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Chapter 1
Introduction

Astroparticle physics is an emerging field that combines astronomy and particle physics to
extend the knowledge about the universe to the highest energies. The field unites three major
branches: cosmic ray, gamma ray, and neutrino astronomy. The detection of ultra-high-energy
cosmic rays (UHECRs), charged particles exceeding an energy of 5 · 1019 eV, and the deter-
mination of their composition is starting to give an insight into the acceleration processes of
hadrons in extragalactic sources. For charged particles, depending on their energy, deflection
in intergalactic magnetic fields smears out the reconstructed position of sources. TeV gamma
rays, which can be produced by hadron and lepton accelerating sources, only give a picture
of the surface of the source, as the optical thickness of the acceleration region causes the ab-
sorption of these photons before they can escape. The observation of neutrinos with energies
ranging from GeV to EeV can open another unique window to the understanding of particle
accelerating sources. These neutrinos travel nearly unobstructed through the universe. Their
small cross section allows them to escape dense objects and, as neutral and light particles,
they are not deflected on their way to earth. Neutrinos are thus valuable messengers providing
information about the acceleration region of their sources and the underlying mechanisms, as
neutrinos would prove the acceleration of hadrons. Combined observations can complete the
picture of the fundamental processes driving the non-thermal universe.
Neutrino telescopes currently in operation are based on the detection of Cherenkov light that
is produced in a transparent medium by charged secondary particles of a neutrino interaction.
Cherenkov light is emitted as a charged particle travels at a speed exceeding the phase speed of
light in a given medium. This light can be detected by photomultiplier tubes (PMTs), sensors
that are sensitive to single photons. Given the frequency spectrum of Cherenkov light, the
frequency-dependent attenuation of light in water or ice yields a typical attenuation length of
the order of 50 m. This length scale is one of the determining factors of the spacing of photo-
sensors in a neutrino telescope. A huge volume of transparent medium has to be instrumented
to detect neutrino interactions from the expected low flux of neutrinos from outside the solar
system at a significant rate. Furthermore, the detector must be shielded against background
signals from cosmic rays, which is attained by placing it in sufficient depth. Consequently,
neutrino telescopes are only feasible in natural reservoirs of water or ice. ANTARES1 is such

1Astronomy with a Neutrino Telescope and Abyss Environmental Research (ANTARES)
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a neutrino telescope among others, most notable IceCube2 and the future detector KM3NeT3

based on the detection of Cherenkov light. For the detection of cosmogenic neutrinos in the
ultra-high-energy (UHE) regime with energies exceeding 1017 eV, the size of Cherenkov detec-
tors currently in operation or planned for the future presumably becomes insufficient to detect
a significant number of events. A complementary approach is the use of acoustic pressure
pulses produced by a particle cascade that evolves when a neutrino interacts in a medium
like water or ice. According to the thermo-acoustic model developed by Askariyan [1], the
fast deposition of energy by the cascade in the medium and the ensuing local heating process
leads to a characteristic bipolar pressure pulse (BIP). Caused by the coherent emission over
the cylindrical geometry of the cascade, the pressure wave propagates through the medium in
a disk-like shape perpendicular to the main axis of the cascade. Given the expected low flux
of neutrinos with energies in excess of 1017 eV, a potential acoustic neutrino telescope must
have large dimensions of presumably ≳ 100 km3. Acoustic detection has the advantage over
detection of Cherenkov light that the attenuation length is of the order of 1 km for the peak
spectral density of around 11 kHz [2]. Hence, the spatial configuration of an acoustic detector
is not limited by the attenuation length.
To explore the feasibility of an acoustic neutrino detector, the AMADEUS4 project was de-
vised as part of the ANTARES neutrino telescope. Other notable currently active projects in
this field are: the NEMO-OνDE5 acoustic system also located in the Mediterranean Sea, the
South Pole Acoustic Test Setup (SPATS) [3] as part of IceCube, and the prototype device for
acoustic neutrino detection in Lake Baikal [4]. The AMADEUS systems consists of an array of
a total of 36 acoustic sensors arranged in six clusters of sensors distributed over the ANTARES
detector on different length scales. The main goal of the AMADEUS project is to measure the
ambient noise level at the ANTARES detector site on a timescale of several years. The results
of this measurement will allow an estimation of a lower limit of the signal-to-noise ratio for a
detectable signal. Furthermore, the rate and correlation length of BIP-like background events,
which imitate the acoustic signature of a UHE neutrino, and the corresponding sources are of
interest. These studies are crucial to assess the feasibility of an acoustic neutrino telescope in
the Mediterranean Sea.
The main objective of this work is to research possible ways to classify acoustic signals pro-
duced by a neutrino interaction in the presence of acoustic background. This requires a suitable
simulation chain to reproduce the acoustic signature of a neutrino interaction, the transient
background, and their propagation to the sensors within the detector. An ambient noise model
for the Mediterranean Sea and a simulation of the data acquisition hardware used in the
AMADEUS detector are implemented. A pre-selection scheme for neutrino-like signals based
on matched filtering is employed, as it is used for on-line filtering of the AMADEUS data.
A detailed description of the developed simulation chain will be given in Chap. 3. In Chap. 4,
the analysis chain consisting of reconstruction techniques for the arrival time, the incident
direction of the pressure wave, and the source position of an acoustic signal will be described.
In addition, the signal classification strategy will be presented. It is based on machine learn-
ing algorithms, which were trained and tested with features extracted from simulated data.

2IceCube South Pole Neutrino Observatory http://icecube.wisc.edu
3A multi-km3 sized Neutrino Telescope http://www.km3net.org
4ANTARES Modules for Acoustic Detection under the Sea (AMADEUS)
5Ocean noise Detection Experiment (OνDE), a project at the site of the Neutrino Mediterranean Obser-

vatory (NEMO). http://nemoweb.lns.infn.it/
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Chapter 1. Introduction

Furthermore, studies of an effective volume and a transient-free, limit-setting potential of the
AMADEUS detector were performed with the simulation and analysis chain. Together with
an analysis of transient signals in the experimental data taken with AMADEUS, this will be
shown in Chap. 5. Finally, Chap. 6 concludes with a summary.
In the next chapter, the sources of UHE neutrinos and the principles of their detection will
be discussed; the setup of the ANTARES and AMADEUS detectors will be described in more
detail.
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Chapter 2
Neutrinos and their Detection
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The basic properties and interaction channels of neutrinos and their impact on neutrino
detection are presented in this chapter. An overview of the possible sources of UHE neutrinos
and the assumed underlying mechanisms to accelerate them to energies in the UHE regime are
given. Furthermore, the principles of optical and acoustic detection of neutrinos are explained,
as well as their implementation in the ANTARES optical Cherenkov neutrino telescope and
the subsystem AMADEUS for acoustic detection.

2.1 Neutrino properties and interactions

Neutrinos are light neutral leptons with spin 1/2 (cf. Tab. 2.1). Experimentally proven are three
neutrino flavours: electron-neutrino, muon-neutrino, and tau-neutrino. Neutrinos are created
and detected with a well-defined flavour. As neutrinos have mass and the flavour eigenstates
are not the same as their mass eigenstates, they are able to oscillate among the three flavours,
while propagating through space. For three-flavour oscillations, the unitary transformation
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m < 2.2 eV m < 0.17MeV m < 15.5MeV
0
1/2νe 0

1/2 νµ 0
1/2 ντ

electron-neutrino muon-neutrino tau-neutrino
m = 0.511MeV m = 105.7MeV m = 1.777GeV

−1
1/2 e −1

1/2 µ
−1
1/2 τ

electron muon tau

Table 2.1: Overview of the six flavours of leptons forming three generations and their basic
properties: upper mass limit, charge, and spin [5].

relating the flavour and mass eigenstates can be written as:

|να⟩ =
∑
i

Uαi |νi⟩ , (2.1)

where |να⟩ is a neutrino flavour eigenstate for a specific flavour α, |νi⟩ is a neutrino mass
eigenstate with i ∈ {1, 2, 3}, and Uαi is an unitary transform matrix, known as the Pontecorvo-
Maki-Nakagawa-Sakata matrix (PMNS matrix). This is a 3× 3 matrix, if the three Standard
Model neutrinos are considered. The propagation of the mass eigenstates |νi⟩ can be described
by plane wave solutions of the form (in the following natural units are used):

|νi(t)⟩ = e−i(Ei t−pix)|νi(0)⟩ , (2.2)

where Ei is the energy related to the mass eigenstate i , t is the time since the propagation
started at t0 = 0, pi is the momentum vector, and x is the position vector of the particle
relative to the source. In the ultra-relativistic limit, E = |pi | = pi ≫ mi , the energy of the
mass eigenstate can be approximated as:

Ei ≈ E +
m2

i

2E
. (2.3)

Using L = t, where L is the distance traveled, the wave-function translates into:

|νi(L)⟩ = e−im2
i L/2E |νi(0)⟩ . (2.4)

The time evolution of the mass eigenstates depends on the neutrino mass, and thus results in
different propagation speeds. As the mass eigenstates are combinations of flavour eigenstates,
this difference in speed causes interference between the corresponding flavour components
of each mass eigenstate. A neutrino created with a given flavour changes its flavour during
propagation caused by constructive interference. The probability that a neutrino originally of
flavour α will later be observed as having flavour β is:

Pνα→νβ = |⟨νβ(0)|να(t)⟩|2 =

∣∣∣∣∣∑
i

U∗
αiUβie

−im2
i L/2E

∣∣∣∣∣
2

(2.5)

Pνα→νβ = δαβ − 4
∑
i>j

ℜ(U∗
αiUβiUαjU

∗
βj) sin

2(
∆m2

ijL

4E
)

+ 2
∑
i>j

ℑ(U∗
αiUβiUαjU

∗
βj) sin(

∆m2
ijL

2E
) ,

(2.6)
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where ∆m2
ij ≡ m2

i −m2
j . An oscillation length Lij can be defined as the absolute value of:

Lij ≡
4πE

|∆m2
ij |

. (2.7)

The sources of neutrinos are assumed to be distributed over cosmological distances that are
far greater than Lij . The neutrinos from these sources are generated over a wide range of
energies. So the sine term in the probability function (Eq. 2.6 real part) is averaged out:

1

Lij

∫ Lij

0

sin2(
2πx

2Lij
)dx =

1

2
. (2.8)

The relative numbers of neutrinos with a specific flavour α = e,µ, τ arriving on earth, Ñνα ,
are calculated from the corresponding probabilities as:

Ñνα =
∑
β

Pνβ→να . (2.9)

As neutrinos from cosmological sources are primarily produced via pion decay (cf. Sec. 2.2),
the relative numbers of generated neutrino flavours are νe : νµ : ντ = 1 : 2 : 0. At earth,
these numbers are changed due to oscillation into 1 : 1 : 1 and result in equal probabilities for
measuring one of the three neutrino flavours [6].
The basic properties of neutrinos and neutrino oscillation having been discussed, the possible
interactions of neutrinos within the Standard Model are presented. Neutrinos only interact
via the weak force. So the cross section for neutrino interactions are low, allowing them not
only to escape from dense sources, but also making them difficult to detect. The Feynman
diagrams of the possible interactions [7] are given in Fig. 2.1. A neutrino or anti-neutrino of
any flavour can interact with a shell electron or a nucleon of the target medium (e.g. water)
by the exchange of the corresponding weak force vector boson (t-channel). For the charged
current (CC) interaction, this is the corresponding W± vector boson and, for the neutral
current (NC) interaction, a Z 0 is exchanged. The annihilation (s-channel) of an electron anti-
neutrino with a shell electron is also possible. The contribution of this interaction channel can
be generally neglected, except for the resonant formation of the intermediate vector boson
W− at an energy of Eν = 6.3 · 1015 eV, where the cross section exceeds that of the t-channel
cross sections by an order of magnitude. For the acoustic detection, this energy is below the
detection threshold of about Eν = 1018 eV (cf. Sec. 2.3.2). For ultra-high energies, the effect
of the resonance is not significant.
The double differential cross section of the CC/NC interactions of neutrinos or anti-neutrinos
with nucleons [7–9] can be calculated as:

d2σi(
(−)

ν N)

dxdQ2
=

G 2
FM

4
Vi

2πx(Q2 +M2
Vi
)
2 [Y+F

(−)
ν N,i

2 (x ,Q2)− y 2F
(−)
ν N,i

L (x ,Q2)
(−)

+ Y−xF
(−)
ν N,i

3 (x ,Q2)],

(2.10)
where i represents the current: neutral or charged. Anti-neutrino interactions are indicated by
(-), which also applies for the sign (−)

+ . MV is the mass of the corresponding vector boson,
which is exchanged, and Q2 is the four-momentum transfer. The Fermi constant is defined
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Figure 2.1: The Born level Feynman diagrams for reactions of neutrinos (νℓ) and anti-neutrinos
(ν̄ℓ) with matter. Time axis is pointing to the right. ℓ denotes any charged lepton, q(q̄) any
quark (anti-quark), where in relevant cases the charge is given as superscript. For the CC
neutrino annihilation diagram the outgoing fermion f1 can be any of ν̄ℓ, q+2/3, q̄+1/3 and the
other fermion f2 accordingly ℓ−, q−1/3, q̄−2/3.
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as: GF =
√
2
8

g2

M2
W
(ℏc)3, where g is the weak force coupling constant and MW is the mass of

the W-boson. F2, F3, and FL are the structure function in the deep inelastic scattering (DIS)
regime. Y± is defined as Y± ≡ 1± (1− y)2 and x = Q2

2M(E−E ′)
is the fraction of the nucleon’s

momentum carried by the struck quark. Finally, y = E−E ′

E
is the fraction of the lepton’s energy

loss in the nucleon rest frame, E and E ′ are the lepton’s energy in the initial and the final
state, respectively.
The predictions of neutrino cross sections in the UHE regime rely on extrapolation of exper-
imental data of the structure functions over several orders of magnitude, thus, introducing
sizeable uncertainties. In the context of UHE neutrino detection, these predictions are used for
both the estimate of the opaqueness of the earth and the rate of detectable interactions for a
given neutrino flux model and detector.
As the cross section increases with energy, the earth gets opaque for neutrinos in the UHE
regime. The mean free path can be defined as:

λ =
1

nσtot(Eν)
, (2.11)

where n is the number of target particles per unit volume and σtot is the total cross section of
the relevant interactions. Furthermore, n can be expressed using the depth-dependent function
of the density ρ of the earth: n = ρ(r)/mn, where mn is the mass of the neutron and r is the
distance to the centre of the earth, leading to a depth-dependent mean free path λ(r). The
earth is approximated as a sphere, and the Preliminary Reference Earth Model (PREM) [10] is
used to model the earth’s density profile. Typically, the detector would be placed under water,
so the earth is assumed to be covered with 2.5 km of water. The probability of a neutrino
reaching an interaction vertex in 2 km water depth is a function of the incident angle ϕ and
energy of the neutrino Eν is defined as:

p(ϕ,Eν) = e−
∫
1/λ(r ,Eν)ds = e−dWE(ϕ)/λwater(Eν) . (2.12)

The integral in the equation above is performed over the flight path of the neutrino. The
distance that the neutrino travels through matter of varying densities can be expressed as the
equivalent distance dWE in water. Fig. 2.2 shows the resulting probability distribution for a
neutrino reaching the detector as a function of the incident angle. For the upper hemisphere,
this probability is about 1 for neutrinos with an energy of 106 – 1012 GeV. The probability
decreases rapidly for incident angles below the horizon as the neutrino has to penetrate the
earth. For acoustic detection, neutrino energies greater than 109 GeV are of significance, thus
the upper hemisphere with a margin of 10◦ below the horizon is sufficient as solid angle
accessible by a detector. The probability of a neutrino reaching the detector with an incident
angle below 10◦ is less than 10−3 at 109 GeV.

