 2.29 2.47 0.6 166.0 -5.71 8.06 0.35 0.55

6 46195 2.0 2.2 6.4 233.0 -5.86 8.01 0.38 0.65

7 46852 2.15 2.48 17.6 62.1 -5.34 7.87 0.43 0.61 [16] (2)

8 47679 2.55 2.38 3.6 206.1 -5.49 7.8 0.43 0.63 [16]

9 49425 1.75 1.93 10.9 164.7 -5.25 7.71 0.35 0.66 [16] (2)

10 51140 1.96 2.23 4.0 13.0 -5.86 7.86 0.35 0.61

11 52092 2.03 2.68 43.5 101.6 -4.9 8.31 0.43 0.54 PS

12 54320 1.72 1.62 12.0 89.1 -4.46 8.82 0.35 0.54 PS

13 57495 2.55 2.36 13.1 35.7 -5.68 8.22 0.38 0.58

14 58428 1.77 1.7 1.9 79.3 -5.53 8.09 0.39 0.54

15 60058 2.04 2.22 2.3 269.8 -5.5 8.46 0.42 0.62 (2)

16 61055 1.72 1.75 1.4 11.8 -5.35 8.22 0.4 0.53

17 62834 2.06 2.42 16.5 197.3 -5.16 7.64 0.45 0.7 [16] (2)

Table 9.2: Reconstruction parameters of the events found in the full data sample, giving the

run number r, the zenith reconstruction of the Dusj shower reconstruction and Aafit track

reconstruction, energy estimates (a in [TeV]) of Dusj and the ANNergy estimator, Aafit track

quality λ , Dusj shower quality VLLH, and the multivariate classifiers. The reference column

indicates events also found in previous shower analysis [16] or previous point-source searches

(PS), and events from stage 2 runs (2).
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Figure 9.2: Classifier parameters of the final events, compared to the expected distribution of

atmospheric shower- and track-like neutrino events.
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Figure 9.3: Shower vertex positions as reconstructed by the BBFit Bright Point fit and the Dusj

reconstruction for the 12 events of selection 1.

Cosmic neutrino classification In Figure 9.2, the distribution of the multivariate selection

parameter values of the final events can be seen. It is interesting to note that none of the

events shows a high parameter value for the atmospheric muon classifier, i.e. the identification

of neutrino events in the high-energy region is not as clear as simulation indicates. Considering

the input parameters to the classifier, one can only speculate as to the source of that deficit,

which might stem from e.g. inaccuracies on the timing structure of the photon distribution,

e.g. through scattering. Surprisingly, this deficit is not seen for the cosmic neutrino classifier.

Here, the clear identification of high-energy neutrinos which therefore are considered cosmic

candidates works well, with one event, number 17, being identified by both classifiers as high-

energy neutrino.

Event topology The events studied in this analysis generally exhibit similar event topology

which allows each to be reconstructed as both track and cascade events. As the events are found

to be either interacting close to the detector or inside the instrumented volume, the number

of photons measured by the detector is generally large. A vertex can be reconstructed for all

events, and both the BBFit Bright Point fit and the Dusj shower reconstruction largely agree

on the vertex position, see Figure 9.3, where those markings coinciding actually belong to the

same events. This indicates that even for the track-like events, the sub-showers from radiative

processes of the muon energy loss are well-identifiable as showers within the detection volume.

This reflects the initial intent of the analysis to draw on generalizable event properties for all

neutrino flavours.

Angular reconstruction The zenith angle reconstruction seen in Figure 9.4a shows the general

agreement of direction reconstruction for both shower and track direction reconstruction. As

the direction reconstruction accuracy of the Dusj method is quoted in [69] to be between
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Figure 9.4: Reconstruction parameters for the selected events from run selections 1 and 2

compared to the expectation of track- and shower-like atmospheric neutrino events; 9.4a recon-

structed zenith angle from Dusj and Aafit reconstruction and 9.4b the cascade likelihood from

the Dusj VertexLogLikelihood parameter and Aafit’s quality parameter λ .

20◦− 40◦, most events show reasonable agreement in zenith angle reconstruction. Assuming

that a cascade from radiative energy loss processes is boosted in the direction of the primary

muon, it is reasonable that this direction reconstruction yields comparable results. On the other

hand, a track-like direction reconstruction of a cascade resembles a one-particle approximation

of the cascade and would yield a comparable reconstruction result. However, in these cases the

error on the track zenith reconstruction naturally cannot be assumed to be as accurate as the

usual < 1◦, as cascade topology generally does not allow for this.

Reconstruction quality The comparison of track and shower reconstruction parameters, on

the other hand, shows that it is generally difficult to assign each event an easy label of ”track” or

”shower”. Remembering the hard quality parameter cuts from earlier analyses, which required

e.g. Dusj VLLH < 7.9 or λAafit > −4.9 in shower or track diffuse analyses respectively, most

events in this analysis are assigned a lesser shower or track quality, with generally higher event

quality for the shower reconstruction. This result is actually partially the target of the design

of the analysis, as obviously here events are included in the final sample which would not have

shown up in a signature-specific analysis, but are still clearly identified as high-energy neutrino

events.

Energy reconstruction Energy reconstruction for high-energy events is always dependent on

the reference event sample used to map the statistical distribution of an energy reconstruction

parameter to an actual event energy. Therefore, the reconstructed energies show both the

overall brightness of the event in the detector as well as the evaluation of this brightness

towards the reference sample of shower and track events. Therefore, the interpretation of a

track energy reconstruction assumes a higher overall neutrino energy, as it interprets the cascade

as only a part of the overall energy deposition, while the shower reconstruction mostly assumes
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Figure 9.5: Galactic latitude and longitude of the final events as reconstructed by the Aafit

track reconstruction. The lines give an approximation of the coverage of ANTARES of the full

sky from simulation.

a complete energy deposit in the cascade. ith energy, an exceptionally bright event would also

be most likely a cosmic neutrino candidate independent of the interpretation as track or shower

event. Therefore, in Figure 9.9, the Dusj reconstructed energy is shown for the final events and

compared to simulation, showing no indication of exceptionally high-energy events.

Galactic coordinates In Figure 9.5, the neutrino direction of origin as reconstructed with the

Aafit algorithm can be seen. As the distinction between cascade and track event is not easily

possible and angular reconstructions for Dusj and Aafit do not always concur, the attached error

in direction reconstruction must be assumed larger than that for a clearly distinguishable muon

track. The outlines roughly indicate the ANTARES coverage of the sky in this analysis, showing

that the event distribution according to Galactic coordinates does match the expectation.

Event topology In Figures 9.6 and 9.7, two exemplary neutrino events (12, 17) are shown,

one from each selection. Within the final event sample, they show the most extreme versions

of what could, by eye, be rather classified as cascade-like or track-like event. This impression

is supported by the fact that they are actually included in signature-specific analyses. In Event

12, the comparison between the Dusj hit selection and Aafit hit selection shows why simultane-

ous reconstruction as track and shower works well: due to the comparatively small size of the

detector, usually only a few detection lines register hits, with the track reconstruction gathering

further hits outside the bulk of clearly distinguishable correlated high-amplitude hits, leading to

a clearer interpretation as elongated track. In this case, the direction reconstruction also agrees

much better than in cases like event 17, which is clearly a burst of correlated photons, strongly
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(a) Aafit (b) Dusj

Figure 9.6: Event 12 as shown in a 3D animation using the Aafit and Dusj hit selection and

reconstruction, with white dots indicating the position of detection units, bubbles representing

hits with diameters proportional to the hit amplitude and colour showing hit time coded from

red (early) to blue (late). Red lines show the track or cascade directional reconstruction. This

event reaches the highest track quality parameter λ =−4.46 and is contained in the point-source

search.

illuminating the lower edge of the detector, but with no discernible outlying hits. Here, direction

reconstruction shows a larger divergence between the two reconstruction methods. This event

was allocated the highest signal probability, and is clearly a neutrino event, however, not very

well suited for the classical task of neutrino point-source analysis.

This confirms an impression already indicated in the toy analyses in Chapter 5, in which the

cascade-only diffuse flux analysis reached a generally better result compared to track-only anal-

yses. Especially with the compact detector set-up, and no need for a good direction reconstruc-

tion, burst-like events which deposit a high number of photons in the OMs are considered as

well-identifiable neutrinos.

9.3 Results from selection 1

The two data selections resulting from the data-simulations matching process in Chapter 7.1

show widely diverging results: Selection 1, consisting of runs for which the dedicated simulation

shows a good agreement according to the established quality parameters, also returns a result

that is close to the expectation. Also, these runs had been used in other analyses to success.
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(a) Aafit (b) Dusj

Figure 9.7: Event 17 as shown in a 3D animation using the Aafit and Dusj hit selection and

reconstruction. It shows the highest probability as cosmic event (Fisher = 0.7) and is contained

in the the shower diffuse flux analysis.

In selection 2, various problematic issues accumulate. They consist of runs for which either the

original run simulation did not match well enough according to the criteria, or runs for which

no simulation with the same simulation setup was available.