2.2 Ultra-high-energy neutrino sources and produc-
tion mechanisms

The sources of UHE neutrinos and their underlying production mechanisms are discussed in
this section. Neutrinos can be produced be pp and pγ interactions of UHE protons with nuclei

13
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Figure 2.2: The probability distribution of a neutrino reaching a point in 2 km water depth as
a function of the incident angle and the neutrino energy. An angle of 0◦ denotes the horizon,
negative angles indicate that the neutrino is coming from below.

or photons in the ambient plasma:

p + p/γ → Nπ + X , (2.13)

where N ≥ 1 is the number of pions produced, and X represents other final state particles.
Also, neutrinos can be generated by the decay of exotic heavy particles and by dark matter
particle annihilation. So based on their production mechanisms, the possible sources can be
divided into two types: hadron accelerating sources and so-called top-down sources [11]. Most
of the processes1 have in common that the neutrinos are produced in the chain of pion decay:

π+ →µ+ + νµ

↪→ e+ + νe + ν̄µ

π− →µ− + ν̄µ

↪→ e− + ν̄e + νµ

π0 →γ + γ .

This mechanism leads to the composition of flavours produced in cosmological sources of
1 : 2 : 0 as mentioned before. The π0 decay is a source of high-energy gamma rays. As TeV
gamma ray sources can have hadronic or leptonic production mechanisms, the detection of
UHE neutrinos would prove the hadronic production of photons in these sources.
The currently accepted theory for the acceleration of charged particles in astrophysical sources
is that of Fermi acceleration [12–14]. In this stochastic process, a charged particle gains a
constant fraction of energy, while elastically scattered by magnetic turbulences or irregularities
moving with a characteristic velocity u. The particle is confined in the region of the inhomo-
geneous magnetic fields due to deflection until it possesses sufficient energy to escape. The
maximum energy achieved in this process depends on the magnetic field and the size of the
acceleration region [15]:

Emax = βsZBR , (2.14)
1Exotic heavy particles can have decay channels that directly produce neutrinos.
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where Emax is the maximum energy in units of 1018 eV, βs = u/c is the shock velocity, Z is
the charge of the accelerated particle in units of the electron charge, B is the magnetic field
in the acceleration region in µG, and R is the radius of this region in kpc.
A gamma-ray burst (GRB) [16, 17] is a short and rather directed emission of high-energy ra-
diation. It releases ≈ 1054 – 1056 GeV on time-sales ranging from ≈ 30ms to several minutes.
This makes them to the most (electromagnetically) luminous objects in the universe. There are
two main types of processes that produce GRBs: the core-collapse of a massive star resulting
in a black hole or two compact massive objects, like two neutron stars, merge into a black
hole (cf. Fig. 2.3). The two processes can be distinguished by the duration of the GRB, the
first is of long-duration (≳ 2 s) and the second one is of short duration (≲ 2 s). The high
material inflow rates accompanying these events result in the formation of relativistic jets. It
is assumed that velocity variations in the outflow of the jets produce internal relativistic shock
fronts capable of accelerating electrons. These electrons lose energy via synchrotron radiation
and produce the gamma ray burst observed. However, the gamma rays could also be produced
by π0-decay, which would indicate the acceleration of hadrons. The so-called afterglow of a
GRB is a wide-spectrum emission following the burst. It is produced by the creation of a highly
relativistic external shock front as the jet encounters the interstellar medium. The afterglow
emission seems to originate from the same mechanism as the burst itself. Fermi acceleration
processes in this turbulent source may also allow for an efficient acceleration of protons to
ultra-high energies in excess of 1020 eV. The detection of neutrinos from GRBs would prove
this hypothesis.
The next source discussed is among the most powerful known cosmological sources: the active
galatic nucleus (AGN) [18,19]. Their luminosity outperforms that of a typical galaxy by several
orders of magnitude, while the emission comes only from the compact region in the centre
of the host galaxy. A super-massive black hole forms an accretion disk, fuelled by the host
galaxy, and thus ejects mass in jets perpendicular to the accretion disk (cf. Fig. 2.4). Fermi
acceleration seems to describe the mechanism that can efficiently accelerate protons in the
multiple shock fronts occurring in the AGN jets, especially in their inner parts (sub-parsec
scale). Neutrinos are again produced via pion decay by the collision of accelerated protons
with photons from the accretion disc and with photons produced in the jet. This model is
compatible to the spectra observed in various wavelengths.
After discussing the production of UHE neutrinos at proton accelerating sources, the mecha-
nisms that generate UHE neutrinos at the propagation through space is described. The predic-
tion of the Greisen-Zatsepin-Kuzmin (GZK) cut-off [20, 21] in the UHECR spectrum caused
by the interaction of these protons with the cosmic microwave background (CMB) implies
the existence of a UHE neutrino flux. The protons can interact with the CMB resulting in a
∆-resonance, which further decays into a charged pion and a neutron:

p + γCMB → ∆+(1232) → n + π+ . (2.15)

The energy of CMB photons are distributed according to a Plank distribution for a black
body radiation with an average temperature of 2.7 K. The energy required to produce the
∆-resonance, and thus for the pion production, is E∆

th ≈ 6 · 1019 eV. This production limits the
distance from which protons with energies greater than E∆

th can reach the earth and results
in the so-called GZK horizon of the order of 100Mpc. The GZK neutrino flux seems to be
“guaranteed”, as production mechanisms for protons exceeding this energy threshold are known,
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like that mentioned above. The observations made by the AUGER collaboration [22, 23] are
compatible with the existence of the GZK cut-off, but uncertainties remain in the interpretation
of the experimental results. Also the composition of UHECRs, see e.g. [24] and references
therein, has a strong effect on the expected neutrino flux. If a substantial fraction of the cosmic
ray primaries are heavy nuclei rather than protons, they would preferentially lose energy through
photo-disintegration. So the corresponding neutrino flux may be substantially depleted. This
makes GZK neutrinos one of the prime candidates for UHE neutrino astronomy.
Apart from hadron accelerating sources or the GZK cut-off, there are other possible scenarios to
produce UHE neutrinos. One theory is the Z -Burst model [25,26] ], in which it is assumed that
it exists a cosmic neutrino background (CνB) comparable to the CMB originating from relic
neutrinos, which decoupled from the remaining matter about 1 s after the Big Bang. This CνB
is not yet experimentally proven to exist. This is complicated to obtain as these neutrinos have
energies of only a few meV [27]. However, if it exists, a flux of UHE neutrinos from distant
sources could interact via resonance with the CνB producing a Z -boson. On average, this
decays into about one baryon-anti-baryon pair and pions, which further decay into neutrinos
and photons. The primary UHE neutrino would require an energy of E primary

ν ≳ MZ/(2m
relict
ν ).

This energy is sensitive to the mass of the relic neutrinos mrelict
ν . If the momentum of the

secondary particles produced by the Z-burst points in the direction of the earth and occurs
within the GZK distance, then some of the photons and nucleons from that burst may initiate
an air shower in the atmosphere of the earth exceeding the GZK energy limit. So the Z -
burst model circumvents the energy limitation introduced by the GZK cutoff, but the derived
neutrino fluxes, if normalised to the measured cosmic ray spectra, are excluded by experiments,
see e.g. [28].
Another theory is the so-called top-down scenario [29], involving the decay or annihilation of
exotic superheavy particle, often denoted as X -particles, with a typical mass of the order of
the grand unified theory’s energy scale MGUT ≃ 1024 eV. Candidates of these X -particles are:
topological defects caused by symmetry-breaking in the early universe, which naturally occurs
in the time-varying gravitational field of the expanding universe at the post-inflationary stage,
or super-massive dark matter.

2.3 HE/UHE Neutrino detection principle

2.3.1 Optical detection principle

The optical detection of neutrinos via Cherenkov radiation, as used in neutrino telescopes, will
be introduced. The typical energy range of neutrinos, in which neutrino telescopes operate, is
10 – 107 GeV. As depicted in the sketch (Fig. 2.5), neutrinos interact with matter surrounding
the detector producing secondary particles such as electrons, taus, and muons. The latter
are favoured for the optical detection, because of their large mean free path and lifetime in
this energy range. As the earth acts as a shield against all particles except neutrinos, the
detection of upward-going muons as a signature of muon neutrino interactions can be used.
The detection medium needs to be transparent and of sufficiently large homogenous volume
to detect the expected low flux of cosmological neutrinos at a significant rate. So usually a
natural reservoir of water or ice is used, where the muon emits Cherenkov light. Basically,
Cherenkov light is emitted when a charged particle travels at a speed greater than the speed
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Figure 2.3: A Sketch showing one proposed mechanism resulting in a gamma ray burst: the
core collapse of a massive star. Adapted from [30].

Figure 2.4: A sketch of the current paradigm for AGNs (not to scale). The central black hole
is surrounded by a luminous accretion disk. Broad emission lines are produced in clouds (dark
grey spots) orbiting above the disk and perhaps by the disk itself. A thick torus obscures the
broad-line region from transverse lines of sight; some continuum and broad-line emission can
be scattered into those lines of sight by hot electrons (black dots) that pervade the region. A
hot corona above the accretion disk may produce the hard X-ray continuum. Narrow lines are
produced in clouds (grey spots) much further from the central source. Adapted from [19].
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of light in a given medium. The emission has a cone-like geometry that is characterised by the
Cherenkov angle θC :

cos(θC ) =
1

nβ
, (2.16)

where n is the refraction index and β = v/c the velocity of the muon represented as the fraction
of the speed of light in vacuum. For sea water, θC is typically about 42◦. The direction of the
muon trajectory corresponds to that of the neutrino within a few degrees at 10 GeV due to
relativistic forward boost. The track of flight through the detector is reconstructed from the
known position of the sensors and the arrival time of the light registered by the sensor. To
detect the Cherenkov light, PMTs are used with optimised peak quantum-efficiency for blue
light. Although the Cherenkov emission spectrum is continuous and peaked in the ultraviolet
region, the attenuation of light in water is minimal for blue light.

θc

Figure 2.5: Sketch of a neutrino (red line) interacting in the vicinity of the ANTARES detector
producing a muon (blue line) and the characteristic Cherenkov cone emitted by the muon.
Adapted from [31].

2.3.2 Acoustic detection principle

As already mentioned, the acoustic particle detection is based on the thermo-acoustic model
developed by Askariyan [1]. This model describes the generation of an acoustic pulse due to
the local heating of the medium by the energy deposition of a particle cascade. Such a particle
cascade evolves in the surrounding medium when a UHE neutrino interacts. The fast deposition
of energy by the cascade in the medium and the ensuing local heating process leads to the
characteristic bipolar pressure pulse (BIP). Due to the cylindrical geometry of the energy
deposition volume, the coherent superposition of primary wavelets leads to a propagation
through the medium in a disk-like shape perpendicular to the main axis of the cascade. This
shape is often referred to as “pancake”. The coherence length Lc ≈ ∆f /cs of the broadband
pulses need to exceed the radial dimension of the heated volume to achieve coherence. The
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thermo-acoustic model [1,32] can be derived from the Euler Equation for a compressible fluid
with the three coordinates i = 1, 2, 3:

∂(ρvi)

∂t
= −

3∑
j=1

∂Πij

∂xj
, (2.17)

with mass density ρ, velocity vector v of the fluid and momentum-density tensor including the
pressure p:

Πij = pδij − ρvivj , (2.18)

Taking the partial derivative ∂/∂xi of component i of Eq. 2.17 and using the mass continuity
equation:

∂ρ

∂t
+∇(ρv) = 0 , (2.19)

a non-linear wave equation can be derived:

∂2ρ

∂t2
=

3∑
i ,j=1

∂2Πij

∂xi∂xj
. (2.20)

A separation in two spatial regions is used as an approach to solve Eg. 2.20: One region called
I for “interaction”, where the energy is deposited by the particle interactions with the medium
and thus the wave excited. The hydrodynamic (“acoustic”) region called A is the second one,
where the acoustic wave propagates through the medium. This spatial split is applied to the
momentum density tensor and is rewritten as:

Πij = ΠA
ij + ΠI

ij . (2.21)

The change of density of the medium dρ can also be split into these two regions. dρ is
composed of a dynamic part, resulting from the change of the pressure, and a part caused
by heat transfer to or from the system. Under the assumption that the mole number N is
constant, the entropy S and pressure p characterise the state and the total derivative of ρ can
be separated in the following form:

dρ =
∂ρ

∂p

∣∣∣∣∣
S

dp +
∂ρ

∂S

∣∣∣∣∣
p

dS (2.22)

In thermodynamics, the entropy S in a reversible system is related to the heat Q and the
temperature T . Cp is the heat capacity at constant pressure and cp is the specific heat capacity
at constant pressure for a given mass m; the bulk volume expansion coefficient α for a Volume
V and the adiabatic sound velocity are defined as:

dS =
δQ

T
; Cp ≡ m cp = T

∂S

∂T

∣∣∣∣
p

; α =
1

V

∂V

∂T
; cs =

√
∂p

∂ρ
. (2.23)

For a reversible transformation, the integral
∫
δQ/T is independent of the path (see e.g. [33]).