The attempt to bridge this gap of missing simulation, especially for the latest data taking period

of 2013, seems not to have had the desired effect. For the sample of selection 2 dominated

by atmospheric neutrinos, i.e. after the cut on the atmospheric neutrino classifiers, only 80%

of the expected number of events was found, see Figure 9.1d. The deficit actually increases

for events with a high probability for cosmic neutrino origin, i.e. high atmospheric neutrino

classifier value, which already hints towards the deficit found in the final event selection. While

investigating the possible reason for this discrepancy in selection 2 later, a closer look is first

taken at the results for the selection 1 events, from which sensitivity estimates for this analysis

are drawn. Limiting the analysis to this selection reduces the data taking time to 913.5 days.

All additional event contribution estimates were re-evaluated for this sample and the according

error estimates calculated, with the results shown in Table 9.3.

9.3.1 Sensitivity and energy range

Measurements by IceCube have already established the presence of a cosmic neutrino flux, which

is reflected in the cosmic neutrino flux models used in this analysis. Therefore, the task of this

analysis lies in the confirmation of the measurement within the ANTARES data. However, as the
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Signal Nevents ε εi

N2.5νµ,CC 1.4 0.64 0.47c1+0.44c2

N2.5νµ,NC,νe 2.6 1.17 0.88c1+0.77c2

N2.5ντ 0.9 0.55 0.55 f

N2.0νµ,CC 1.8 0.68 0.30c1+0.61c2

N2.0νµ,NC,νe 2.2 1.0 0.66c1+0.75c2

N2.0ντ 0.6 0.43 0.43d

IceCube 2.5 Ncos 4.9 ±2.36
IceCube 2.0 Ncos 4.6 ±2.11
Background Nevents ε εi

NHondaνµ,CC 5.3 3.87 0.58a + 3.59c1 + 1.33c2

NHondaνµ,NC,νe 2.4 1.42 0.92a + 1.08c1 + 0.07c2

NEnbergνµ,CC 0.2 0.2 0.2b

NEnbergνµ,NC,νe 0.6 0.6 0.6b

NEnbergντ 0.01 0.01 0.01b

Nµatm 1.0 0.48 0.48e

Atmospheric ∑ 9.51 ±6.58

Table 9.3: Signal and background expectation including error estimates for 913 days of

ANTARES lifetime. As cosmic flux, the IceCube measurement is used assuming either a spec-

tral index λ = 2.5 or λ = 2.0, see Appendix A.3.1. Error estimates are drawn from a) difference

between the atmospheric muon model by Honda et al. [30], b) the assumption of a non-existing

prompt component, c1) error from absorption length variation εabs, c2) error from scattering

length variation εscat, d) the difference between ντ estimate and simulation and e) variation

from muon model fit processes

expected event numbers indicate, neither the confirmation or rejection of the cosmic neutrino

flux can be performed to a high statistical certainty, but rather serve as a quality benchmark for

an analysis.

Sensitivity towards the cosmic neutrino flux In Chapter 5.1, the model rejection factor had

been introduced. It serves as the basis to calculate the detection sensitivity Φl as Φl = Rl×Φtest.

For the two standard test fluxes ΦIC2.5 and ΦIC2.0 with γ = 2.5 and γ = 2.0, the sensitivity

assuming a 90% confidence interval were therefore calculated, and the corresponding energy

ranges within which 90% of the events are included are deduced from the according simulation.

The two spectral indices generally reflect the range of possible flux assumptions. A diffuse

flux with γ = 2.0 follows the model of Waxman and Bahcal [70] and was here assumed with

a normalization of ΦIC2.0 = 1.1×10−8 GeV−1 sr−1 s−1 cm−2 following the magnitude of IceCube

measurements. In this analysis, a sensitivity towards this flux per flavour of Φ90%IC2.0 = 1.57×
10−8 GeV−1 sr−1 s−1 cm−2 is reached, valid within 16.4TeV to 7.1PeV.

On the theoretical other end of flux assumptions and well within the IceCube measurements

presented in Chapter 1.3.2, a flux of ΦIC2.5 = 4.1×10−6 GeV−1 sr−1 s−1 cm−2 would be detected

with a sensitivity of Φ90%IC2.5 = 1.35ΦIC2.5 per flavour, valid between 6.74TeV and 1.12PeV.
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Figure 9.8: Flux limits for the last track and cascade analyses in ANTARES, the IceCube result

and limits and sensitivity and upper limits of this analysis.

9.3.2 Upper limit and discovery

An upper limit to a given flux can be introduced as Feldman-Cousins upper limit µ90%, see

Chapter 5.1. However, this construction does not allow to take into account the systematic

uncertainties of signal and background event number estimates. In order to compensate for

this omission, a frequentist construction of confidence intervals with Bayesian treatment of

systematic uncertainties was developed and implemented in the POLE program [71], which will

be used here to calculate the upper limit on the flux assumptions.

In this construction, the confidence belt is searched for a number of observed events nobs

with an assumption of background events b and signal events s such that a confidence belt

[n1(s + b,α),n2(s + b,α)] for a confidence level 1−α is covered with ∑n2
n=n1 p(n)s+b = 1−α for

a Poisson distribution of events. To allow for uncertainties, the probability p(n) is extended to

the conditioned probability q(n) by including a Gaussian distribution with uncertainty σε of the

detection efficiency ε relative to the nominal efficiency and uncertainty σb of the background

event number,

q(n)s+b =
1

2πσbσε

∫ ∞

0

∫ ∞

0
p(n)b′+ε ′se−(b−b′)2/(2σ2

b )e−(1−ε ′)2/(2σ2
ε )db′dε

′, (9.1)

In addition to that, the symmetrical calculation of the limit is adjusted such that for n < nobs

the consideration is included the actual number of background events b cannot be larger than

nobs, shifting the confidence belt construction.
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Figure 9.9: Integrated energy distribution for the events found in 913 days, giving the recon-

structed neutrino energy ÊDusj of the Dusj reconstruction for data and simulated νe and νµ

contributions.

Using the construction including error estimates, upper limits on the respective fluxes can

be set as Φ90%u.l.IC2.5 = 4.1ΦIC2.5 and Φ90%u.l.IC2.0 = 4.2ΦIC2.0 within the same energy ranges

as the above quoted sensitivities. Sensitivities, upper limits and the reference fluxes are shown

in Figure 9.8.

For completeness it should be noted that the measurement of 12 events while expecting 9.51

background events corresponds in a Gaussian distribution to a deviation by 0.98σ , which in sci-

entific terms amounts to nothing noteworthy, and falls short from the expectation of a combined

event number of signal and background of about 14 events.

9.3.3 Detecting a diffuse cosmic neutrino flux

Comparing the results of this limited combined track and shower analysis to the signature-

specific analyses in ANTARES, the assumptions from the toy analyses in Chapter 5.2 are

confirmed. In the latest track analysis [16], which uses data of 1247 days, a sensitivity of

2.21×10−8 GeV−1 sr−1 s−1 cm−2 is reached, which is the most sensitive benchmark this analysis

has to be compared to. As the two analyses were performed on the basis of the same simulation,

their sensitivity estimates can be assumed as comparable, even if the above lack of neutrino

events in selection 2 indicates a problem in the simulation accuracy for newer measurements.

In Figure 9.8, sensitivities and limits from various ANTARES analyses are shown in comparison

with the results of this analysis. The combined analysis proves to be more powerful than the sep-

arate signature-specific analysis or a simple addition of the separate analysis. However, a larger
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increase of simulation sensitivity can be expected once the discrepancies between simulation and

measurement can be overcome.

High-energy neutrinos As the lower number of events in measured data than in simulation

most probably stems from a decreasing photon efficiency of the apparatus, it can be assumed

that high-energy neutrino events might still be well distinguished in relation to the atmospheric

background. In order to distinguish neutrino events with a high possibility of cosmic origin,

an energy estimator has to be employed. As no specific energy estimator was included in the

analysis, the Dusj energy reconstruction is displayed in Figure 9.9 to this end. Considering

that track events might be interpreted as cascades and a decreasing photon efficiency might

not be well modelled within the simulation, it can be assumed that event energy is rather

underestimated than overestimated. However, while the energy distribution of the final events

follows expectations from simulation, no event with an unexpectedly high energy indicating a

large probability of cosmic origin was found.
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It was shown in the previous part that the analysis method has its merits in the higher sensitivity

towards a diffuse flux, a finding that was underlined by a follow-up analysis [72] using a compara-

ble approach to the one introduced in the toy study in Chapter 5 as C1 with a combination of an

initially separated track and shower analysis. Before taking a short look at this new analysis, the

shortcomings of the present analysis should be inspected further. One drawback of the analysis

are the large errors on simulation parameters which have to be included in the rough estimate

used above. Recent investigations of water properties and detection efficiency have helped to

reduce this error estimate for the current production of run-by-run simulation, which are shortly

outlined below. Above all, the run matching procedure introduced above might be useful to

find replacement simulations for neighbouring runs with comparable data taking conditions, but

seems to be inadequate for the matching of runs from different data taking periods.