Hence, for a reversible isothermal expansion, the heat deposition can be expressed using the
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exact differential dQ. Obviously, the process discussed is not isothermal, as the temperature
change is eventually responsible for the pressure wave. However, the temperature change
resulting from the interaction of a neutrino compared to the absolute temperature of the
surrounding medium is negligible. So the change of density dρ as expressed in Eq. 2.22 can be
reformulated in terms of thermodynamical equations as:

dρ =
1

c2s
dp − α

cp

dQ

V
(2.24)

⇒ dp = dpA + dpI = c2s dρ+ c2s
α

cp

dQ

V
, (2.25)

which splits the pressure change into an acoustic part dpA = c2s dρ and an interaction part
dpI = c2s α/cpdϵ, where ϵ ≡ Q/V is the energy deposition density. The quantities cs ,α, and
cp are assumed to be constant when performing integrations. Eq. 2.21 combined with Eq. 2.18
and the result of Eq. 2.24 can be rewritten as:

Πij = pAδij + ΠI
ij = c2s ρδij + ΠI

ij , (2.26)

with the term −ρvivj being neglected. The latter seems justified as vi can be assumed to be
small compared to cs and constant or only slowly varying with xi . As pressure changes will
only be measured in the acoustic region, in the following p ≡ pA will be used to formulate the
wave equation. Using Eq. 2.26, the wave equation (Eq. 2.20) translates for pressure differences
p′ = p − p0 (p0 being the static pressure) to:

∇2p′ − 1

c2s

∂2p′

∂t2
=

∂2ΠI
ij

∂xi∂xj
.

The general solution for the wave in the acoustic region can be written as [34]:

p′(r, t) =
1

4π

∫
V

dV ′ 1

|r − r ′|
∂2ΠI

ij(r
′, t ′)

∂x ′i ∂x
′
j

≈ 1

4πc2s

∫
V

dV ′ δij · Π̈
I
ij(r

′, t ′)

|r − r ′|
,

where for the last conversion, partial integration and the total derivative d
dxi

= ∂
∂xi

+ 1
cs

∂
∂t

have
been used repeatedly. Terms that are suppressed more than linear in |r − r ′| were neglected.
In the affected terms, the expressions have to be evaluated at the retarded time t ′ which is
given by t ′ = t − |r − r ′|/cs .
For the momentum density tensor in the interaction region, an isotropic energy deposition
without momentum transfer to the medium through the term −ρvivj in Eq. 2.18 is assumed:

ΠI
ij = pI δij = c2s

α

Cp
ϵδij .

Under these assumptions, a thermo-acoustic pressure wave that is generated by heating up
the medium is described by:

p′(r, t) =
1

4π

α

cp

∫
V

dV ′

|r − r ′|
∂2

∂t2
ϵ (r ′, t ′) . (2.27)
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The pressure field resulting from a particle interaction in a medium is thus determined by
the spatial and temporal distribution of the energy deposition density ϵ. The amplitude of
the resulting acoustic wave is governed by the thermodynamic properties cs , Cp and α, which
depend primarily on the temperature of the medium.
The thermo-acoustic model was proved by experiments, e.g., with proton and laser beams [35].
Simulations [36–38] showed that the frequency range of the generated sound waves spans from
1 to 100 kHz with a maximum spectral density around 11 kHz for a distance from the source
of about 1 km. The calculated bipolar signal has a peak-to-peak amplitude of approximately
170 mPa per 1020 eV of cascade energy. The pulse shape and the distinctive geometry of
the propagation are the main features to sought. The AMADEUS detector uses an array of
clusters of sensors to find the typical signature of a neutrino-induced pressure wave. The sensors
and read-out electronics are tuned to record these pulses. The design of the ANTARES and
AMADEUS detector and their components are described in the following sections.

2.4 The ANTARES neutrino telescope

The ANTARES neutrino telescope [39] is located in the Mediterranean Sea, 40 km off the
coast of Toulon, southern France in a water depth of about 2500 m. It was completed in May
2008 and has operating since this time. The detector is designed to detect the Cherenkov light
emitted from charged secondary particles of a neutrino interaction. It consists of 12 vertical
structures (detection lines 2) to detect the Cherenkov light. Each line is fixed to the seabed by
an anchor and is held vertically by a buoy on the top. Fig. 2.6 shows a sketch of the complete
ANTARES detector including the acoustic setup described in Sec. 2.5. The 12 detection lines
are placed on the seabed in an octagonal shape with four lines in a quadratical layout in the
centre. The distance between two neighbouring lines ranges from 60 to 80 m covering a total
area of ≈ 180× 180 m2 on the seabed. Each detection line has a total height of 480 m and
comprises 25 so-called storeys arrayed at distances of 14.5 m from each other, starting 100 m
above the seabed. An Optical Module (OM) [40] houses one 10” photomultiplier tube inside
a pressure resistant glass sphere with outer diameter of 43 cm as photo-sensitive sensor for
the detection of Cherenkov light. Each standard storey consists of a support frame that holds
three 45◦-downward-looking OMs and a titanium container with the required electronics (Local
Control Module (LCM)) for the purposes of data acquisition, control, and monitoring. An extra
line — the Instrumentation Line (IL07) — is equipped with sensors to monitor environmental
parameters. The detector is connected to the on-shore control room via an electro-optical deep
sea cable providing electrical power and data transmission.
As the detection lines are anchored at the bottom of the lines, they can swing and rotate
due to the force applied by the undersea currents. To determine the positions of the storey
with a precision of about 20 cm — as required to achieve the specified pointing precision
of reconstructed muon tracks in the sub-degree range — the detector is equipped with an
acoustic positioning system [41]. The system consists of acoustic transceivers at the anchor
of each line. Along each detection line, five positioning hydrophones receive the signals of the
emitters. By performing multiple time delay measurements and using these to trilaterate the
individual hydrophones, the line shapes can be reconstructed relative to the positions of the

2The expressions “line” and later in the text “storey” are used according to the ANTARES terminology.
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emitters. Currently, the sequence of signal emissions required for the positioning is emitted
every two minutes. The signal emitted is a sine wave of particular frequency in the range of
40 – 60 kHz and the duration of the emission is 2 ms. For the positioning, the signal of the
corresponding line is identified by the know emission time and the frequency.

(optical)
Storey Storey

(acoustical)

Buoy

Junction Box

Cable to shore

IL07

Anchor

~2m

~180m

14.5m

100m

~4
80

m

~180m

L12

Figure 2.6: Sketch of the ANTARES detector in its design configuration with the so-called
acoustic storeys on Line 12 and on the Instrumentation Line (IL07) highlighted. For further
description see the text.

2.5 The AMADEUS detector

In contrast to neutrino telescopes currently in operation, acoustic neutrino detection uses the
effect that UHE neutrinos interacting in a homogenous medium cause a detectable acoustic
pulse according to the thermo-acoustic model [1]. The AMADEUS detector [42] was designed
to prove this principle and to conduct a feasibility study in a realistic setup as it can be used for
a future large-scale detector. The detector is integrated into the ANTARES neutrino telescope.
As a subsystem, the AMADEUS detector shares the infrastructure with the ANTARES detector.
The main goal of the AMADEUS project is to study the feasibility of an acoustic neutrino
telescope. This includes the following studies as part of the research:
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• The development and testing of hardware components, including sensors and read-out
electronics suitable for future detection systems.

• Measurement of the ambient noise level at the ANTARES site on a timescale of several
years. These results will allow for an estimate of the lower threshold of the signal-to-noise
ratio of a detectable signal.

• The rate and correlation length of transient background signals that can mimic the acous-
tic signature of a neutrino interaction and their corresponding sources are researched.

• The development of a simulation and analysis chain with a modular architecture that is
highly flexible and makes it easy to adapt to different detector geometries, environmental
conditions or hardware used.

The last two points are discussed in this work.
In this section, the experimental setup of the AMADEUS detector with its components are
described. As the geometry of the detector and its hardware components (sensors and read-
out electronics) are integrated in the simulation, here an overview of the technical aspects is
given, while the detailed description of the implementation in the simulation is given in the
corresponding Sec. 3.3.

2.5.1 Experimental setup

The components of the acoustic detection setup are designed to perform measurements in
an arrangement of acoustic sensors allowing for coincidence studies at different length scales.
In total, six storeys of the ANTARES detector are equipped with six sensors (cf. Sec. 2.5.2)
each representing clusters of sensors (acoustic storeys): three acoustic storeys are located at
the top of Line 12 and on the IL07, respectively (cf. Fig. 2.6). These lines are separated by a
horizontal distance of 240m. The vertical distance between the acoustic storeys on Line 12 is
the standard distance of 15 m and the lowest storey is 390 m above the sea floor. The IL07
comprises a total of six non-standard storeys with distances of 80 m between Storey 1 and 2
as well as Storey 4 and 5. The Storeys 2, 3, and 6 are acoustic storeys, which therefore have
vertical interspaces of 15 m and 110 m, respectively. So, the storeys are 180 m, 195 m, and
305 m above the sea floor. The maximum distance of two acoustic storey is 340 m [42]. This
setup realises three different distance scales: sensors within a storey have spacings of about
1 m, adjacent storeys of about 15 m, and the distances are from about 100 m to 340 m for
storeys on the IL07 and between storeys on different lines. The setup of acoustic storeys within
the ANTARES neutrino telescope and the different length scales are shown in Fig. 2.7.
As for the ANTARES detector, the relative positions of the acoustic storeys within the detector
have to be continuously monitored. The emitter signals of the ANTARES acoustic positioning
system, as described in Sec. 2.4, are used. The time difference between the known emission time
and reception of the signal can be calculated. The positions of the AMADEUS sensors can be
reconstructed using the signals from multiple emitters and their known positions at the anchors
of the lines. The positioning accuracy for each hydrophone shows statistical uncertainties of a
few millimetres for the hydrophones. The final measurement is expected to be dominated by
systematic uncertainties due to the actual physical size of the receiving piezoelectric sensor,
their relative positions within the storey, and the speed of sound in sea water. For the Acoustic
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Modules (AMs) (cf. Sec. 2.5.2), the position reconstruction is less precise and statistical and
systematic uncertainties are expected to be of the same order of magnitude [42]. In the next
section, the acoustic sensors used in the AMADEUS detector and the configurations, in which
the sensors are mounted, will described.

390m
to

sea bed

110m

240m
to

sea bed
180m

85m

15m

15m

15m

L12

IL07

AM
H1

H2 

H2 

H1

H1

Figure 2.7: A sketch of the different length scales realised in the acoustic setup. H1 indicates
storeys equipped with custom-designed hydrophones, H2 these with commercial ones and AM
refers to Acoustic Modules (see text).

2.5.2 Acoustic sensors

Two types of acoustic sensors are used in the AMADEUS setup [42]: hydrophones and Acoustic
Modules (AMs) (cf. Fig. 2.8). The three acoustic storeys on the IL07 are holding hydrophones,
on Line 12 one of the acoustic storeys is equipped with AMs, and one has downward pointing
hydrophones in contrast to the other storeys holding upward pointing ones. Both types of
sensors are based on piezoelectric ceramics that convert pressure waves into voltage signals,
which are then amplified for read out [43]. To protect the sensor in the deep sea environment,
the ceramics and amplifiers are moulded in polymer plastics in the case of the hydrophones. For
the AMs, they are glued to the inside of glass spheres identical to those used for the ANTARES
OM (cf. Fig. 2.9). For future applications, this design allows for the integration of acoustic
sensors and optical sensors, together, into the same pressure housing, thereby avoiding the need
for additional mechanical structures [44]. The hydrophones used in the AMADEUS detector
are either from a commercial supplier (HighTech Inc. hydrophones (HTIs)3) or developed and
produced at the Erlangen Centre for Astroparticle Physics (ECAP), dubbed custom-designed

3http://www.hightechincusa.com/
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hydrophones (LTIs). As the frequency range of the expected acoustic signal from a neutrino
interaction spans from 1 to 100 kHz with a peak spectral density around 11 kHz, the sensors
are tuned to be sensitive (around −145 dB re. 1V/µPa) [45,46] in this range and provide a low
inherent noise level. The sensitivity of one of HTI and LTI hydrophones is shown in Fig. 2.10
together with a scheme of the a LTI hydrophone.

(a) Acoustic storey with
hydrophones pointing up
(standard)

(b) Acoustic storey with hy-
drophones pointing down

(c) Acoustic storey with Acoustic
Modules

Figure 2.8: Photographs of the three different storeys of the AMADEUS system [42] during
their deployment: (a) A standard acoustic storey, equipped with hydrophones pointing up; (b)
the central acoustic storey on Line 12 with the hydrophones pointing down; (c) the lowermost
acoustic storey on Line 12 equipped with Acoustic Modules.

2.5.3 Acoustic data acquisition

The data acquisition of the AMADEUS detector [42] consists of one part off-shore and another
on-shore. Off-shore, the digitisation and the data transfer are handled within the LCM on each
storey by custom-designed digitisation boards (AcouADC-board4) and the standard ANTARES
data acquisition (DAQ) 5. Figure 2.11(a) shows a fully equipped LCM of an acoustic storey.
From the left to the right, the following boards are installed: a Compass board, which measures
the tilt and the orientation of the storey; three AcouADC-boards6 (cf. Fig. 2.11(b)); a DAQ-
board that transmits the data to shore; and a Clock board that provides the timing signals

4acoustic analog-to-digital converter board (AcouADC)
5According to the ANTARES “all data to shore” strategy [47], a completely unfiltered data stream is

transmitted to shore.
6Each board is designed to process the differential signals from two acoustic sensors, which results in a

total of three such boards per storey.
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flexible titanium

support structure

sensors

piezo ceramics

(a) Acoustic Module (AM) (b) Horizontal cross section

Figure 2.9: (a) Photograph of an Acoustic Module (AM) before deployment; (b) horizontal
cross section of the acoustic storey holding Acoustic Modules in the plane of the sensors. The
dotted lines are collinear with the longitudinal axis of the sensors and indicate the arrangement
of the sensor within the storey. The lines intersect at angles of 60◦ at the centres of the glass
spheres. Adapted from [42].
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Figure 2.10: In (a) The sensitivity in the horizontal direction, which is the result of a calibration
measurement [45,46], for one of the commercial and one of self-made hydrophones is shown.
In (b), a scheme of a LTI hydrophone is given. Adapted from [42]
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to correlate measurements performed in different storeys. The ANTARES neutrino telescope
provides the capability of a 50 nanosecond timing resolution7 and a simultaneous data trans-
mission of up to 30MBits/s per storey, which is suited for the acquisition of acoustic data.
On-shore, a dedicated computer-cluster is used to process and store the acoustic data arriving
from the storeys and to control the off-shore DAQ [48]. On this cluster different data filtering
schemes are implemented. Transient signals are selected by a variable threshold, which is self-
adjusting to the changing conditions of the deep sea. For BIPs a pattern recognition based on
cross-correlating the output of the sensors with a pre-defined bipolar pulse is used. To study
the ambient noise in the deep sea a certain amount of unfiltered data is stored as well. In
Sec. 3.4, the on-line filter system is described in more detail, as well as its implementation in
the simulation.

(a) Local Control Module (LCM) (b) AcouADC-board

Figure 2.11: (a) A LCM during assembly, equipped with three AcouADC-boards, before in-
sertion into the titanium container. The sockets for external connection to the sensors (not
visible in this picture) are attached to the lid of the container on the left-hand side of the
photograph. From left to right, the following boards are installed: a Compass board; three
AcouADC-boards; a DAQ-board; a Clock board. (b) Photograph of an AcouADC-board. The
four connectors for the two differential input signals are located at the top, the analogue signal
processing electronics is covered by metal shields. Adapted from [42]

.

AcouADC-board

The AcouADC-board is shown in Fig. 2.11(b) and consists of an analogue and a digital part [49].
The analogue part amplifies the voltage signals from the acoustic sensors by adjustable factors
between 1 and 562 and applies a band frequency filter to the resulting signal. The digital part
digitises and further processes the acoustic data. The digitisation is performed by an analog-to-
digital converter (ADC) with a 16-bit resolution and a sampling rate of 500 thousand samples
per second (kSPS). To have a flexible setup, a field-programmable gate array (FPGA) as

7In fact, the ANTARES detector is capable of providing sub-nanosecond precision for the synchronisation
of the optical data recorded by the PMTs. This precision, however, is not required for the acoustic data.
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data processor and a micro-controller (µC) are employed. Within the FPGA, which reads the
digitised acoustic data from the ADC, the data can be further processed, e.g., being down-
sampled to reduce data traffic, and formatted for transfer to the DAQ-board, which handles the
transmission to the on-shore control room. As a standard setting, a downsampling of a factor
of two (250 kSPS) is used, which is sufficient to study the background noise up to 100 kHz
without exceeding the bandwidth limit for a continuous and simultaneous transmission of the
data of all sensors to shore. The µC can be controlled from on-shore and is used to adjust
settings of the analogue part and the data processing. Furthermore, the µC can be used to
update the firmware of the FPGA in situ.

System response

In the deep sea, transient signals exhibit a huge variety of signal shapes, and the background
noise covers a broad frequency range. Therefore, a precise understanding of the data-acquisition
hardware concerning its frequency behaviour and the resulting signal distortion on the path
from the sensors to the digitisation is essential. By calibrating the complete data taking chain
— deducing the transfer function of the system — it is possible to reconstruct the real
acoustic signal from the recorded one with high precision within the sensitive frequency range
of the setup. Fig. 2.12 shows the measured filter characteristics of the analogue part of an
AcouADC-board for a gain of 10 in amplitude (20 dB) and different settings of downsampling.
The parameterised transfer function is also shown. This filter suppresses frequencies below
about 4 kHz and above ≈ 130 kHz. The high-pass part cuts into the trailing edge of the low
frequency noise of the deep sea acoustic background [50] and thus protects the system from
saturation. The low-pass part efficiently suppresses frequencies above the Nyquist frequency
of 250 kHz for the digitisation frequency of 500 kHz to eliminate aliasing effects. The inherent
noise of the AcouADC-board is about -150 dB re. 1 V2/Hz and the dynamic range achieved is
from about 1 mPa to 10 Pa (including the adjustable gain) in RMS over the frequency range
from 1 to 100 kHz. This allows studies of the acoustic background in the deep sea and of BIPs
from noise sources imitating neutrino signatures under essentially all prevailing conditions [50].
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In this chapter, the simulation chain that was developed is presented. The simulation
covers all aspects required for acoustic neutrino detection — from the generation of the UHE
neutrino-induced bipolar pressure pulse (BIP) and its propagation to the sensors within the
detector to the acoustic environment of the deep sea. This includes transient and ambient
noise models for the Mediterranean Sea, as derived from AMADEUS data. The detector
geometry1 and hardware components used in the simulation chain are equivalent to those of
the AMADEUS detector. The simulation chain is designed within the SeaTray/IceTray software

1The known position and orientation of the sensors within the detector are used as fixed parameters. A
simulation of the movement of the lines due to sea current is not yet implemented.
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framework [51–53]. Its modular architecture is highly flexible and easy to adapt to different
environmental conditions, data acquisition hardware, or detector geometries. The simulation
chain consists of a number of modules (cf. Fig 3.1), which build on each other to create a
simulated event that corresponds to the output of the detector. The tasks of the modules are
the following:

1. The parameters of the incident neutrino — its energy, flight direction and the position
of the interaction vertex — are chosen. The distributions that the parameters follow and
their ranges are user-defined within the limits of the simulation.

2. The energy deposition of the UHE neutrino-induced hadronic shower in water is repro-
duced at the position of the interaction vertex.

3. The formation and propagation of the acoustic signal generated by a UHE neutrino
interaction is calculated.

4. The reproduction of the deep-sea environment at the AMADEUS site, the ambient and
transient noise conditions, is performed.

5. The DAQ-hardware — the system response and inherent noise of the acoustic sensors
and corresponding read-out electronics — is simulated.

6. The simulation of the on-line filter system used in the AMADEUS detector for data
reduction and waveform pre-selection is applied.

In the following sections, the design of the simulation chain and the capabilities of the different
modules are described in detail.

Particle Generator


Shower Generator


Pulse Generator


Transient Noise 
Generator


Ambient Noise Model 


DAQ & Sensor Simulator


Online Filter Simulator


Figure 3.1: Overview of the different modules of the simulation chain.
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3.1 Neutrino-induced acoustic pulse simulation

The first major step of the simulation chain is the calculation of the acoustic pulse from a
hadronic cascade produced by a UHE neutrino interaction in water. Following the thermo-
acoustic model [1] (cf. Sec. 2.3.2), an acoustic pulse is generated by the energy deposition
of a particle shower in the surrounding medium. The fast local heating caused by this energy
deposition leads to a BIP. Due to the coherent emission from the cylindrical geometry of the
shower the wave propagates through the medium in a disk-like shape perpendicular to the
main axis of the cascade. Firstly, the simulation of the energy deposition by the cascade is
described and subsequently the calculation of the resulting acoustic pulse.

3.1.1 Calculation of the total shower energy

The total amount of the shower energy Esh that is deposited by a neutrino-induced cascade is
calculated from the neutrino energy Eν using the energy transfer represented by the kinematic
variable y :

Esh = y ·Eν (3.1)

The distribution of the energy transfer y depends on the neutrino cross section, which is
a function of the energy, the flavour, and interaction channel, as described in Sec. 2.1. A
parametrisation of the y -distribution derived in the work of Connolly et. al. [8] is used in this
simulation to determine the total energy deposited by the cascade (cf. Fig. 3.2). It is assumed
that the ratio of neutrinos and anti-neutrinos from cosmological sources of any flavour is
1 : 1. The proportion of cross sections from NC or CC interactions is about σNC/σCC =
0.415, according to values of the cross sections taken from [54]. This is used to determine
the current of the neutrino interaction, as this is needed for the calculation of y from the
parametrisation. The energy range of the incoming neutrinos is set from 109 GeV, where a
neutrino-induced interaction starts to produce an acoustically detectable signal, to 1012 GeV,
to which the parametrisation is well-defined. A uniform distribution of the neutrino energy is
used to maintain a sufficient rate at high energies. For shower energies smaller than 106 GeV,
the energy is set to 106 GeV to avoid exceeding the valid energy range of the total energy
deposited by the cascade described in the next section.

3.1.2 Shower generation

As starting point, the work done by the ACoRNE2 Collaboration was used for the shower
simulation [36,37]3. The basic idea of that work was to use a modified version of the CORSIKA4

simulation [55] in order to reproduce the hadronic showers in water and the resulting energy
deposition. The distribution of this energy deposition was then parameterised, in order to
reduce the required time for the simulation to run. The energy deposition distribution used in
the simulation chain presented here is based on their parametrisation. This incorporates the
result of 1500 CORSIKA showers in water for each of the half magnitude steps in the energy
range between 105 GeV and 1012 GeV. Utilising the cylindrical symmetry of the cascade, each of

2Acoustic Cosmic Ray Neutrino Experiment (ACoRNE)
3Matlab source code available at http://www.hep.shef.ac.uk/research/acorne/shower.php
4Cosmic Ray Simulations for Kascade (CORSIKA)
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Figure 3.2: (a) The y-distribution of neutrino-nucleon charged current interaction for neutrino
energies ranging from 109 GeV to 1012 GeV. (b) The simulated distribution of the total shower
energy using the y-distributions for the neutrino energy ranging from 109 GeV to 1012 GeV.
For shower energies smaller than 106 GeV, the energy is set to 106 GeV to avoid exceeding the
valid energy range of the total energy deposited by the cascade.

the deposited energy distributions are represented by a matrix with 100 rows corresponding to
the longitudinal dimension and 20 columns corresponding to the radial dimension. The actual
parametrisation of the shower is performed by using the singular value decomposition (SVD)
method. The main properties of the SVD [56] will be introduced and an overview on how the
parametrisation was performed is given. The SVD of a m × n matrix M can be decomposed
to the following form:

M = UΣV∗ (3.2)

where U is a m×m unitary matrix, Σ is a m×n rectangular diagonal matrix with nonnegative
real numbers on the diagonal, and V∗ (the conjugate transpose of V) is a n × n unitary
matrix. The diagonal entries σ of Σ are the singular values of M, which are commonly listed
in descending order. The m columns of U and the n columns of V are called the left and right
singular vectors of M, respectively. The Eckart-Young theorem [57] asserts that the truncated
singular value decomposition, obtained by discarding all but the first k largest singular values
σ and their corresponding left and right singular vectors, is the best rank-k approximation in
the sense of least squares to the original matrix.
For the derivation of the parametrisation, the SVD was performed two times, once for the
radial and once for the longitudinal distribution of the deposited energy as a function of
the total shower energy. In each decomposition step, the main components of the energy
deposition can be separated from the fluctuations between simulated showers by only taking
the largest singular values into account. As the value of the singular value σ can be interpreted
as the importance for the approximation, the number of singular values to choose for the
approximation can be estimated by defining a parameter α as:

α =

∑i=k
i=1 σi∑i=n
i=1 σi

(3.3)
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This procedure [36,37] leads to a linear parametrisation of the deposited energy by the shower
for each of the energy steps. In comparison with the original shower data, the parametrisation
is able to recreate the energy deposition within an average accuracy of 5% in profile and mag-
nitude. The mean and standard deviation of the linear parameters within the parametrisation
for each of the 15 half decades of the energy range were used to reproduce the statistics of
the showers. To overcome the limitation of the energy stepping, interpolation between steps
were used to model intermediate values. As the corresponding interpolated singular vectors
are not necessarily orthogonal, which would normally be the case for the SVD, the resulting
correlations between the singular vectors have to be reintroduced by multiplying them with
the matrix square root of the correlation matrix.
The longitudinal and radial energy density distribution of a 1011 GeV shower is shown in
Fig. 3.3(a). In order to overcome limitations in the original binning of radial dimension r
and the longitudinal dimension z , the energy distribution was linear interpolated in the two
dimensions. From this energy distribution, a three dimensional representation — so-called
Monte Carlo (MC) shower — is produced with a point density proportional to the energy den-
sity distribution. Typically 106 MC points are used to create the MC shower, this is a trade-off
between runtime and accuracy. The resulting MC shower is shown in Figs. 3.3(b) – (d) as pro-
jection of three-dimensional MC point distribution of the MC shower to a plane defined by the
axis of the coordinate system. The size of the bins is 0.001 m for x and y , and 0.005 m for
z , respectively. The MC shower is about 20 m long and has a Molière radius5 of about 10 cm.
After the energy deposition within the cascade has been simulated, the MC point shower is
translated to the position of the interaction vertex set in the volume around the detector and
aligned according to the flight direction of the neutrino. For the energy range under consider-
ation, the flight direction of the UHE neutrino and direction of the main axis of the shower
can be assumed to be equal. Thereafter, the acoustic pulse and its propagation to the sensors
within the detector are calculated.

3.1.3 Acoustic pulse calculation

As mentioned in the previous section, the hadronic shower deposits energy in the medium, in
this case in water, resulting in a local heating. With respect to hydrodynamical time scales,
the energy deposition can be assumed instantaneous at time t0, and the dissipation of the
energy is slow in comparison. The energy deposition density ϵ(r, t) can be factorized into a
spatial and temporal part using the Heaviside function:

ϵ(r, t) = ϵ̃(r)Θ(t − t0) ⇒ ∂

∂t
ϵ(r, t) = ϵ̃(r)δ(t − t0) . (3.4)

Assuming a total energy deposition E in a cylindrical volume containing the shower, the spatial
part ϵ̃(r) can be expressed for the longitudinal and radial positions z and r in the shower as:

E ϵ̃(r) =
1

2πr

d2E

drdz
. (3.5)

5By definition, this is the radius of a cylinder containing on average 90 % of the shower’s energy deposition.
As the energy deposition is proportional to the point density in this case, the 90 %-quantile of the distance
distribution of the points from the showers main axis is used.