10.1 Simulation discrepancies

10.1.1 From the run matching procedure

In the run matching procedure, see Chapter 7.1, the matching criteria for runs are primarily

the agreement in the parameter distribution for input parameters to the multivariate tools in

the atmospheric muons of the runs. Assuming that the variation in data taking conditions

from bioluminescence and different detector configurations introduces the largest uncertainty

in the agreement between data and simulation, this seemed fitting. However, the outcome of

the analysis shows that, on the one hand, the effects on the atmospheric muon sample cannot

always be assumed to hold for atmospheric and cosmic neutrino events due to the different event

characteristics like average photon yield and particle direction. On the other hand, agreement

in the input parameters does not necessarily lead to an agreement of the output parameter of

a multivariate tool, as can be seen in Figure 10.1. In the run matching, the agreement of all

input parameters to the classifiers was a prerequisite for a match, but not the agreement of the

classifiers themselves. While the atmospheric muon classifier still shows a good agreement for

most runs, the atmospheric neutrino classifier shows a wide deviation in the measured events of

the matched run, although the original run and its simulation still agree well. This shift is not

observed for earlier runs matched within a shorter time frame. This shows that a qualitative

change has appeared in these later runs which is not represented in the simulation, and that

the matching procedure is not useable for runs between which a larger time span elapsed, as

long-term effects of measurement seem to have a significant impact on the data taking.
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Figure 10.1: Comparison of the parameter distribution for both multivariate parameters for all

measured events after application of the TMVA classifiers and connected cuts in a stage 2 run

(run 73400, scaled to equal lifetime) and its matched stage 1 run (run 66300) and the mupage

simulated events used for both runs.

10.1.2 From water properties modelling

As cause for these long-term effects, ageing of the optical modules and a change in the water

properties was suspected, so the next step of the run-by-run simulation version 3 already im-

plemented additional changes in the water properties in the simulation software (see Appendix

A.1.1), the effect of which is shown in Figure 10.2. The comparison between the distribution

of the classifiers for both simulation versions show that the altered water modelling parameters

lead to a general shift of the classifier towards lower values, which is true for the whole duration

of data taking. It shows that the deficit in the event number estimate not only stems from the

run matching procedure but also from the too idealistic assumptions of water properties in the

old simulation set, and is therefore not only limited to stage 2 runs, but is, to a lesser degree,

also present in the stage 1 runs.

Further adjustment of the water modelling The water model was once more revised for the

version 4 simulation, and comparisons between measurement and simulation performed using

different water models, see Figure 10.3a. For example, the attenuation length was deduced from

the photon number over distance for atmospheric muons, see Figure 10.3b. The investigation

lead to the application of a model closer to the Nemo water than the former ANTARES model.

10.1.3 From OM efficiency modelling

Apart from the analysis presented here, also other analyses including newer measurements

showed indications of discrepancies between simulation and data which generally could be traced

to a lower photon detection efficiency of the detector than was assumed in the simulation. This
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Figure 10.2: Comparison of the parameter distribution of atmospheric neutrinos (Bartol) for

the atmospheric muon and atmospheric neutrino classifier for 59 simulated runs from the test

sample in run-by-run simulation version 2 and 3. The atmospheric neutrino classifier is shown

after the analysis cut on the atmospheric muon classifier.

triggered investigations into the OM photon efficiency and ageing effects especially for the later

data taking years starting from 2013.

OM efficiency As introduced in Chapter 2.3.2, the OM efficiency is primarily calculated from

the K40 coincidence rate in neighbouring OMs. First of all, a reduction of the collection

efficiency by 15% was added, as well as an OM-by-OM modelling of the individual efficiency

from K40 measurements in 6 day intervals. The higher attenuation length together with the

reduced OM efficiency which increases with ageing might partially explain the deficit of well

identifiable cosmic neutrinos, as a lower photon yield is measured especially for high energy

events compared to atmospheric muon events. However, to prove this point, more detailed

studies on the new simulation would have to be performed.

10.2 Signature-specific analysis and update

Lately, a combined diffuse flux search has been performed in ANTARES with track-specific and

shower-specific parameter cuts were applied on 9 years of data [72]. The analysis was able

to make use of the updated simulation and 2450 days of equivalent livetime. The sensitivity

reached in the analysis for λ = 2.0 is Φ90%IC2.0 = 1.2×10−8 GeV−1 sr−1 s−1 cm−2. Also, the error

on the background assumption with this simulation is given as about 30%, which outperforms

the above used simulation. Comparing the two analyses, the close sensitivity of the above

presented combined search approach with less than half the data indicates what potential the

analysis approach holds for the full data set and an updated simulation.

Naturally, the cut parameter optimization procedure would have to be repeated for an update

including the full simulation. On the other hand, the multivariate tools would not need to
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(a) water models (b) absorption length measurement

Figure 10.3: Water models tested for the ANTARES site, from [73] and measurement of the

absorption length from atmospheric muons. From [74].

be readjusted, as they model the intrinsic dependencies between the input parameters rather

than depend on their explicit values and have been driven to a level of sophistication where

renewed training might only yield little improvement compared to the overall uncertainties in

the simulation and the time invested in training.

Also, the subdivision of the full data sample into shorter data taking periods with comparatively

stable conditions and a cut optimization for each sub-sample rather than an overall cut on

the full data sample would have to be introduced. This would on the one hand circumvent

the deficit of events identified as cosmic neutrinos increasing with an ageing detector, as the

adapting of the detection threshold for cosmic events could follow the detector’s OM efficiency.

On the other hand, it would also allow a more detailed monitoring of the influence of detector

ageing on the analysis cuts.

Last but not least, the analysis presented here has shown that, especially for a smaller scale

detector like ANTARES, a combined search for a cosmic neutrino flux which at the first stage

disregards the classification of the specific event signature shows at least the potential of a

signature-specific search.
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Conclusion

In this analysis, the search for a diffuse cosmic neutrino flux has been pursed for events from all

neutrino flavours measured in the ANTARES detector as muon tracks or particle cascades.

At the core of the analysis lies the development of two dedicated multivariate tools to target the

task of suppression of events from the atmospheric muon background on the one hand and to

distinguish the cosmic neutrino signal from atmospheric neutrinos on the other hand in Chapter

6. For these classifiers, observables used in both track and shower neutrino event reconstruc-

tions as well as additional new parameters were tested for use in a variety of multivariate tools.

For atmospheric muon suppression, the optimization procedure aimed to separate the bulk of

atmospheric muons from neutrino-generated events, a task for which a boosted decision tree

was found to work best. For the separation of cosmic neutrino events from the atmospheric

background, a Fisher discriminant using mostly energy-related features was trained to separate

events especially in the high-energy region of neutrino events in the ANTARES detector. With

these tools, the novel approach of this analysis was implemented, drawing on these two dedi-

cated classifiers designed for the common use on muon tracks and cascade events instead of an

event-type specific event selection strategy.

The analysis was optimized for both signal detection and model rejection on a Monte-Carlo

simulation explicitly reproducing the specific data-taking conditions at the time of measure-

ment. However, these simulations were still under development, lacking a production for ντ

generated events and measurements taken after 2012. Therefore, a run matching procedure

was introduced for the missing simulation runs relying on similar parameter distributions in at-

mospheric muons in the matched runs, see Chapter 7, and dedicated low-statistic productions

of additional event types were added. After establishing the full event selection chain, cuts and

classifiers were tested on 10% of the full set of measurements, for which a good agreement

between simulation and measurements could be established. However, on applying the analysis

chain to the full set of measurements, a deficit of events from expectation was found especially

in the latest run taking period, which can most likely be traced to an overestimation mainly of

the detector’s photon sensitivity after several years of data taking by disregarding OM ageing.

Therefore, the analysis was limited to a data sample of 913 days for which the run matching

procedure showed a good agreement between simulation and measurement. For this sample, a

sensitivity to an IceCube-like flux with either λ = 2.0 or λ = 2.5 was reached that shows the

advantage of a flavour-combined analysis to a flavour-specific diffuse flux analysis, as a sensi-

tivity of Φ90%IC2.5 = 1.35ΦIC2.5 for ΦIC2.5 = 4.1× 10−6 GeV−1 sr−1 s−1 cm−2 between 6.74TeV
and 1.12PeV is reached, and ΦIC2.0 = 1.1× 10−8 GeV−1 sr−1 s−1 cm−2 leads to a sensitivity of

Φ90%IC2.0 = 1.57×10−8 GeV−1 sr−1 s−1 cm−2 valid within 16.4TeV to 7.1PeV.
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CHAPTER 10. INVESTIGATION AND OUTLOOK

In the 17 events detected for the full event sample, events from both former point-source anal-

ysis as well as from a former diffuse cosmic flux search with cascades were included, together

with events which would not fit a strict track- or cascade-type event selection. Therefore, the

combined analysis identifies both signature-specific cosmic neutrino candidate as well as adds

events which are not so easily placeable as shower or track candidate, but still show a high

cosmic signal probability. The analysis therefore explores a part of the feature space formerly

inaccessible for signature-specific analysis and gains from this an enhanced sensitivity.

The drawback of the analysis lies in its lack of dedicated simulation, which by now has been

remedied by the production of follow-up simulations both implementing ντ events well and in-

cluding a more adequate simulation of detector ageing effects. A re-application of the analysis

chain to the new simulation is recommended, although it is now longer in the scope of this

thesis. The lack of cosmic neutrino candidates for data recorded after 2012 can most likely be

avoided by introducing parameter cuts with are optimized within a shorter data taking period

than the full sample, as relevant features for the classifier output parameters seem to change

within this time span. An analysis approach including common features of both signature types

can therefore also be recommended for the future generation of similarly constructed water-

based detectors, namely the KM3NeT detector, for which the increased size should allow for a

more solid confirmation of the IceCube diffuse flux discovery.
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A l Appendix

A.1 Monte Carlo Simulation Definition

A.1.1 Run-by-run simulations v2 and v3

The simulation chain for the run-by-run production v2 is given in detail in [35]. It includes the

production v2.2, which implements shower-like events. It uses MUPAGE v3r5, GenHen v6r8,

KM3 v4r2, GeaSim v4r13 and TriggerEfficiency from 2011-12-19.

In comparison to this, v3 advances to GenHen v7r1, KM3 v5r1 with an updated light propagation

code. GeaSim is dropped and a one-particle approximation for showers introduced in KM3.

Additional simulations to this analysis were based on the v3 chain.

A.1.2 Additional simulations

The runs included in the production should be usable for extensive comparisons, therefore

they had to be included in the burn-sample of zero-ending runs in order to be usable in data

comparisons, and should have a full standard simulation available. Therefore selection criteria

for the reference runs are

• only runs with complete data processing

• runs ending in *10 and *60

• runs available in run-by-run version 2 and 3

This results in the selection of 119 runs with a total lifetime of 12.7 days.

Reference runlist 26710, 26810, 27660, 27760, 28110, 28510, 30060, 30110, 30160, 30310,

31360, 32110, 32160, 32260, 32360, 32710, 33110, 33210, 34560, 34610, 34860, 34960, 35060,

35160, 35910, 36110, 36160, 36210, 36860, 38110, 38610, 39760, 40660, 40710, 40910, 41310,

41560, 43610, 43760, 43860, 44060, 45110, 45210, 45860, 46310, 46360, 46460, 46510, 46610,

46710, 47610, 47710, 49710, 51160, 51710, 51810, 52710, 53510, 53660, 53710, 53860, 53910,

53960, 54060, 54110, 54260, 54610, 54710, 55110, 55210, 55760, 55810, 56610, 56710, 56760,

57260, 57310, 57360, 57560, 57610, 58560, 59110, 59460, 59810, 59860, 59910, 59960, 60060,

60260, 60410, 60460, 60610, 60910, 61160, 61210, 61410, 61710, 61760, 61960, 62110, 62260,

62560, 63060, 64760, 64810, 64960, 65160, 65310, 65360, 65410, 65610, 65760, 66060, 66260,

66310, 66510, 66760, 67360, 68160.
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Runs for τ production and water properties studies 26810, 28110, 31360, 32710, 34860,

36210, 38610, 41560, 46460, 52710, 54110, 55110, 55760, 56760, 57360, 59860, 60460, 60910,

61960, 65610, 66260, 66760, 65160, 53710.

Mupage high multiplicity muon simulation

Lifetime calculation The total sample of high-multiplicity muon bundles should be the equiv-

alent of at least one year data taking. Therefore the lifetime of each run had to be scaled such

that the total lifetime of 360 days was reached. Therefore the muon weight for each run in the

toy production is wµ = 1/30.

However, since Mupage accepts no direct input of lifetime but only of number of generated

events, the equivalent number of events for one year was estimated from a small muon produc-

tion of 500 events with muon multiplicities m between 100 and 1000. According to [41], this

corresponds to about 3.5 hours of data taking, i.e. 143 events/hour. In this test sample, the ra-

tio between events above and below m = 200 was roughly 100<m< 200 : 200≤m< 1000 = 4 : 1
(see Figure 7.5). Therefore the number of simulated events per run with lifetime d was calcu-

lated as Nµm>200 = 143/h×0.2 = 30×d/h
As each run was finally scaled to reach one year of total lifetime, the number of events simulated

per run are Nµ = 30×d/h×1/wµ .

Changes in comparison to run-by-run version 3 The mupage data card was adapted in the

following parameters

Emin minimum energy in TeV: 0.02

Emax maximum energy in TeV: 500.0

Ethreshold minimum energy of threshold in TeV: 3.0

MULTmin minimum multiplicity: 200

MULTmax maximum multiplicity: 1000

ντ simulation

The following decay channels were implemented in Tauola, the part in genhen version v7r3

included for tau production.

decay channel branching ratio decay channel branching ratio

τ → eνeντ 1.0000 τ → 3πντ 1.0180

τ → µνµντ 0.9832 τ → Kντ 0.0405

τ → πντ 0.6217 τ → Kπντ 0.0781

τ → ππντ 1.4221

During processing, an error in the weighting of events was found, assigning an obviously too

large event weight to some events. The weight of these events was manually adjusted to fit the

expected event weight distribution, however, it can be assumed that event numbers from the

simulation are slightly too high.
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Changed water property simulations

In order to compare the effect that uncertainties in the water scattering length λscat and ab-

sorption length λabs has, the listed runs were simulated again using the v3 run-by-run chain,

with photon tables in the KM3 photon propagation code within genhen changed thus that the

assumed scattering length varied by 10%. This resulted in 4 new runs per reference run with

λscat0.9 = 0.9×λscat, λscat1.1 = 1.1×λscat and accordingly λabs0.9 and λabs1.1.

A.2 Mathematical methods

A.2.1 Simplified MRF calculation

Interpolation from tabled values As the calculation of the µl demands a higher computing

time than the comparatively simple model discovery potential, an estimate for the model rejec-

tion factor was introduced. It interpolates R from its tabled values for the next lower and upper

number of signal events ns>/< and background events nb>/< by linear interpolation. Using the

background distance nb = (nb−nb<)/(nb>−nb<) and signal distance ns = (ns−ns<)/(ns>−ns<),

the estimated model rejection factor is calculated as

R(ns,nb) = Rs<,b<(1−ns−nb + nsnb)+Rs>,b<(ns−nsnb)+Rs<,b>(nb−nsnb)+Rs>,b>nsnb.

(A.1)

A.3 Fluxes

A.3.1 Test fluxes

The fluxes are quoted as

Φ(E) = Φastro×10−18(E/100TeV−γastro GeV−1 sr−1 s−1 cm−2). (A.2)

Name Φastro γastro published in

IceCube HESE 4 years 2.2 2.58 PoS(ICRC2015)1081

IceCube combined 7.0 2.49 PoS(ICRC2015)1066

IceCube tracks 6 years 0.90 2.13 [14]

IceCube 2015 6.7 2.5 [75]

IceCube discovery 1.2 2.0 [10]

IceCube classical 2.06 2.46

IceCube 2.5 1.3 2.5

IceCube 2.0 1.1 2.0
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A.4 Parameter selection