35



Chapter 3. Simulation Chain

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0  500  1000  1500  2000

L
o

n
g

it
u

d
in

al
 b

in
s 

[1
b

in
=0

.0
05

m
]

Radial bins [1bin=0.001m]

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

d
2 E

/d
rd

z 
[G

eV
/c

m
2 ]

(a) Deposited Energy

-0.4

-0.2

 0

 0.2

 0.4

-0.4 -0.2  0  0.2  0.4

y 
[m

]

x [m]

 0.1

 1

 10

 100

 1000

 10000

 100000

N
b

r.
 o

f 
M

C
 P

o
in

ts

(b) MC shower xy -projection

-20

-15

-10

-5

 0

-0.4 -0.2  0  0.2  0.4

z 
[m

]

x [m]

 0.1

 1

 10

 100

 1000

N
b

r.
 o

f 
M

C
 P

o
in

ts

(c) MC shower xz-projection

-20

-15

-10

-5

 0

-0.4 -0.2  0  0.2  0.4

z 
[m

]

y [m]

 0.1

 1

 10

 100

 1000

N
b

r.
 o

f 
M

C
 P

o
in

ts

(d) MC shower yz-projection

Figure 3.3: Energy density distribution and generated MC shower for a total shower energy is
1011 GeV. (a) The longitudinal and radial distribution of the deposited energy of the shower
in water. (b) – (d) show the projection of three-dimensional MC point distribution of the MC
shower to a plane defined by the axis of the coordinate system. Bin-sizes for x and y are
0.001 m and 0.005 m for z , respectively.
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Inserting Eq. 3.4 and Eq. 3.5 into the expression for the pressure p, following [32], as derived
in Sec. 2.3.2:

p(r, t) =
α

4πcp

∫
d3r ′

|r − r′|
∂2

∂t2
ϵ(r′, t − |r − r′|

cs
), (3.6)

where α is the thermal expansion coefficient, cp is the specific heat capacity at constant
pressure and cs the speed of sound in the medium. Eq. 3.6 can be further reduced to:

p(r, t) =
Eα

4πcp

∫
d3r ′

R
ϵ̃(r′)

d

dt
δ(t − R

cs
), (3.7)

where R = |r − r′| is the distance between the shower maximum and the sensor. A velocity
potential can be defined, following [36,37]:

Exyz(t) =
Eα

4πcp

∫
d3r ′

R
ϵ̃(r′)δ(t − R

cs
). (3.8)

The velocity potential Exyz is evaluated at the position of the sensor. For the Mediter-
ranean Sea, the water temperature can be assumed constant and α = 2.0 · 10−4 /K at 287 K,
cp = 3.8 · 103 J/kg/K, and the speed of sound cs = 1542m/s at the detector centre are used.
As described before, the distribution of points within the MC shower is proportional to the
energy density distribution of the shower. So the pressure at a sensor in a distance R from the
shower can be numerically calculated. The signal propagation time from each point within the
MC shower to a sensor in the detector is calculated and entered into a histogram with a bin-
width according to the sampling rate (here 1 µs) and a size sufficient to hold the distribution
(here 215 bins). After normalising each bin with the number of points in the shower, scaling
it with the constant term (see Eq. 3.8), and dividing by the mean distance to the shower, this
results in the velocity potential Exyz(t) as shown in Fig. 3.4(a) for a total shower energy of
1011 GeV and a distance of 1 km. The Fourier Transform of Eq. 3.7 including Eq. 3.8 can be
written as:

p(ω) =

∫
d

dt
Exyz(t)e

−iωtdt = iω

∫
Exyz(t)e

−iωtdt = iωExyz(ω) , (3.9)

taking into account the basic property of the Fourier transformation (FT) that the derivative in
the time domain is the same as multiplying by iω in the frequency domain. Exyz(ω) is derived
from the histogram Exyz(t) using the fast Fourier transformation (FFT). Also in the frequency
domain, the frequency-dependent sound attenuation in sea water can be accounted for by
multiplying it with the pressure signal. The sound attenuation model used in this simulation
chain is discussed below. The resulting acoustic signal as a function of time for a total shower
energy of 1011 GeV and a distance of 1 km is shown in Fig. 3.4(b). The bipolar pulse shape
can be clearly recognised. The corresponding relative power spectral density (PSD) of the
acoustic signal as function of the frequency is presented in Fig. 3.4(c). The spectrum is broad,
as 90 % of the spectral power is contained within the frequency range from 1 to 100 kHz with
a maximum spectral density around 11 kHz.

Attenuation

The attenuation of sound is described by an exponential function of the sound intensity I :

I = I (r0) exp(−ηr/r0) , (3.10)
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Figure 3.4: The velocity potential Exyz(t), the resulting acoustic signal and its PSD calculated
for a MC shower of a total energy of 1011 GeV and a distance of 1 km. (a) The velocity potential
Exyz(t) as a function of the flight time, which is normalised to the mean flight time. (b) The
calculated acoustic signal at the sensor as a function of the flight time and (c) the relative
PSD of the signal as function of the frequency.
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where η is the attenuation coefficient, r is the distance from the emitter to the receiver, and
r0 is a reference distance, which is typically 1 m. Expressed as intensity level L, this translates
into a linear equation:

L(r) = −αr with (3.11)
α = 10 log(e)η , (3.12)

where α is the logarithmic attenuation coefficient (in dB/m or dB/km). Following the approach
of Ainslie and McColm [58], the frequency-dependent attenuation coefficient α(f ) for sea water
can be represented by the contribution of the processes involved:

α(f )(in dB/km) =
∑

j=1,2,3

αj =
∑
j=1,2

Aj

(
fj f

2

f 2j + f 2
+ i

f 2j f

f 2j + f 2

)
+ A3f

2 . (3.13)

The first term describes absorption by chemical relaxation processes. In this model, boric acid
(α1) and magnesium sulphate (α2) contribute to the attenuation. Both can be represented
as complex high-pass filters with specific cut-off frequencies fj ; thus they introduce a phase-
shift, as described by Liebermann [59]. The second term introduces viscous absorption caused
by particle motion (α3). Aj are constants depending on environment conditions like pressure,
temperature, salinity and acidity. The absorption coefficients αj can be parametrized as:

α1 = 0.106 exp

(
pH − 8

0.56

)(
f1f

2

f 21 + f 2
+ i

f 21 f

f 21 + f 2

)
, with f1 = 0.78

√
S

35
exp

(
T

26

)
kHz

(3.14)

α2 = 0.52

(
1 +

T

43

)
S

35
exp

(
−D

6

)(
f2f

2

f 22 + f 2
+ i

f 22 f

f 22 + f 2

)
, with f2 = 42 exp

(
T

17

)
kHz

(3.15)

α3 = 4.9 · 10−4 exp

[
−
(
T

27
+

D

17

)]
f 2 (3.16)

T is the water temperature in ◦C, D is the depth in km, pH the acidity and S the salinity
in ppt. For the Mediterranean Sea at the depth of the centre of the AMADEUS detector,
D = 2.15 km, T = 13.2 ◦C, S = 38.5 ppt, and pH = 8.1 are used.

Characteristics of the acoustic signal

Measures have to be defined to characterise the acoustic signal of a neutrino-induced inter-
action, such as the one calculated from the simulation of the deposited energy by a cascade.
A peak can be defined as the point, where a curve has an extremum. So the peak pressure
of an acoustic signal can be defined as the maximal pressure p reached by the time-domain
waveform relative to the equilibrium. Also the peak-to-peak amplitude can be formulated as:
ppeak-to-peak = |max p| + |min p| and the asymmetry of the waveform as: |max p|−|min p|

|max p|+|min p| . The
duration of the BIP is defined as the time between the occurrence of the positive and the
negative peak of the waveform.
As mentioned before, the pulse propagates through the water in a disk-like shape perpendicular
to the cascade’s main axis — the so-called pancake. The emission angle of this propagation
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Figure 3.5: The attenuation coefficient alpha given in dB/km as a function of the frequency
in kHz.

pattern can be defined as the angle between the plane through the shower maximum perpen-
dicular to the main axis of the shower and the receiver. A positive emission angle indicates
that the receiver is below this plane. The dependency on the relative peak pressure from the
emission angle is shown in Fig. 3.6(a). The opening angle of the pancake can be defined as
the full width at half maximum (FWHM) of the distribution, which is about 0.6◦. Due to
the geometric spread and attenuation in sea water, as discussed above, the peak pressure is
a function of the distance r from the cascade to the receiving sensor. It is expected that in
the near-field the amplitude has a 1/

√
r -dependency, in the far-field a 1/r -dependency, and

in the attenuation dominated region a 1/r 2-dependency [60]. This dependency is shown in
Fig. 3.6(c), until about 100 m the near-field dependency is dominant, between 100 – 2000 m
the transition between near- and far-field occurs, and for greater distances the attenuation
becomes dominant. Fig. 3.6(b) shows the asymmetry of the pulse in relation to the emission
angle defined above. For positive emission angles, the pulse initially becomes more symmetric
while moving out of the median plane and then the asymmetry becomes negative at larger
angles. For negative angles, the asymmetry of the pulse decreases but not to the extent as
for positive ones. The shower maximum is not centred along the main axis of shower, it is
located at about 1/4 of the total length of the shower. This results in the difference between
positive and negative angles in the angular distribution of the asymmetry of the pulse. The
asymmetry as a function of the distance r is presented in Fig. 3.6(d). In the near-field region
the determination of the asymmetry is problematic as small variations in the position of the
shower maximum have a sizable impact on this. For larger distances, the asymmetry of the
pulse decreases without becoming completely symmetric, which is caused by the complex na-
ture of the attenuation.
The PSDs as function of the distance, angle, and total shower energy is shown in Fig. 3.7;
the dependence on the PSD from the distance, as shown in Figs. 3.7(a) – (b), is the follow-
ing: While in the near-field the PSD is broad and flat, the main spectral component evolves
in the range of 5 – 50 kHz peaking around 10 – 15 kHz as the distance grows into the tran-
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sition region between near- and far-field. The effect of the angle relative to the receiver is
that the peak spectral density is shifted below 15 kHz and the power contained in this peak
increases for larger angles. (cf. Figs. 3.7(c) – (d)). The total energy of shower has minor effect
on the PSD. The PSD is shifted to higher frequencies by about 1 kHz per decade of energy
(cf. Figs. 3.7(e) – (f)).
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Figure 3.6: For all four figures, the total shower energy is 1011 GeV. In (a), the peak pressure
for a distance of 1000m is shown as function of the emission angle defined in the text and, in
(c), as function of the distance from the cascade to the receiver at an emission angle of 0◦. In
(b) and (d) the asymmetry is given as function of the emission angle and distance, accordingly.

3.2 Transient and ambient noise simulation

The background for acoustic neutrino detection in the deep sea consists of two different
types of noise: transient and ambient noise. Transient noise signals have short durations and
amplitudes that exceed the ambient noise level (S/N >1). Transients can mimic bipolar pulses
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Figure 3.7: The PSDs of a neutrino-induced BIP is presented as relative and accumulative
function of the frequency. The dependency on the PSD for different distances ((a) – (b)),
angles to the shower ((c) – (d)) and energies of the shower ((e) – (f)) is shown. Described in
more detail in the text.
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from UHE neutrino-induced showers. In the simulation, four types of transient signals based
on observations with the AMADEUS detector are implemented: bipolar and multipolar pulses,
sinusoidal signals, and signals with Brown noise frequency characteristics. Sources of these
four types can either be marine mammals or anthropogenic sources, such as shipping traffic.
The ambient noise is mainly caused by agitation of the surface of the sea [50], e.g., by wind,
breaking waves, spray, and cavitations. Thus it is correlated to the weather conditions, mainly
to the wind speed. The model used for the simulation of the ambient noise is based on the
so-called Knudsen spectra [61], which are adapted to the deep sea by applying attenuation
effects.

3.2.1 Transient noise simulation

The simulation chain is capable of generating typical transient signals present at the ANTARES
site. Four different typical types of transient signal are implemented: bipolar and multi-polar
pulses, which can be caused by shipping traffic or marine mammals; sinusoidal signals such
as reflected signals from the ANTARES acoustic positioning system (cf. Sec. 2.4); and signals
that have Brown noise characteristics and do not belong to one of the previous categories.
For example, the time-domain waveform and the corresponding PSD of the four signal types
are shown in Fig. 3.8 – 3.11. The initial pressure amplitude p0 of all four signals types, which
is set at the source position of the pressure pulse, follows a definable frequency distribution.
The other parameters, namely the duration and the frequency, of the signal are selected from
a uniform distribution.
For the transient BIP, the following parametrisation is used:

p = −p0
t − t0
τ

exp

(
−(t − t0)

2

2τ 2

)
, (3.17)

where t0 is the time at the centre (zero-crossing) of BIP and τ ∈ [5µs, 50µs] is the duration
of the signal. In Fig. 3.8, the resulting waveform of a symmetric BIP is shown. The broad PSD
is comparable to the one of a neutrino-induced BIP.
For the multipolar signal a windowed sine function is used:

p =
1

2

[
1− cos

(
2π

|t − t0|
τ

)]
sin (ω(t − t0)) , (3.18)

where the first term is a window function defining the length of the multipolar signal by
choosing τ from 40 – 4096 µs and |t−t0| < τ/2 is required for the start time t0. The frequency
ω of the sine wave ranges from 5 – 50 kHz. The waveform of this signal is given in Fig. 3.9.
The corresponding PSD of this signal is dominated by the main frequency of the sine term.
The sinusoidal signals have a duration between 1 µs and 4 µs, and their frequencies range from
40 – 60 kHz (cf. Fig. 3.10). This is the same frequency range, in which the emitters of the
ANTARES positioning system work.
In Fig. 3.11, the last signal type is shown that correspond to a signal of random shape with a
Brown noise frequency characteristic6. The duration of the signal ranges from 40 – 4096 µs. As

6Brown noise is defined by spectral density that is proportional to 1
f 2 . Brown noise can be produced by

integrating white noise. That is, whereas white noise can be produced by randomly choosing each sample
independently, Brown noise can be produced by adding a random offset to each sample to obtain the next
one.

43



Chapter 3. Simulation Chain

described for the simulation of neutrino-induced pressure pulses, the source of the transient
signal is set to a random position within a given volume around the detector and propagated
to the sensors. The signal types can be generated separately or all together following a defined
frequency distributions. For most applications a uniform distribution is chosen.
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Figure 3.8: Transient signal of the BIP type shown in the time domain (a) and the corre-
sponding PSD (b).
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Figure 3.9: Transient signal of the multipolar type shown in the time domain (a) and the
corresponding PSD (b).

3.2.2 Ambient noise simulation

Following the work of Knudsen [50, 61], the ambient noise spectrum can be parameterised
in three independent frequency regimes, where the noise characterised by its source: distant
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Figure 3.10: Transient signal of the type representing the echoes of the positioning system
shown in the time domain (a) and the corresponding PSD (b).
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Figure 3.11: Transient signal of the type representing signal with Brown noise features shown
in the time domain (a) and the corresponding PSD (b).
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anthropogenic noise, sea surface noise, and Brownian motion of water molecules, is dominant.
Under the assumption that these sources are incoherent, the final power spectrum is calculated
by adding the individual spectra. In the following, the parametrisation of these spectra and
their implementation in the simulation are discussed.