A.4.1 Full parameter list

Parameter DMC A2 SOP

Aafit φ good 0.04 4.8

Aafit θ good 0.01 3.99

Aafit position x bad 0.17 5.48

Aafit position y bad 0.2 5.48

Aafit position z medium 0.12 5.48

Aafit λ medium 0.17 4.76

Aafit β medium 0.48 5.48

Bbfit φ good 0.0 7.95

Bbfit θ good 0.01 3.31

Bbfit track position x bad 0.48 5.73

Bbfit track position y bad 0.48 5.7

Bbfit track position z medium 0.21 5.38

Bbfit track χ2 medium 0.58 6.0

Bbfit track Nlines crap 0.0 5.48

Bbfit track dist2line crap 0.0 100.0

Bbfit track Nhits crap 0.0 5.48

Bbfit bright position x medium 0.26 6.01

Bbfit bright position y medium 0.55 6.01

Bbfit bright position z good 0.03 5.63

Bbfit bright χ2 medium 0.58 6.0

Bbfit bright Nlines crap 0.0 5.48

Bbfit bright dist2line crap 0.0 100.0

Bbfit bright Nhits crap 0.0 5.48

Bbfit φ nan 0.0 7.94

Bbfit θ nan 0.01 3.91

Bbfit bright position x bad 0.06 7.41

Bbfit bright position y bad 0.04 7.04

Bbfit bright position z medium 0.1 6.65

Bbfit M-est quality medium 0.01 5.75

Bbfit M-est likelihood medium 0.01 7.94

Bbfit bright Nlines crap 0.01 5.48

Bbfit bright Nhits crap 0.01 5.48

Dusj θ good 0.01 2.97

Dusj φ good 0.0 6.0

Dusj position x binning 0.01 6.0

Dusj position y good 0.01 5.99

Dusj position z good 0.01 5.86

Dusj energy good 0.48 5.98

Dusj fit d.o.f. binning 0.09 5.48

Dusj value fit logL binning 0.07 6.0

Dusj fit calls good 0.29 5.48

Dusj fit rlogL good 0.01 5.79

Dusj vertex d.o.f. good 0.09 5.48

Dusj vertex logL good 0.06 6.0

Dusj vertex calls good 0.02 5.48

Parameter DMC A2 SOP

Dusj vertex rlogL good 0.04 5.97

Dusj convergence energy good 0.07 5.98

Dusj convergence x good 0.08 6.0

Dusj convergence y good 0.08 6.0

Dusj convergence z good 0.22 2.47

Dusj horizontal dist2center good 0.02 6.0

Dusj vertical dist2center good 0.0 6.0

Dusj Nstrings good 0.02 5.48

Dusj quadrupole moment good 0.01 5.98

Dusj tresχ2 medium 0.42 5.99

Dusj Atotal binning 0.2 5.48

Dusj showerId horizontal d2c medium 0.12 5.89

Dusj showerId vertical d2c good 0.01 5.89

Dusj showerId reduced χ2 good 0.03 3.8

energy R None - -

R value good 0.02 4.76

GridFit position x binning 0.02 4.41

GridFit position y binning 0.08 4.41

GridFit position z binning 0.0 4.41

GridFit zenith θ not working 0.0 2.81

GridFit azimuth φ medium 0.0 4.41

GridFit ratio binning 0.55 5.48

GridFit precut ratio binning 0.59 2.5

GridFit width of minimum good 0.05 4.54

Krake position x binning 0.21 5.95

Krake position y binning 0.22 5.95

Krake position z binning 0.14 5.95

Krake zenith θ good 0.0 3.21

Krake zenith φ medium 0.0 5.95

Krake rlogl good 0.01 1.98

Q position x binning 0.33 100.0

Q position y binning 0.37 100.0

Q position z binning 0.36 100.0

Q zenith θ medium 0.0 3.47

Q azimuth φ good 0.0 7.31

Q energy E good 0.07 100.0

Q likelihood medium 0.08 100.0

Q total A medium 0.05 100.0

RDF class None 0.0 29.24

RDF value good 0.02 5.48

ANN energy good 0.59 5.48

ANN background count good 0.02 4.76

ANN OM count good 0.01 4.76

ANN NOM triggered hits medium 0.05 5.48

ANN Nhits triggered hits binning 0.08 5.48
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Parameter DMC A2 SOP

ANN Nhits all hits binning 0.05 5.48

ANN < A > triggered hits good 0.05 4.76

ANN < A > all hits good 0.06 4.76

ANN RMS(A) triggered hits binning 0.04 5.48

ANN Nstorey triggered hits medium 0.02 4.76

ANN Nstrings triggered hits good 0.01 4.76

ANN track eff. length good 0.04 4.83

ANN distance to CoG good 0.04 5.47

ANN < dcher > hits2track binning 0.11 4.81

ANN RMS(dcher) hits2track good 0.02 4.76

ANN < tres > hits2track binning 0.29 5.48

ANN RMS(tres) hits2track medium 0.02 4.76

ANN duration triggered hits good 0.04 4.99

ANN < v−1 > all hits binning 0.81 5.48

ANN RMS(v−1) all hits binning 0.59 5.48

ANN track contained length good 0.06 4.8

dEdx energy binning 0.68 5.48

dEdx detector eff. binning 0.59 5.48

dEdx track length good 0.03 4.39

RDF feature:056 Nlines medium 0.0 5.48

RDF 064 number L1 hits? good 0.01 5.48

RDF 065 max. storey charge good 0.08 5.48

Aafit hitseries nhits good 0.03 1.08

Aafit hitseries charge medium 0.02 0.04

Aafit hitseries duration bad 0.02 1.01

Dusj hitseries nhits good 0.04 1.08

Dusj hitseries duration medium 0.08 1.72

Dusj hitseries charge bad 0.1 0.05

GridFit hitseries nhits medium 0.05 1.08

GridFit hitseries charge good 0.03 0.13

GridFit hitseries duration bad 0.04 4.76

Bbfit hitseries nhits good 0.03 1.08

Bbfit hitseries charge binning 0.01 1.19

Bbfit hitseries duration medium 0.04 4.95

Krake hitseries nhits good 0.05 1.08

Krake hitseries charge binning 0.01 0.3

Krake hitseries duration bad 0.05 4.42

Q hitseries nhits good 0.04 1.08

Q hitseries charge binning 0.02 1.11

Q hitseries duration bad 0.03 4.69

Aafit hits NHits good 0.06 4.85

Aafit hits NLargeHits medium 0.08 5.48

Aafit hits NStrings good 0.0 4.77

Aafit hits TotalCharge medium 0.08 5.48

Parameter* DMC A2 SOP

Aafit LargeCharges medium 0.1 5.48

Aafit Slopes good 0.25 5.48

Aafit SlopeWithCharge good 0.47 5.48

Aafit SlopeBigCharge bad 0.45 0.48

BBFit NHits good 0.12 5.48

BBFit NLargeHits good 0.15 5.48

BBFit NStrings good 0.01 5.48

BBFit TotalCharge medium 0.18 5.48

BBFit LargeCharges medium 0.17 5.48

BBFit Slopes good 0.62 5.48

BBFit SlopeWithCharge medium 1.0 5.48

BBFit SlopeBigCharge medium 0.38 5.48

Dusj NHits good - -

Dusj NLargeHits medium - -

Dusj NStrings good - -

Dusj TotalCharge medium - -

Dusj LargeCharges medium - -

Dusj Slopes good - -

Dusj SlopeWithCharge good - -

Dusj SlopeBigCharge good - -

GridFit NHits good - -

GridFit NLargeHits good - -

GridFit NStrings good - -

GridFit TotalCharge good - -

GridFit LargeCharges medium - -

GridFit Slopes good - -

GridFit SlopeWithCharge good - -

GridFit SlopeBigCharge bad - -

Krake NHits good 0.12 26.11

Krake NLargeHits medium 0.07 26.11

Krake NStrings good 0.0 26.1

Krake TotalCharge good 0.09 26.11

Krake LargeCharges good 0.09 26.11

Krake Slopes good 0.41 26.1

Krake SlopeWithCharge good 0.49 26.08

Krake SlopeBigCharge bad 0.25 26.09

Q NHits good - -

Q NLargeHits medium - -

Q NStrings medium - -

Q TotalCharge good - -

Q LargeCharges good - -

Q Slopes good - -

Q SlopeWithCharge crap - -

Q SlopeBigCharge good - -

* all parameters are based on the reconstruction’s hit selection
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After Data/MC selection and correlation analysis per parameter type

Direction estimates

BBFit M-Estimator seems
Parameter DMC A2 SOPmu SOPnu

Aafit φ good 0.04 3.48 219.1

Bbfit φ good 0.0 100.0 2000.0

! Bbfit M φ not working 0.0 100.0 2000.0

Dusj φ good 0.0 4.34 221.63

Q azimuth φ good 0.0 5.33 204.07

Aafit θ good 0.01 2.92 219.1

Bbfit θ good 0.01 2.34 214.1

! Bbfit M θ not working 0.0 100.0 2000.0

Dusj θ good 0.01 2.2 221.63

GridFit zenith θ not working 0.01 2.05 224.2

Krake zenith θ good 0.0 2.37 263.82

unreliable and highly correlated

to the BBFit estimate. Aafit

shows good angular agreement

with both shower reconstruc-

tion strategies, while they show

less agreement between each

other. GridFit and Krake show

less agreement in zenith recon-

struction with Dusj than Aafit

or BBFit. The Shower zenith

reconstruction seems to bear more

information for muon suppres-

sion, while the track zenith reconstruction is better suited for neutrino signal optimization. Aafit

zenith seems to well represent the main feature of this sample.

Parameter candidates for muon suppression Dusj θ , (Aafit θ , Bbfit θ)

Parameter candidates for atmospheric suppression Aafit θ , BBFit θ , Dusj φ , Aafit φ , (Q φ)

Position estimats

BBFit Bright and Dusj
Parameter DMC A2 SOPmu SOPnu

Bbfit bright position z good 0.06 4.11 214.09

Dusj position x binning 0.01 4.34 221.63

Dusj position y good 0.01 4.34 221.63

Dusj position z good 0.01 4.24 221.63

Dusj value convergence x good 0.08 4.34 221.63

Dusj value convergence y good 0.08 4.34 221.63

Dusj value convergence z good 0.22 1.76 221.63

positions in z agree well

for both muons and neu-

trinos. As the conver-

gence position of Dusj

promises some separa-

tion for atmospheric muons,

it will be considered there.

Parameter candidates for

muon suppression Dusj value convergence z

Parameter candidates for atmospheric suppression Bbfit bright position z

Detector condition parameters

These parameters can
Parameter DMC A2 SOPmu SOPnu

ANN background count good 0.02 3.46 219.1

ANN OM count good 0.01 3.45 219.1

dEdx detector eff. binning 0.57 20.49 1395.72

RDF value good 0.02 3.97 219.1

be used to try to finetune

the methods, and will be

tried to increased accuracy.
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Event geometry estimats

Parameter DMC A2 SOPmu SOPnu

Dusj horizontal d2center good 0.02 4.34 221.63

Dusj vertical d2center good 0.01 4.34 221.63

Dusj showerId vertical d2center good 0.01 4.27 219.56

ANN distance to CoG good 0.04 3.97 219.09

dEdx track length good 0.04 3.18 219.1

ANN track eff. length good 0.04 3.5 212.74

ANN track contained length good 0.06 3.49 219.1

Aafit cylinder r = 55m bad 0.09 - -

Aafit cylinder r = 75m bad 0.07 - -

Aafit cylinder r = 100m bad 0.05 - -

Dusj cone s = 55m medium 0.14 - -

Dusj cone s = 75m medium 0.1 - -

Dusj cone s = 100m bad 0.06 - -
This information can help to classify the type of events.

Parameter candidates for muon suppression dEdx track length

Parameter candidates for atmospheric suppression ANN track eff. length

Hit distribution parameters

Parameter can-
Parameter DMC A2 SOPmu SOPnu

Dusj value quadrupole moment good 0.01 4.33 221.19

ANN < dcher > all hits to track binning 0.11 3.5 219.09

ANN RMS(dcher) all hits to track good 0.02 3.46 219.1

ANN < tres > all hits to track binning 0.28 3.97 219.1

ANN duration triggered hits good 0.04 3.65 217.11

ANN < v−1 > all hits binning 0.62 3.99 219.39

ANN RMS(v−1) all hits binning 0.56 3.49 220.6

didates for muon

suppression ANN

RMS(dcher)

Parameter candi-

dates for atmospheric

suppression ANN

event duration trig-

gered hits, Dusj value

quadrupole moment (EV)

Energy related estimats

Of the energy es-
Parameter DMC A2 SOPmu SOPnu

Dusj energy good - - -

Dusj value convergence energy good 0.07 4.33 221.63

R value good 0.02 3.45 189.45

!Q energy E good 0.43 3.97 214.68

ANN energy good 0.02 3.45 177.22

dEdx energy binning 0.08 3.96 176.47

timates, the track en-

ergy estimates show

a larger potential for

signal optimization, al-

though all three meth-

ods are also strongly

correlated. For muon

suppression, the Dusj energy parameter carries a large part of the information, as does the R-

parameter for atmospheric suppression
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Parameter candidates for muon suppression Dusj energy, ANN energy

Parameter candidates for atmospheric suppression R value, dEdx energy

Reconstruction quality parameters

GridFit ratio are
Parameter DMC A2 SOPmu SOPnu

Dusj value fit d.o.f. binning 0.1 3.97 97.4

Dusj value fit logL binning 0.09 4.34 101.79

Dusj value fit calls good 0.46 3.97 219.1

Dusj value fit rlogL good 0.01 4.19 217.94

Dusj value vertex d.o.f. good 0.09 3.97 97.6

Dusj value vertex logL good 0.07 4.34 127.23

Dusj value vertex calls good 0.02 3.96 219.09

Dusj value vertex rlogL good 0.04 4.31 201.86

Dusj value showerId reduced χ2 good 0.03 2.56 219.55

GridFit ratio good 0.59 0.89 214.06

GridFit precut ratio good 0.61 0.9 214.0

GridFit width of minimum good 0.05 3.31 219.1

Krake rlogl good 0.0 2.06 261.78

well usable for muons

suppression, although

their run-by-run agree-

ment varies. As Dusj

logL and d.o.f. are

highly correlated, as

are GridFit ratios, only

one of each should

be used per method.

Parameter candidates

for muon suppres-

sion GridFit ratio, Krake

rlogl (EV), Dusj value

showerId red. χ2

Parameter candidates for atmospheric suppression GridFit width of minimum(EV), Dusj value

fit d.o.f (SOP)

Track enhancing parameter

These parameters were added to increase the contribution of track events in the atmospheric

neutrino suppression step.

Here, the SOP was
Parameter DMC A2 SOPmu* SOPnu*

Nhits triggered hits good 0.04 3.1 1.3

Nhits off event good 0.03 3.1 1.8

Nstring Dusj hits good 0.02 3.1 1.7

Nstoreys Dusj hits good 0.02 3.1 2.0

Dusj hits event duration good 0.02 3.1 2.0

Dusj hit fraction tcher < 250ns good 0.025 3.1 2.0

< AAafit > (tcher < 40ns) good 0.025 3.0 1.4

scaled compared to the

previously investigated

parameters. These pa-

rameters were not in-

cluded in the atmo-

spheric muon suppres-

sion step.
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Hit charge parameters

∗ re-evaluated us-
Parameter DMC A2 SOPmu∗ SOPnu

Dusj value Atotal binning 0.21 3.97 73.68

ANN Nhits triggered hits binning 0.15 3.97 138.98

ANN Nhits all hits binning 0.05 3.97 179.27

ANN < A > triggered hits good 0.11 3.97 219.1

ANN < A > all hits good 0.18 3.45 176.92

ANN RMS(A) triggered hits binning 0.33 3.97 219.1

Aafit hits NHits good 0.05 22.93 926.55

Aafit hits NStrings good 0.01 22.96 1433.78

BBFit hits NHits good 0.14 26.1 908.95

BBFit hits NLargeHits good 0.1 26.11 834.92

BBFit hits NStrings good 0.01 26.1 974.97

Dusj hits NHits good 0.04 26.1 876.56

Dusj hits NStrings good 0.01 26.1 934.99

GridFit hits NHits good 0.12 20.04 810.08

GridFit hits NLargeHits good 0.1 21.68 958.34

GridFit hits NStrings good 0.01 20.5 1472.01

GridFit hits TotalCharge good 0.1 20.2 1058.07

Krake hits NHits good 0.12 26.11 1270.74

Krake hits NStrings good 0.0 26.1 1201.62

Krake hits TotalCharge good 0.09 26.13 1474.45

Krake hits LargeCharges good 0.09 26.11 1439.32

Q hits NHits good 0.09 26.1 1025.95

Q hits TotalCharge good 0.08 26.1 1010.97

Q hits LargeCharges good 0.08 26.1 1371.8

ing smaller livetime

Parameter candidates

for muon suppression

ANN < A > all hits,

(ANN Nhits triggered

hits)

Parameter candidates

for atmospheric sup-

pression Dusj value Atotal,

(GridFit hits NHits, Dusj

hits NStrings)
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A.5 TMVA optimization

A.5.1 Parameter scanning

Results of the parameter scanning procedure for the atmospheric muon suppression can be seen

in Table A.1, results for the atmospheric neutrino suppression are listed in Table A.2.

A.5.2 TMVA method evaluation

BDT setup testing for muon suppression

The Boosted Decision Tree (BDT) architecture can be varied as described in [62] by applying

a preprocessing to the sample of input events (Gaussian decoupling or Principal Component

Analysis), varying the number of trees Ntr and the depth of the individual trees, using different

boosting types (Adaptive Boost, Gradient Boost, Bagging) which come with different learning

rate functions (Adaptive Boost: β , Gradient Boost: shrinkage) which is increase in position by

using a higher number of grid points used for node splitting (nCuts). The separation criterion

in node splitting can be varied between cross entropy, Gini index (also with Laplace criterion),

misclassification error and S/S + B. Performance is evaluated using the efficiency ε (Chapter

6.7) and separation S (Chapter 6.6).