Distant anthropogenic sources

In the range between 10 – 1000 Hz, the ambient noise is dominated by distant shipping and
industrial noise. The spectral density of this type of sources is proportional to 1

f α
with α ∈ [1, 2].

Due to the great distance to the sources, higher frequencies are absorbed. Nearby shipping
traffic would contribute to the transient noise.
Noise level

(
dB re 1µPa2/Hz

)
:

NLship(f ) =

{
NL100 for f ≤ 100Hz

NL100 − 20 log( f
100Hz) for f > 100Hz (3.19)

The scaling factor NL100 is between 60 – 90 dB depending on the density of distance anthro-
pogenic sources. A uniform frequency distribution is assumed, as the spatial and temporal
distribution of these sources is unknown.

Sea surface noise

The noise from the surface of the sea itself is caused by wind, breaking waves, spray, and
cavitation. This noise type has its main influence between 1 – 100 kHz and can be parametrized
as the following:

NLsurface(f ) =

{
NL1k for f ≤ 1 kHz

NL1k − 17 log( f
1 kHz) for f > 1 kHz (3.20)

Discrete values of NL1k and their dependency on the wind speed are provided in Tab. 3.1. The
wind speed measured at the surface of the sea and the noise level are correlated. This was
verified by measurements of the ambient noise level using the AMADEUS detector [62]. The
noise level was derived from the minimum bias data-set (cf. Sec. 3.4.1), which consists of 10
second long data samples roughly every hour for each sensor. Using the values in Tab. 3.1, a
continuous dependency on NL1k(cw ) (cf. Fig. 3.12(a)), from the wind speed cw in knots can
be derived using the following fit:

NL1k(cw ) = p0 − 1 dB re 1Pa2/Hz · exp(p1 + p2cw ) for cw in kt, where
p0 = 69.5± 0.9 in dB re 1 Pa2/Hz
p1 = 3.22± 0.04
p2 = −0.121± 0.012 in 1/kt

(3.21)

The distribution of wind speeds as measured by the Cap Cepet weather station, which is the
nearest weather station to the detector, are given in Fig. 3.12(b). The distribution includes
hourly measurements between 2007 – 2009 and was parameterised using an adapted Maxwell
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Beaufort Sea Windspeed NL1k Description
Force State (knots) (dB)

0 0 0 44.5 Calm
1 0.5 1 – 3 50.0 Light Air
2 1 4 – 6 55 Light Breeze
3 2 7 – 10 61.5 Gentle Breeze
4 3 11 – 16 64.5 Moderate Breeze
5 4 17 – 21 66.5 Fresh Breeze
6 5 – 6 22 – 27 68.5 – 70 Strong Breeze
7 7 28 – 33 Near Gale
8 8 34 – 40 Gale
9 9 41 – 47 Strong Gale
10 9 48 – 55 Storm
11 9 56 – 63 Violent Storm
12 9 ≥ 64 Hurricane

Table 3.1: Connections between the windspeed in knots (1 kt ≡ 0.5144m/s), the sea state,
and NL1k [50], as described in the text. Adapted from [49]
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Figure 3.12: (a) The scaling factor NL1k of the noise from the surface of the sea as a function
the wind speed cw including the values from in Tab. 3.1 and the fit as described in the Eq. 3.21.
(b) The frequency distribution of wind speeds (in m/s) as measured at Cap Cepet weather
station (hourly measurements in 2007 – 2009) and the fit by an adapted Maxwell distribution
(cf. Eq. 3.21).
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distribution:
P(cw ) = p0 · cp1w · exp(p2 · cp3w ) for cw in m/s, where

p0 = 0.144± 0.641 dB re 1Pa2/Hz
p1 = 2.59± 4.24
p2 = −1.35± 3.52
p3 = 0.728± 0.61

(3.22)

Thermal noise

The thermal noise is caused by the Brownian motion of the water molecules and mainly
contributes in the region above 100 kHz. The following parametrisation is used:

NLtherm(f ) = −75 + 20 · log(f ) (3.23)

Combined ambient noise spectrum

The ambient noise sources are assumed to be incoherent, so the summation of the noise levels
is valid:

NLtot = NLship ⊕ NLsurf ⊕ Nltherm = 10 · log
(
10NLship/10 + 10NLsurf /10 + 10NLtherm/10

)
The Knudsen spectra [50] were measured in shallow water, and were thus adapted to the deep
sea by applying attenuation effects. The source of the ambient noise is mainly the surface
region above the detector. This is used as a starting point and the attenuation described in
Sec. 3.1.3 is applied. The PSD of the ambient noise as simulated and measured are shown
in Fig. 3.13; the scatter plots present the PSD of the ambient noise for different levels of
the wind speed and shipping traffic. The comparison between the simulated and measured
spectrum reveals that the model overestimates the noise level for frequencies below 10 kHz
and between 40 – 60 kHz. The first region appears affected by the wind speed dependency
on NL1k and its parametrisation. The second region results from an underestimation of the
surface area above the detector contributing to the surface noise. These effects could not
be researched further as part of this work. The mean noise level ⟨σnoise⟩ calculated from the
simulation output is 27± 5mPa for the frequency range from 1 – 50 kHz and for 95% of time
the noise level is smaller than 2⟨σnoise⟩, and is in good agreement with the values for the noise
measurements taken from [62]. The measured mean noise is level ⟨σnoise⟩ = 25+7

−5 mPa and also
for 95 % of time the noise level is smaller than 2⟨σnoise⟩. This is reproduced by the simulation
as shown in Fig. 3.14, where the resulting distribution of the simulated relative noise level and
the measured one is shown, and are in good agreement.

3.3 DAQ-hardware simulation

The simulation of the DAQ-hardware comprises of two parts: the simulation of the acoustic
sensors and of the read-out electronics. The DAQ-hardware includes acoustic sensors using
the piezoelectric effect (hydrophones) to convert the pressure signal into a voltage signal,
and read-out electronics (AcouADC-board) to amplify, filter, and digitise the voltage signal
(cf. Sec. 2.5.2 and Sec. 2.5.3). The inherent noise and the system transfer function, for both the
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Figure 3.13: (a) The PSD of the ambient noise as produced by the model described in the
text. This scatter plot shows the PSD for the different levels of the weather conditions and
shipping activities. (b) The PSD of the ambient noise measured with one HTI sensor on the
topmost storey of the IL. The calibrated input voltage of the AcouADC-board is used. Shown
in shades of grey is the occurrence rate in arbitrary units, where dark colours indicate higher
rates. Shown as a white dotted line is the median value of the in-situ PSD and as a black solid
line the noise level recorded in the laboratory prior to deployment [42].
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Figure 3.14: Frequency of occurrence distribution of the ambient noise level as function of the
ratio between the noise level σnoise of the sample and the mean noise level ⟨σnoise⟩. The left
scale represents the number of occurrences and the right scale the probability that a noise
level occurs. (a) The result of the simulation based on an ambient noise model as described
in the text. (b) the frequency of occurrence distribution for the ambient noise as measured
by the AMADEUS detector [62] in the range 1 – 50 kHz, relative to the mean ambient noise
recorded over the complete period of about two years that was used for the analysis (left scale,
filled histogram). Also shown is the cumulative distribution, normalised to the total number
of entries of the distribution (right scale).
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sensors and the electronics, were measured in the laboratory. From this data, a parametrisation
of the power spectral density of the inherent noise and the system response function of the
hardware was derived. Sensors normally show a directional dependency on their sensitivity,
therefore signal and ambient noise have to be treated separately. In this case, the incident
direction of the noise is the surface of the sea above the detector. Signal and ambient noise
are then superimposed. The inherent noise of the sensor is added. To simulate the effect of the
read-out electronics, the resulting waveform is convoluted with the system transfer function
and the inherent noise is added.

3.3.1 Sensor simulation

Different sensor types are incorporated into the AMADEUS detector, hydrophones from dif-
ferent manufactures and the AMs, where the acoustic sensor is included in a glass sphere
(cf. Sec. 2.5.2). For the simulation, only the characteristics of one type of sensor is currently
used as model for the 36 sensors included in the AMADEUS detector. As characteristics of the
HTI hydrophones are comparable and stable over time, one HTI hydrophone included in the
detector (HTI 24 on Storey 6 of the IL07) was chosen to represent the acoustic sensors in the
simulation. The parametrisation of the inherent noise spectrum NHTI

inherent for HTI 24 is stated
in Eq. 3.24 and is shown in Fig. 3.15 (b).

NLHTI
inherent(f ) = 10 · log(10

p0+p1f
10 + 10

p2+p3f
10 )

p0 = −1.18 · 102 ± 3.42
p1 = −1.1 · 10−4 ± 4.97 · 10−5

p2 = −1.12 · 102 ± 5.31
p3 = −7.7 · 10−4 ± 9.22 · 10−5

(3.24)

The system transfer function of the hydrophone is directional, and it shows a dominant depen-
dency on the zenith angle, therefore signal and ambient noise have to be treated separately.
The incident direction of the noise is assumed to be the surface of the sea above the detector.
From measurements in the laboratory, a parametrisation of the system response function was
derived in steps of 15◦ for the zenith angle [45,46]. The sensitivity of the hydrophone used is
shown in Fig. 3.16 as the function of the frequency and the zenith angle. The dependency on
the azimuth angle is reasonably flat, and thus negligible. For the parametrisation of the system
transfer function a 8th order polynomial fit to the measured magnitude A(f ) and phase ϕ(f )
of the hydrophones response was used:

H(f ) = A(f ) exp (iϕ(f )) with

A(f ) =

{ ∑8
i=0 ai f

i for f ≥ 10 kHz
const for f < 10 kHz

ϕ(f ) =
∑8

i=0 bi f
i

(3.25)

The calibration setup was not optimised for frequencies below 10 kHz, thus the magnitude is
assumed constant below that frequency. However, this is acceptable, as the frequency range
significant for neutrino detection is above 10 kHz.
By multiplying the pressure signal with the system transfer function H(f ) in the frequency
domain and performing the inverse Fourier transform, the resulting voltage signal is used for
the simulation of the read-out electronics, which is described below.
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3.3.2 AcouADC simulation

The AcouADC-board filters, samples, and digitises the incoming voltage signal from the sen-
sors. As for the sensors, the inherent noise and the system transfer function was measured in
the laboratory and a parametric model was derived [49]. A simple noise model is assumed for
inherent noise spectrum of the AcouADC-board: quadratic addition of a low-pass filter and a
constant background. The parametrisation is given in Eq. 3.26 and shown in Fig. 3.15.

NLAcouADC
inherent (f ) = 10 · log(( p0√

1+(f /p2)
2p3
)2 + p2

2)

p0 = −1.18 · 102 ± 3.42
p1 = −1.1 · 10−4 ± 4.97 · 10−5

p2 = −1.12 · 102 ± 5.31
p3 = −7.7 · 10−4 ± 9.22 · 10−5

(3.26)

The system transfer function of the AcouADC-board is a function of the gain, downsampling,
and range settings of the ADC. A parametrisation was derived from the calibration mea-
surements using the complex-valued filter transfer function H(f ), equivalent to Eq. 3.25. The
characteristics of the AcouADC-board are composed of simple models for filters and labelled
by i , j and k . For A(f ) the following formulation is used:

A(f ) = Gtot ·
∏
i

Ahigh,i(f ) ·
∏
j

Alow1,j(f ) ·
∏
k

Alow2,k(f ) , with (3.27)

Ahigh,i(f ) =

 f /f 0high,i√
1 + (f /f 0high,i)

2

nhigh,i

, (3.28)

Alow1,j(f ) =

 1√
1 + (f /f 0low1,j)

2

nlow1,j

, and (3.29)

Alow2,k(f ) =
1√

1 + (f /f 0low2,k)
2nlow2,k

. (3.30)

And for ϕ(f ):

ϕ(f ) = ϕtot +
∑
i

ϕhigh,i(f ) +
∑
j

ϕlow1,j(f ) +
∑
k

ϕlow2,k(f )with (3.31)

ϕhigh,i(f ) = nhigh,i ·
(π
2
− arctan

(
f /f 0high,i

))
, (3.32)

ϕlow1,j(f ) = −nlow1,j · arctan
(
f /f 0low1,j

)
, and (3.33)

ϕlow2,k(f ) = dG
low2 · 2πf . (3.34)

The functions subscripted with high and low1 model the high- and low-pass filters7 integrated
on the AcouADC card, respectively. For those filters the corner frequencies f 0 and the order n
were calculated from the values of the actual composition of the filter elements. The functions

7Passive or active RC/LRC filters with resistors, capacitors, and/or inductors.
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subscripted with low2 describe generalised low-pass filters and are used to model a root-raised
cosine (RRC ) low-pass filter. This steep 10th order root-raised cosine filter suppresses high
frequency components to eliminate aliasing effects of the digitisation. This filter exhibits an
almost linear phase response with frequency, which was approximated by the group delay
(dG

low2). The total phase offset ϕtot was found to be −0.02 ± 0.15 rad, compatible with no
additional total phase delay.
Additional low-passes — also with the generalised form Alow2 — were used to model the finite
impulse response (FIR) filters realised in the FPGA [63], which down-samples the digitised
data. Those digital FIR filters use the same filter core for all boards and have a frequency-
independent group delay. The total delay of the FIR filters depends on the downsampling (DS)
setting: for DS1 no delay is induced, for DS2 and DS4 the delay corresponds to 64 samples of
the raw data, i.e. 128µs. The parameters of the transfer function used in the simulation are
listed in Tab. 3.2. The parametrisation of the amplitude and phase response of the AcouADC-
board used in the simulation are given in Fig. 3.17 as a function of the frequency.
The system transfer function and the inherent noise are applied to the data coming from the
sensor simulation. Finally, the voltage signal is mapped according to the 16-bit resolution of
the ADC with an input range of -2 to 2 V as used in the AMADEUS detector.

Subscript Pass Type Corner Frequency f 0 (kHz) Order n
high,1 RC, high 1.129 1
high,2 RC, high 1.881 2
high,3 RC, high 0.03183 1
low1,1 LRC, low 1022 3
low2,1 RRC, low 128.0 5.000
low2,2 RRC, low 150.0 10.00
low2,3 RRC, low 178.1 18.45
low2,4 FIR, DS2 109.1 22.00
low2,5 FIR, DS2 112.8 38.44
low2,4 FIR, DS4 47.96 13.76
low2,5 FIR, DS4 54.03 24.38

Gtot ∈ {1, 10, 100} ϕtot = −0.05 rad dG
l2 = 12.39µs

Table 3.2: Parameters of the filter transfer function described in the text.

3.4 On-line filter simulation

The final step in the simulation chain is the simulation of the on-line filter. The now digitised
signals from the simulation are subjected to a filter system equivalent to the one used in the
experiment [48, 64], where it is used to identify pre-defined signal types and thus reduce the
amount of data stored for off-line analysis, like signal classification and position reconstruction.
The filter setup consists of three filters: A minimum bias filter; an amplitude threshold for
transient signals, which is self-adjusting to the changing ambient noise conditions; and a pulse
shape recognition filter for bipolar signals, which is based on a cross correlation technique. The
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Figure 3.17: The system response of the filters integrated in the AcouADC-board is shown as
function of the frequency; (a) The amplitude response is given for the downsampling 1, 2 and
4. (b) The corresponding phase response is given. For more information see text.

filters are applied to each sensor within the detector. If one of the last two filters is activated
by a signal, a coincidence test is performed to check whether or not the waveform recorded by
the sensors corresponds to same signal source. A predefined set of sensors is required to record
the signal in a given time window. So the signal has to pass the filter and the coincidence test
to form an event (cf. Fig. 3.18). The filters and the coincidence test will now be described in
more detail.

Figure 3.18: Overview of the main concept of the AMADUES online filter system.

3.4.1 Minimum bias filter

To obtain data with a minimum bias, a recording of the complete incoming data stream is
performed at a regular interval. In the current operation of the AMADEUS detector, a sample
of 10 s is acquired every hour. This accumulates to about four Gigabyte of minimum bias data
per day for 36 sensors. This data is mainly used for ambient noise studies of the deep sea
environment at the ANTARES site. Although it is used in the experimental setup and delivers
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valuable information about the ambient noise, it was not necessary to implement this filter in
the simulation.

3.4.2 Threshold filter

By definition, transient signals have a short time duration and an amplitude that exceeds
a signal-to-noise ratio of one, thus a threshold is suitable to select these kind of signals.
Furthermore, a threshold does not bias the selection with the requirement of specific frequency
information of the signal. The ambient noise level, as described in Sec. 3.2.2, changes on
different time scales and is unpredictable. Therefore, a variable threshold is needed, which
is adaptive to the current noise conditions. This is implemented by using the root mean
square (RMS) of the data sample multiplied by a predefined scaling factor to set the threshold.
To prevent statistically appearing outliers triggering the selection, a configurable number of
samples has to exceed the threshold. If these criteria are satisfied, a window around the signal
is selected for storing, hence the complete data of the sensor will not be stored, only the parts
containing the selected signals. The runtime complexity of this filter scales linearly with the
number of data points N contained in the data stream (O(N)). The simplicity and the limited
usages of resource are the main advantages of this algorithm.
One known source of transient signals are the transducers of the ANTARES acoustic positioning
system (cf. Sec. 2.4), which are located at the anchors of each detection line. As all lines are
only anchored on the bottom side and moving with the sea currents, a precise positioning of
the storeys (cf. Sec. 2.5.1) is crucial to reconstruct the position of unknown sources and thus
the signal must be recorded. As the emitted sinusoidal signals have high amplitude and narrow
bandwidth, they are easy to identify in the time domain and the power density spectrum. To
guarantee a sufficient data reduction rate, only the incipient part of the waveform, the arrival
time, and the peak frequency are stored for this type of signal.

3.4.3 Pulse shape recognition filter

The aim of this filter is to find any neutrino-like signal in the data and to characterise the
similarity of these signals as compared to a given bipolar signal sample. For this the cross
correlation is used, which is defined for two discrete real samples g and h of length N as the
following:

(g ⋆ h)[j ] :=

N/2∑
k=−N/2

g [j ]h[j + k]. (3.35)

In the resulting function a peak will arise at a lag k , where the similarity between the two
samples is most pronounced. According to the cross-correlation theorem, it holds:

F{(g ⋆ h)(τ)} := F{g(τ)}∗F{h(τ)}, (3.36)

where F{g(τ)}∗ denotes the complex conjugate of the Fourier transformed function g(τ). An
efficient numerical calculation is possible using a Fast Fourier Transformation algorithm, which
has a runtime complexity of O(Nlog(N)). The filter uses the result of cross correlation between
the incoming data stream from the sensors and a predefined bipolar signal to determine the
similarity. As a reference signal, a bipolar pulse is used according to the one that is produced by
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a 1020 eV shower at a distance of 300m perpendicular to the shower axis. If the data contains
a signal similar to a bipolar pulse, a peak arises at the lag τ (k , in the discrete case) in the
resulting function of the cross correlation. A threshold is applied to this function, which is
comparable to the one described above (cf. Sec. 3.4.2). The peak with the highest amplitude
above the threshold marks the centre of the sample of 640 samples equivalent to 2560 µs that
is selected for storage.

3.4.4 Coincidence

After a filter was activated by a signal within the data of the sensors, a coincidence test is
performed. Three types of tests were implemented. On the first level, the number of coinciding
signals for the six sensors of one storey is checked. The time window for the coincidence within
a storey is of about one millisecond, which corresponds to the longest travel time of an acoustic
wave through the storey. Then a coincidence criterium for the number of storeys (cf. Fig. 3.19)
can be set. Finally, a test between the storeys of the two lines can be performed. For the
coincidence test between the storeys within the line or between the lines, the window size
is limited to the length of the time-slice of recorded data that is sent to shore, which is
104.864 ms for technical reasons, corresponding to about 150 m. As the maximal separation
of acoustic storeys in the AMADEUS detector is about 350 m, the recorded waveform can be
distributed between two time-slices depending on the incident angle of the signal. In this case,
it is not possible to bring them into coincidence. The number of coinciding sensors or storeys
is configurable. The current setup requires that at least four sensors in one storey and at least
two storeys have responded to one of the filters described above.

Figure 3.19: Overview of the coincidence test used in the AMADEUS on-line filter system.

3.4.5 Filter efficiency

The efficiency and purity of the filter system were analysed with simulated data according
the simulation chain as described. For this analysis, bipolar pulses from point sources were
produced with an initial pressure amplitude at the source of 50 – 105 Pa 1m as a uniform
distribution in a volume of 10× 10× 2.5 km3. The signal-to-noise ratio (S/N) is defined as:

S/N =
A

4σnoise
, (3.37)
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where A is the maximal amplitude of the BIP and σnoise is the standard deviation of the noise
sample in the time domain8. The efficiency and purity of a filter are defined as:

efficiency =
Nfiltered

Ngenerated
(3.38)

purity =
Ntrue

Nfiltered
, (3.39)

where Ngenerated is the number of simulated signals, Nfiltered is the number of signals selected by
the filter, and Ntrue is the number of correctly selected signals. The correctness of a selected
event is validated by comparing the expected arrival time at a given sensor with the arrival time
of the selected signal. This difference needs to be in a time window of 128 µs. Fig. 3.20 shows
the resulting efficiency and purity of the AMADEUS on-line filter as used in the experiment. The
scaling factor, as described in Sec. 3.4.3, used for the threshold of the pulse shape recognition
filter is set to 4.5. The coincidence requirements as mentioned above are used. The efficiency
reaches 100% for a S/N greater than 1.5 and the purity is at a S/N of 1 at 100%. This high
purity is mainly caused by the strong requirements of the coincidence test.
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Figure 3.20: Simulation result for the filter efficiency (red, solid) and purity (blue, dashed) for
bipolar pulses as function of the signal-to-noise ratio.

8This definition was chosen so that the maximal value taken from a noise sample and used for A has an
S/N of about one.
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In this chapter, the analysis chain is described in detail. It is comprised of several recon-
struction techniques: The determination of the arrival time of a signal, reconstruction of its
incident direction and acoustic source position; and signal classification strategies to identify
whether the signal is bipolar or not (cf. Fig. 4.1). The simulation chain was used to study and
characterise the signal classification and reconstruction algorithms and their performance.

Arrival Time Determination


Acoustic Source Direction Reconstruction


Acoustic Source Position Reconstruction


Signal Classification


Figure 4.1: Overview of the different modules of the analysis chain.
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4.1 Determination of the time of arrival

The determination of the time of arrival of a signal is crucial for the direction and position
reconstruction of an acoustic source. Two types of signals are of prime interest for the exper-
iment: BIPs, because they are the acoustic signature of a UHE neutrino interaction, and the
signals emitted by the ANTARES acoustic positioning system. The characteristics of these two
types of signals are too different to cover them with one algorithm. In a first step, the waveform
sample that was selected by the on-line filter system is up-sampled based on an outlier-robust
spline interpolation [65] to a sampling rate of 1 µs. The different types of sensors have different
sensitivities, so, in order to handle the signals form these sensors in a uniform way, the samples
are normalised to their maximum amplitude.
For the BIPs, the arrival time is determined by a cross-correlation with a pre-defined bipo-
lar pulse. According to the properties of the cross-correlation, the time difference between
the pre-defined pulse and the pulse contained in the sample can be obtained (cf. Sec. 3.4.3).
For the signals of the ANTARES acoustic positioning system, the envelope of the sample is
formed, and a threshold on the envelop’s amplitude is applied to determine the arrival time.
The envelope is created by rectifying the waveform and smoothing it by a low-pass filter with
a cut-off frequency of 50 kHz. These two procedures achieve a precision of about 1 µs for the
corresponding signal types (cf. Fig. 4.2).
The pre-selection made by the on-line filter is not ideal. Thus, it is possible to select a signal
formed in the ambient noise, a reflected signal, or an extraneous signal that may have origi-
nated from a source other than the actual source of interest. To minimise the effect of these
coincidences, a causality check is performed for the arrival times within a local sensor cluster
(acoustic storey, cf. Sec. 2.5.1). This tests whether the time differences determined for the
sensors are smaller than or equal to the maximum travel time required for a sound wave to
pass through the storey. Outliers are removed from the dataset that is used for further analysis.
For high-amplitude signals, such as the emissions of the acoustic positioning system, a wave-
form distortion — so-called clipping — can occur when the amplifiers involved in the DAQ
electronics are overdriven and attempt to deliver an output voltage beyond their maximum
capability. This can make it difficult to determine the arrival time consistently. For example,
this can occur for the emissions of the positioning system.

4.2 Acoustic source direction reconstruction

The direction reconstruction [66, 67] of the incoming signal is required for the subsequent
reconstruction of the acoustic source position, as described below. In the AMADEUS detector,
local clusters of sensors, the so-called acoustic storeys (cf. Sec. 2.5.1), are used with sensor
spacings of the order of 1 m. The direction reconstruction is performed for each storey within
the AMADEUS detector, and is based on a least square fit. The difference of the arrival
time between two of the sensors within an acoustic storey is compared to the expected time
difference for an assumed incident direction:

min

{
N∑
i=1

(∆tmeasuredi −∆texpectedi (θ,ϕ))
2

}
, (4.1)
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Figure 4.2: Difference between time of arrival (ToA) as reconstructed and simulated: The
distribution of arrival times has a mean of about 0.01 µs and a sigma of about 1 µs.

where i ∈ 1..N is i -th pair of sensors out of N combinations (without repetition) within a
cluster of sensors, ∆t is the difference of the arrival time, and θ and ϕ are the zenith and
azimuth angle, respectively. The expected difference of the arrival time is calculated in-place
from the known sensor positions in the cluster for a given detector geometry. The current
implementation of this method uses a simplex minimisation algorithm [68], which normally
converges after a few tens of iterations. The Pearson correlation coefficient r is used as an
estimate of goodness of the least squares fit. A cut on r can be set to reduce the number
of mis-reconstructed directions, which are due to possible outliers in the determination of the
arrival time. In practice, r > 0.999 is required.
For the determination of the angular resolution of the direction reconstruction, transient acous-
tic sources were generated in a cube that measured of 5× 5× 2.5 km3 around the centre of
the AMADEUS detector using the simulation chain. As shown in Fig. 4.3(a), the angular res-
olution obtained with this method is centred around zero, and the standard deviation of the
distribution is about 0.7◦ for both zenith and azimuth angle, respectively. The resolution of the
reconstruction is related to the uncertainty of the determination of the arrival time of about
1 µs. The tails in the distribution of the zenith and azimuth angles (cf. Fig. 4.3(b)) are due to
the regular build acoustic storey, as it introduces symmetry effects. These effects cannot be
excluded by an r -cut, so further consistency checks are required for the position reconstruction
of an acoustic source, as described in the next section.
In order to evaluate and validated the performance of the direction reconstruction on ex-
perimental data, the emissions of the acoustic positioning system of the ANTARES neutrino
telescope were used. At the bottom of each detection line in the ANTARES detector, where
is an acoustic transducer that emits a defined signal with a characteristic frequency every
2 min (cf. Sec. 2.4). The positions and emission times of these emitters are known. Line 6
and Line 9 were not operational, and Line 10 was only partly operational at this time. The
emitters on Line 4 and Line 12 were malfunctioning, and thus they were only partly operational
due to communication problems with the corresponding hardware that controls the emissions.
The distribution of the reconstructed directions of these events is shown in Fig. 4.4 for the
three storeys equipped with HTI hydrophones (Storey 2, Storey 6, and Storey 22). The HTI
hydrophones are suited best for this study, because there are only small differences in their
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Figure 4.3: (a) Angular resolution of the direction reconstruction algorithm shown for the
zenith and azimuth angles. The mean of the distribution is around zero, and the sigma is
about 0.7◦ for both the zenith and azimuth angles. (b) The angular distribution is shown as
2D-histogram. The ray like pattern results from the symmetry effects introduced by the regular
build acoustic storeys.

characteristics. For each of the storeys and each of the acoustic emitters, a two-dimensional,
Gaussian distribution was fitted to the corresponding direction distribution. Lines 1 and 2 have
a low number of reconstructed directions for Storeys 2 and 6 on the IL07. As these lines are the
closest lines to the IL07, the probability that waveform clipping can occur increases, and this
results in an insufficient determination of the arrival time. The resulting mean reconstructed
direction and its uncertainty are given in Fig. 4.4 as blue markers and the known position
of the emitters are given as green triangles. The resolution of the direction reconstruction is
calculated as the mean uncertainty of the azimuth and zenith angles, which are 1.6± 0.2◦ and
0.6± 0.1◦, respectively. The uncertainty of the zenith angles is in agreement with the simu-
lation result of 0.7◦. For the azimuth angle, the uncertainty is dominated by the uncertainty
of the positioning of the storey within the detector. The positioning is conducted every 2 min,
but rotational movements of the storey around the z-axis of the order of 1◦ can occur on
smaller time scales, which were measured with the Compass board (cf. Sec. 2.5.3) included in
each storey [69]. This results in a higher-than-expected uncertainty of the reconstruction of
the azimuth angle.