Method Prep Ntr/depth Boosting(learning, nCuts) Sep-fkt. ε S(x)

BDT none 600/3 Ada(0.5,20) GiniIndex 0.11 10.5

BDTPCA PCA 600/3 Ada(0.5,20) GiniIndex 0.21 11.5

BDTGauss Gauss 600/3 Ada(0.5,20) GiniIndex 0.25 11

BDTMisClass none 600/3 Ada(0.5,20) ClassError - 13

BDTCross none 600/3 Ada(0.5,20) CrossEntropy - 13

BDTGiniL none 600/3 Ada(0.5,20) GiniLaplace 0.10 10.5

BDThighCut none 600/3 Ada(0.5,50) GiniIndex 0.26 11.5

BDTmaxCut none 600/3 Ada(0.5,-1) GiniIndex 0.23 11

BDTMMBB none 1200/5 Ada(0.5,20), Bagged GiniIndex - 35

BDTBB none 600/3 Ada(0.5,20), Bagged GiniIndex 0.15 12

BDTFisher none 600/3 Ada(0.5,20), Fisher cuts GiniIndex - 14

BDTG none 600/2 Grad(0.1,20) GiniIndex - 4

BDTbeta none 600/3 Ada(0.8,20) GiniIndex 0.12 14

BDTNodeP none 600/3 Ada(0.5,20),purity=0.3 GiniIndex 0 3

BDTrealA none 600/3 RealAda(0.5,20) GiniIndex 0.12 23

BDTBag none 600/3 Bagging GiniIndex 0.0 2

BDTbestOf Gauss 1200/7 Ada(0.8,50) GiniIndex 0.25 16

BDTbestOfbagged Gauss 1200/7 Ada(0.8,50), Bagged GiniIndex 0.22 30
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parameter x ε(x) (single) dropped in round ε(x) without parameter

Dusj Atotal 0.040 14 0.054

Dusj Nhits 0.038 6 0.059

Dusj final fit d.o.f. 0.038 13 0.056

Aafit Nhits 0.028 (17) 0.057

Aafit EdEdx 0.026 11 0.060

Aafit EANN 0.022 (19) 0.051

Aafit ER 0.020 10 0.059

Aafit φ 0.003 3 0.056

Aafit λ 0.003 (18) 0.055

ANN event duration 0.002 5 0.058

Aafit θ 0.002 4 0.057

Aafit β 0.002 7 0.059

Dusj shower rχ2 0.002 1 0.54

ANN track length 0.001 12 0.060

Dusj conv. position E 0.001 8 0.059

Dusj EDusj 0.001

Dusj VLLH 0.001

Dusj quadrupole moment 0.001 15 0.053

Dusj φ 0.0 2 0.056

GridFit w.o.m. 0.0 9 0.060

Dusj θ 0.0 (16) 0.052

Table A.1: TMVA scanning results for atmospheric neutrino suppression, starting from the full

parameter sample reaching ε = 0.048. Parameters in () were left in the final parameter sample

due to the increased signal efficiency compared to the completely reduced sample.

parameter x ε(x) (single) dropped in round ε(x) without parameter

Aafit ER 0.038 1 0.071

Aafit EANN 0.037

ANN P1 0.036

ANN P2 0.035

Aafit EdEdx 0.035 7 0.071

Dusj ANN P7 0.022 4 0.074

Aafit ANN P21 0.061

Dusj ANN P6 0.015 5 0.074

Dusj ANN P15 0.007 6 0.074

EDusj 0.006 2 0.074

Dusj ANN P19 0.005 3 0.074

Dusj VLLH 0.001

Aafit λ 0.0 8 0.065

Table A.2: TMVA scanning results for atmospheric neutrino suppression using Fisher discrimi-

nant, starting from the full parameter sample reaching ε = 0.065

139



APPENDIX A. APPENDIX

TMVA method comparison for atmospheric neutrino suppression

For comparison, some best performing single parameters and their signal efficiency are also

listed.

Method Preprocess setup ε

PDERS 0.038

PDERSPCA PCA 0.038

FisherG Gauss 0.041

BoostedFisher 0.036

BoostedFisherG Gauss 0.038

KNN 0.042

MLPPCA PCA 0.024

TMlPANN 0.002

RuleFit 0.032

BDTGauss Gauss 0.038

BDT 0.035

BDTbestOfbagged 0.046

Dusj total charge 0.04

Dusj Nhits 0.038

Dusj shower d.o.f. 0.038

Optimization parameters for classifier combinations

Model rejection and discovery potential reached by a given classifier combination can be seen

in Figure A.1.

A.6 Summary of simulation sets used during this work

A.6.1 Test set for classifier selection

The complete data taking period evaluated in this analysis, 2007-2013, comes with an equiv-

alently large sample of run-by-run simulation. Of these, following sub-samples of simulated

run-by-run (version 2 [35], runs from 2007-2012) were used.

Monte Carlo set for classifier selection As the complete sample of simulated events per

run would unnecessarily prolong the cut optimization, the set for classifier selection met the

following criteria.

• run number ending in xxxx0

• data for the run is available and 0.75 < Ndata/Nmupage,w < 1.25, with Nmupage,w being the

events weighted to match the run’s duration

• some quality criteria for the distribution of input parameters to the classifiers apply (de-

scribed elsewhere)

• including all available neutrino files (νe and νµ , generated using genhen) and atmospheric

muons (mupage)
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These criteria resulted in an equivalent of 88 days of data taking.

Monte Carlo set for final cut scanning The final scanning was performed on runs selected

by the same criteria as above, except for the restriction on 0-ending runs. Including all runs

with suitable agreement between data and simulation resulted in an equivalent of 914 days of

data taking.

Cosmic neutrino signal The IceCube measurements of the cosmic flux [76] allow both the

assumption of a cosmic flux with spectral index λ = 2.0, as in the widely-used Waxman-Bahcall

model, or an index of λ = 2.5, which better fits the measured event distribution. Therefore,

two cosmic signal hypothesis were tested there, namely

Φ2.5E2.5 = 4.1×10−6GeV 1.5 cm−2 sr−1 s−1 and (A.3)

Φ2.0E2 = 1.1×10−8GeV 1 cm−2 sr−1 s−1. (A.4)

Atmospheric neutrino background The atmospheric neutrino background consists of the

conventional neutrino flux and a prompt component. As the existence and magnitude of the

prompt component is still subject of debate, only a conventional atmospheric flux (either accord-

ing to Honda et al. [30], ΦHonda or from the Bartol group [29], ΦBartol) is used in the classifier

scanning. As test for a prompt contribution the model by Enberg et al. [31], ΦERS is applied.

Atmospheric muon background For the atmospheric muon background, the largest problem

stems from the statistical magnitude of this flux. As simulation is only available for 1/3 of the

duration of each run, the complete set of simulated atmospheric muons with an equivalent

weighted lifetime of 1430 days was used in all scanning procedures.

Furthermore, it was found in earlier analyses that events originating from a muon bundle, i.e.

coincident muons originating from the same atmospheric shower, might play a role for high-

energy analyses. As the standard simulation only includes events with a muon multiplicity of

m < 100, a specialized mupage sample using 50 runs scaled to a total lifetime of 340 days was

produced with muon multiplicities 100 ≤ m < 1000. This sample was included in the final cut

optimization only.
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Figure A.1: Best model rejection factor and discovery potential for each classifier combination.
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A.7. COSMIC NEUTRINO CANDIDATES

A.7 Cosmic neutrino candidates

Event 1

Runnumber 26397 Counter 4046

Event ID 129099 triggers 3D,

3D SCAN

BDTGauss1 0.36 FisherG2alt 0.55

Aafit θ 2.08 Dusj θ 3.05

Aafit φ 5.61 Dusj φ 3.050.63

Aafit λ -5.04 Dusj VLLH 0.9

longitude 154.4 latitude 67.6

Aafit β 0.02

BB track χ2 2.69 BB bright χ2 2.46

EANN[GeV] 0.77 EDusj[GeV] 0.56

EdEdx[GeV] 4.94 ADusj 180.44

ER[GeV] 5.38

NAafit 46 NDusj 50

in analysis shower selection 2
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Event 2

Runnumber 33176 Counter 10766

Event ID 50112 triggers 3D SCAN,

T3

BDTGauss1 0.43 FisherG2alt 0.57

Aafit θ 2.51 Dusj θ 2.46

Aafit φ 4.85 Dusj φ 2.461.06

Aafit λ -4.96 Dusj VLLH 0.9

longitude 116.1 latitude 38.7

Aafit β 0.04

BB track χ2 16.91 BB bright χ2 2.84

EANN[GeV] 0.72 EDusj[GeV] 0.48

EdEdx[GeV] 5.38 ADusj 836.03

ER[GeV] 5.65

NAafit 81 NDusj 132

in analysis - selection 1
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Event 3

Runnumber 35473 Counter 1050

Event ID 7183 triggers 3D SCAN,

T3

BDTGauss1 0.35 FisherG2alt 0.52

Aafit θ 1.73 Dusj θ 1.24

Aafit φ 2.49 Dusj φ 1.242.92

Aafit λ -4.71 Dusj VLLH 1.02

longitude 127.0 latitude -80.8

Aafit β 0.0

BB track χ2 1.83 BB bright χ2 17.34

EANN[GeV] 0.72 EDusj[GeV] 0.57

EdEdx[GeV] 4.84 ADusj 466.1

ER[GeV] 4.99

NAafit 152 NDusj 136

in analysis - selection 1
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Event 4

Runnumber 35958 Counter 1858

Event ID 12923 triggers 3D SCAN,

T3

BDTGauss1 0.43 FisherG2alt 0.54

Aafit θ 2.12 Dusj θ 2.25

Aafit φ 5.64 Dusj φ 2.256.03

Aafit λ -4.95 Dusj VLLH 0.94

longitude 81.5 latitude 6.6

Aafit β 0.01

BB track χ2 8.53 BB bright χ2 2.87

EANN[GeV] 0.72 EDusj[GeV] 0.5

EdEdx[GeV] 5.14 ADusj 374.07

ER[GeV] 5.43

NAafit 78 NDusj 80

in analysis - selection 1
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Event 5

Runnumber 40213 Counter 857

Event ID 67423 triggers 3D SCAN,

T3

BDTGauss1 0.35 FisherG2alt 0.55

Aafit θ 2.47 Dusj θ 2.29

Aafit φ 5.57 Dusj φ 2.290.95

Aafit λ -5.71 Dusj VLLH 0.91

longitude 157.1 latitude 12.8

Aafit β 0.02

BB track χ2 6.33 BB bright χ2 7.44

EANN[GeV] 0.72 EDusj[GeV] 0.44

EdEdx[GeV] 4.9 ADusj 358.16

ER[GeV] 5.42

NAafit 75 NDusj 70

in analysis - selection 1
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Event 6

Runnumber 46195 Counter 1842515

Event ID 16436 triggers 3D SCAN,

T3

BDTGauss1 0.38 FisherG2alt 0.65

Aafit θ 2.2 Dusj θ 2.0

Aafit φ 3.9 Dusj φ 2.02.83

Aafit λ -5.86 Dusj VLLH 0.9

longitude 92.4 latitude 54.0

Aafit β 0.01

BB track χ2 16.2 BB bright χ2 6.88

EANN[GeV] 0.73 EDusj[GeV] 0.58

EdEdx[GeV] 4.84 ADusj 724.81

ER[GeV] 5.73

NAafit 137 NDusj 159

in analysis - selection 1
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Event 7

Runnumber 46852 Counter 917709

Event ID 51708 triggers 3D SCAN,

T3, GC,

TQ

BDTGauss1 0.43 FisherG2alt 0.61

Aafit θ 2.48 Dusj θ 2.15

Aafit φ 4.83 Dusj φ 2.153.78

Aafit λ -5.34 Dusj VLLH 0.9

longitude 129.0 latitude 17.7

Aafit β 0.01

BB track χ2 8.03 BB bright χ2 3.23

EANN[GeV] 0.68 EDusj[GeV] 0.63

EdEdx[GeV] 4.56 ADusj 650.59

ER[GeV] 5.13

NAafit 122 NDusj 126

in analysis shower selection 2
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Event 8

Runnumber 47679 Counter 77946

Event ID 12186 triggers 3D SCAN,

T3, GC,

TQ

BDTGauss1 0.43 FisherG2alt 0.63

Aafit θ 2.38 Dusj θ 2.55

Aafit φ 3.82 Dusj φ 2.555.08

Aafit λ -5.49 Dusj VLLH 0.89

longitude 162.5 latitude 34.4

Aafit β 0.01

BB track χ2 14.99 BB bright χ2 3.34

EANN[GeV] 0.73 EDusj[GeV] 0.55

EdEdx[GeV] 4.66 ADusj 658.43

ER[GeV] 5.24

NAafit 98 NDusj 102

in analysis shower selection 1
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Event 9

Runnumber 49425 Counter 104853

Event ID 32175 triggers 3D SCAN,

T3

BDTGauss1 0.35 FisherG2alt 0.66

Aafit θ 1.93 Dusj θ 1.75

Aafit φ 3.23 Dusj φ 1.752.49

Aafit λ -5.25 Dusj VLLH 0.89

longitude 210.7 latitude 40.8

Aafit β 0.01

BB track χ2 8.58 BB bright χ2 3.04

EANN[GeV] 0.72 EDusj[GeV] 0.61

EdEdx[GeV] 5.1 ADusj 657.98

ER[GeV] 5.54

NAafit 115 NDusj 132

in analysis shower selection 2
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Event 10

Runnumber 51140 Counter 156280

Event ID 49565 triggers 3D SCAN,

T3, GC

BDTGauss1 0.35 FisherG2alt 0.61

Aafit θ 2.23 Dusj θ 1.96

Aafit φ 4.89 Dusj φ 1.964.91

Aafit λ -5.86 Dusj VLLH 0.9

longitude 122.8 latitude 37.5

Aafit β 0.01

BB track χ2 56.0 BB bright χ2 2.2

EANN[GeV] 0.61 EDusj[GeV] 0.56

EdEdx[GeV] 4.66 ADusj 1120.03

ER[GeV] 5.28

NAafit 154 NDusj 199

in analysis - selection 1
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Event 11

Runnumber 52092 Counter 491305

Event ID 45664 triggers 3D SCAN,

T3, GC

BDTGauss1 0.43 FisherG2alt 0.54

Aafit θ 2.68 Dusj θ 2.03

Aafit φ 5.11 Dusj φ 2.034.52

Aafit λ -4.9 Dusj VLLH 0.92

longitude 151.3 latitude 33.3

Aafit β 0.0

BB track χ2 3.85 BB bright χ2 8.58

EANN[GeV] 0.7 EDusj[GeV] 0.67

EdEdx[GeV] 3.84 ADusj 177.26

ER[GeV] 4.34

NAafit 123 NDusj 68

in analysis PS selection 1
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Event 12

Runnumber 54320 Counter 3902831

Event ID 50293 triggers 3D SCAN,

T3, GC,

T2, TQ

BDTGauss1 0.35 FisherG2alt 0.54

Aafit θ 1.62 Dusj θ 1.72

Aafit φ 2.79 Dusj φ 1.722.31

Aafit λ -4.46 Dusj VLLH 0.95

longitude 356.6 latitude 33.2

Aafit β 0.0

BB track χ2 3.65 BB bright χ2 10.62

EANN[GeV] 0.69 EDusj[GeV] 0.61

EdEdx[GeV] 4.6 ADusj 261.84

ER[GeV] 4.55

NAafit 111 NDusj 80

in analysis PS selection 1
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Event 13

Runnumber 57495 Counter 326824

Event ID 15712 triggers 3D SCAN,

T3

BDTGauss1 0.38 FisherG2alt 0.58

Aafit θ 2.36 Dusj θ 2.55

Aafit φ 4.19 Dusj φ 2.555.58

Aafit λ -5.68 Dusj VLLH 0.91

longitude 144.7 latitude 34.5

Aafit β 0.01

BB track χ2 31.58 BB bright χ2 11.19

EANN[GeV] 0.66 EDusj[GeV] 0.61

EdEdx[GeV] 4.72 ADusj 1204.6

ER[GeV] 5.29

NAafit 199 NDusj 178

in analysis - selection 1
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Event 14

Runnumber 58428 Counter 110042

Event ID 44745 triggers 3D SCAN,

T3

BDTGauss1 0.39 FisherG2alt 0.54

Aafit θ 1.7 Dusj θ 1.77

Aafit φ 5.3 Dusj φ 1.774.92

Aafit λ -5.53 Dusj VLLH 0.91

longitude 128.6 latitude -19.6

Aafit β 0.01

BB track χ2 19.86 BB bright χ2 11.86

EANN[GeV] 0.69 EDusj[GeV] 0.51

EdEdx[GeV] 5.15 ADusj 307.92

ER[GeV] 4.7

NAafit 67 NDusj 65

in analysis - selection 1
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Event 15

Runnumber 60058 Counter 1441033

Event ID 2366 triggers 3D SCAN,

T3, GC

BDTGauss1 0.42 FisherG2alt 0.62

Aafit θ 2.22 Dusj θ 2.04

Aafit φ 5.91 Dusj φ 2.045.95

Aafit λ -5.5 Dusj VLLH 0.93

longitude 84.3 latitude -9.9

Aafit β 0.01

BB track χ2 4.91 BB bright χ2 3.35

EANN[GeV] 0.73 EDusj[GeV] 0.53

EdEdx[GeV] 5.16 ADusj 502.72

ER[GeV] 5.35

NAafit 89 NDusj 96

in analysis - selection 2
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Event 16

Runnumber 61055 Counter 2692067

Event ID 30246 triggers 3D SCAN,

T3, GC,

T2, TQ

BDTGauss1 0.4 FisherG2alt 0.53

Aafit θ 1.75 Dusj θ 1.72

Aafit φ 2.46 Dusj φ 1.722.98

Aafit λ -5.35 Dusj VLLH 0.91

longitude 275.1 latitude 39.8

Aafit β 0.01

BB track χ2 4.29 BB bright χ2 8.13

EANN[GeV] 0.61 EDusj[GeV] 0.5

EdEdx[GeV] 4.73 ADusj 373.6

ER[GeV] 4.89

NAafit 76 NDusj 56

in analysis - selection 1
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Event 17

Runnumber 62834 Counter 384475

Event ID 30474 triggers 3D SCAN,

T3, GC,

TQ

BDTGauss1 0.45 FisherG2alt 0.7

Aafit θ 2.42 Dusj θ 2.06

Aafit φ 4.16 Dusj φ 2.063.21

Aafit λ -5.16 Dusj VLLH 0.88

longitude 146.5 latitude 23.9

Aafit β 0.03

BB track χ2 8.5 BB bright χ2 3.06

EANN[GeV] 0.72 EDusj[GeV] 0.62

EdEdx[GeV] 5.35 ADusj 537.34

ER[GeV] 5.39

NAafit 113 NDusj 138

in analysis shower selection 2
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