4.3 Acoustic source position reconstruction

The position reconstruction of the acoustic source uses the previously determined direction of
the incoming signal [66,67]. If the directions were reconstructed for at least two of the acoustic
storeys, a simplified ray tracing technique is performed. A search is conducted to identify the
intersection point or the nearest approach of the rays, starting at the storeys and pointing in
the reconstructed direction. The algorithm employed1 minimises the distance L between the

1The implementation uses a simplex minimisation algorithm [68].
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Figure 4.4: The distribution of direction reconstructed events of the ANTARES positioning
system emitters is shown as recorded for the three storeys 22, 2, and 6. Also given is the
direction, under which the emitters are located (green) and the fitted direction (blue).
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rays and a proposed source position x:

min
{∑N

i=1 Li(x)
}

min
{∑N

i=1 |x− ri |2
}

min
{∑N

i=1 |x− (r0 + epd)i |2
}

,

(4.2)

where i ∈ 1..N is the i -th ray, r = r0 + epd represents the current position of the ray, where
r0 is the position of the cluster, ep is the unit vector of the starting direction, and d is the
distance between the sensor cluster and the proposed source position x. In this approach,
straight rays are used, not including the depth-dependent speed of sound profile expected in
the Mediterranean Sea (cf. App A).
As for the arrival time and direction reconstruction, a test of the input parameters, in this case
against mis-reconstructed directions, is implemented. This cross-check is based on the require-
ment that the rays from two different storeys must have at least a nearest approach to each
other so that it is closer than the distance between these storeys. For a possible intersection
point, any two rays must fulfil the following requirements: First, the sum of the angles α1 and
α2 that are defined as the angle between the direction vector and the connection line between
the storeys, respectively, have to be less than 180◦ (cf. Fig. 4.5(a)). Second, the angle β is
defined as the angle between one of the direction vectors and the plane spanned by the other
direction vector and the connection line between the storeys. This angle β should be zero, a
tolerance of ±2◦ between the ray and the plane is allowed for.
In Fig. 4.6(a), the distributions of the deviation of the x , y , and z coordinates of the recon-
structed position from the true position of the vertex as set by the simulation are shown. The
acoustic sources for this study were simulated in a cube of the size of 5× 5× 2.5 km3 around
the detector centre. The half width at half maximum (HWHM) of the distributions is better
than 15 m for each coordinate. The position reconstruction depends on the precise knowledge
of the position of the acoustic storey and the reconstructed direction. In the simulation, the
positions of the storeys are fixed. The uncertainty of the direction reconstruction, which applies
for each of the storeys, affects the ray tracing used for position reconstruction, as sketched in
Fig. 4.5(b). The influence of the direction reconstruction’s uncertainty increases with distance,
as the rays become almost parallel. This results in a distance-dependency of the mean uncer-
tainty of the position reconstruction, which increases with distance, as shown in Fig. 4.6(b).
As for the direction reconstruction, the performance of position reconstruction was tested with
the emitters of the acoustic positioning system. The mean position and the uncertainty were
derived by fits of Gaussian distributions to the corresponding distributions of the reconstructed
x , y , and z coordinates for each of the emitters. The results are given in Fig. 4.7. As mentioned
in the previous section, the emitters of Line 6, 4, 9, and 12 were either not operational or only
partly so at this time. The mean deviation of the mean reconstructed position and the true
position of the emitters are:

⟨x⟩ = 0.8± 0.4m
⟨y⟩ = 1.0± 0.4m
⟨z⟩ = 1.1± 0.1m .
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(a) Geometric cross-check (b) Effect of the direction uncertainty

Figure 4.5: (a) A Sketch of the geometric cross check to determine whether the rays starting
from the storeys (black dots) are able to intersect (not to scale). (b) A Sketch of the effect of
the direction reconstruction’s uncertainty on the ray starting tracing technique (not to scale).
For an acoustic source with fixed position, which is constantly emitting, the reconstructed
positions would lie in this oval shape pointing in the direction of the source. The further away
the source is, the greater the extent to which the shape is stretched out.
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Figure 4.6: (a) Distributions of the deviation of the x , y , and z coordinates of the reconstructed
position from the true position of the vertex. The acoustic sources were generated in a cube
with the dimensions of 5× 5× 2.5 km3 around the detector centre. (b) Dependency on the
uncertainty of the position reconstruction with the distance r between source and detector.
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The resolution of the position reconstruction derived for these emissions are:

⟨σx⟩ = 4.7± 0.5m
⟨σy⟩ = 4.9± 0.5m
⟨σz⟩ = 4.3± 0.4m .

The reconstructed position of the emitters is in agreement with their true position and the
resolution is better than 5 m for each coordinate. As noted above, the uncertainties of the
position reconstruction depend on the distance to the acoustic source. So this result is only
valid in the range of a few 100 m and it is comparable with the resolution derived from the
simulation, which is, for x , y , and z , 3.3± 0.1m, 3.0± 0.1m, and 4.2± 0.1m, respectively.
As mentioned in the previous section, the movement of the lines with the sea current and
the resulting uncertainties have not yet been included in the simulation. Thus, the resolution
derived from the simulation is generally smaller than that from the emissions of the positioning
system.
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Figure 4.7: (a) Distribution of the x and y coordinate of the reconstructed positions. Also
the fitted position and the uncertainty are given (orange marker) and the true position of the
emitters also are given (green markers). (b) The fitted z position of the emitters (red markers)
and the their uncertainty are shown and the true z-coordinate of the emitters is given.

4.4 Signal classification

In the deep sea, the background of transient signals is very diverse. Approaches such as
matched filtering, which was used for the on-line filter, are insufficient to distinguish between
neutrino-like signals and other transient signals with similar waveforms that form the acoustic
background for neutrino detection in the deep-sea acoustic environment. A classification strat-
egy [70] based on machine learning algorithms was analysed with the goal of determining a
robust and effective way to perform this task. This study incorporates the complete simulation
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chain, as described in previous chapter, feature extraction techniques, and the signal classi-
fication based on machine learning algorithms. For a well-trained model, a recognition error
on the level of a few percent is achieved for strong classifiers, such as Random Forest and
Boosting Trees, using the extracted features of the signal as input and utilising dense clusters
of sensors instead of single sensors.

4.4.1 Feature extraction

As a first step in the feature extraction process, the simulation of the AMADEUS on-line filter
system (cf. Sec. 3.4), which is equivalent to the one installed in the experiment, is used to
pre-select signals in order to maintain a sufficient signal-to-noise ratio. In particular, the pulse
shape recognition filter, which is based on the matched filtering technique, is used to pre-
select bipolar pulses. A bipolar pulse, equivalent to that expected to be produced by a 1020 eV
shower at a distance of 300m perpendicular to the shower axis (cf. Sec. 3.1.3), was used as
the reference signal for the matched filter. In the next step, the characteristics — the features
— of the pre-selected signals are extracted. The resulting feature vector contains the time
and frequency domain characteristics of the signal as well as the results of a matched filter
bank, which was tuned for neutrino-like signals. This bank consists of six reference signals that
correspond to angles of 0◦ – 6◦ in steps of one degree with respect to the plane perpendicular
to the shower axis of a 1020 eV shower at a distance of 300 m. This plane intersects the shower
axis at the position of the shower maximum. In the time domain, the following features are
extracted from the waveform:

• The number of positive and negative peaks above a threshold given by the RMS of the
sample multiplied by a constant factor of 4.5 is extracted.

• The total duration of the signal is defined as the time above this threshold.

• The peak-to-peak amplitude between the largest positive peak and the largest neigh-
bouring negative peak and the corresponding asymmetry and duration, which are used
as feature.

In the frequency domain, the main frequency component and its spectral power are extracted
from the PSD of the sample. Furthermore, the number of spectral peaks is used as a feature.
From the results of the matched filter bank, the best match that with the largest peak is taken
into account. From this matched filter output the number of peaks and the amplitude, width,
and the integral of the largest peak are stored in the feature vector.
As an independent feature vector, the waveform selected by the on-line filter itself can be
subjected to the classification algorithms. The standard waveform sample has a duration of
640 samples equivalent to 2560 µs, which is extensive as a feature vector. Thus, only 128
samples around the largest peak were used.

4.4.2 Classification algorithms

The classification strategy stems from machine learning algorithms that have been trained and
tested with data from the simulation [70]. Either the extracted feature vector or the waveform
selected by the on-line filter itself can be used as input; As output, either binary class labels
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(bipolar or not) or multiple class labels (one for each signal type in the simulated data) can
be predicted. It should be noted that some of all the algorithms that were used are restricted
to binary class labels as output2. So, all algorithm are operated with this output mode. The
same training and testing datasets are used as input to the different classification algorithms
under consideration. The simulation of transient signals, as described in Sec. 3.2.1, was used
to create these datasets, including the four types of signals: bipolar pulse, multipolar pulse,
sine wave, and strong Brown noise, which were equally distributed. The predictions of the
signal type made by the algorithms for the individual sensors are combined to create a new
feature vector, which is used as input in order to train and test classifiers for the acoustic
storeys. Thus, a prediction of the signal type can be made for each of the acoustic storeys in
the detector. In the final step, the resulting predictions for the storeys are combined to create
a response of the detector by majority vote. The data taken with the detector is pre-selected
by the on-line filter system to maintain a sufficient data reduction and signal-to-noise ratio.
This also implies that not every sensor within a storey or every storey within the detector will
have recorded data for a given signal. Thus, it is necessary to deal with missing data in the
input of the classification algorithms for the storeys and the detector on the whole. All of the
algorithms that were studied, can handle missing data within the feature vector. The following
algorithms [71] have been researched for individual sensors and clusters of sensors3:

Naïve Bayes: This simple classification model is based on applying the Bayes’ theorem and
assuming that the features are conditionally independent of one another for each class
[72]. For a given feature vector f containing N features, the independent class c is
selected using probabilities acquired from the training data. Using the Bayes’ theorem,
the conditional probability for class c given a feature vector f can be written as:

p(c |f) = p(c) p(f|c)
p(f)

. (4.3)

Since the feature vector f is known, the probability p(f) is a constant scaling factor s.
So the numerator is equivalent to a joint probability model, which can be reformulated
using the chain rule for repeated applications of the definition of conditional probability:

p(c , f) =
1

s
p(c)

N∏
n=1

p(fn|c , fn−1). (4.4)

Under the “naïve” assumption that a feature fi ∈ f is conditionally independent from all
other features fj∀j ̸= i , it follows that:

p(fi |c , fj) = p(fi |c) , ∀i ̸= j . (4.5)

Using this, Eq.4.4 can be rewritten as:

p(c , f) =
1

s
p(c)

N∏
n=1

p(fn|c). (4.6)

2Although multiple class labels are not included as output in this study, initial tests showed that this output
mode is less effective than the binary mode by more than factor of two. Also the main concern is on classifying
bipolar pluses, which renders the correct identification of the other signal types less important

3The descriptions of the algorithms given are summaries of the basic concepts, please refer to the references
given for more details.
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So, a classifier can be constructed from this result by introducing a decision rule that
selects the most probable hypothesis.

Decision Tree: This classification model stems from a tree-like structured set of rules [73].
Starting at the root, the tree splits up at each node based on the input feature that
has not already been used as an ancestor node and provides the optimal decision rule
at this node. The two criteria that are most commonly used to determine the relevance
of a feature, and thus to determine this optimal rule, are the information gain and the
so-called Gini impurity. The information gain, as defined in information theory, measures
the difference in information entropy caused by the split. The Gini impurity indexes the
change of the purity of the outcome that arise, when a split is relayed on one feature
in contrast to another [74]. Typically, the best split is based on one feature, but, in
order to handle missing data, additional features can be used to split — often referred
to as surrogate splits. While training a Decision Tree, it is probable that the number of
splits inflates and results in a sizeable complex tree. Thus, the tree is evaluated from
the leaves, which are representing the class labels, to the root. Redundant paths, which
are less likely to improve the performance, are removed. The path from the root of the
tree to one of the leaves is used as a classifier and defines one decision rule.

Random Forest: A Random Forest [75] is a collection of Decision Trees. The classification
works as follows: The Random Forest takes the input feature vector, makes a prediction
with every tree in the forest, and outputs the class label that received the majority of
the votes. The trees in the forest are trained with randomly sampled sets, including
replacements from the original training data. These subsets have the same size as the
original dataset. Statistically, about one-third of the feature vectors in the training data
are left out of these sets. This so-called out-of-bag (oob) data are used to estimate the
training error in-place. The trees use a fixed number m of input variables for splitting
at a node. The input variables are chosen at random from all features M ≫ m. The
Decision Trees in the ensemble are trained until they are fully developed and they are
not pruned. Pruning is not required because the “strong law of large numbers” shows
that Random Forests always converge, meaning that over-fitting does not occur.

Boosting Trees: Boosting Trees combine the performance of many so-called weak classifiers
to produce a powerful classification scheme [76]. A weak classifier is only required to be
better than a random decision. However, many of them, when smartly combined, result
in a strong classifier. Decision trees are used as weak classifiers in this boosting scheme.
In an iterative process, the Decision Trees are trained with the feature vectors, while
maintaining weights corresponding to each of the feature vectors. Initially, all weights
are set to have the same value, but, during an iteration, the weights of incorrectly
classified vectors are increased so that the classifier is forced to focus on the feature
vectors in the training set that are complicated to predict. The training of the trees is
“boosted”. The final decision is made by a majority vote of the weighted outcome of the
Decision Trees. This weight is calculated from the training error of the corresponding
Decision Tree. In contrast to a Random Forest, the Decision Trees are not necessarily
full-grown trees, since, typically, they consist of only a few nodes.
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Support Vector Machine: A SVM [77,78] maps the feature vectors into higher-dimensional
feature space using a kernel function, which defines the inner product in this feature
space. A hyper-plane is searched so that the margin between this hyper-plane and the
nearest feature vectors from both of the two labels of a binary class is maximal. The
feature vectors that have the smallest margin to the hyper-plane are called support
vectors. The positions of the other feature vectors in the feature space does not affect
the hyper-plane and thus the decision rule. For the prediction of a feature vector, the
margin of the hyper-plane that separates the class labels is calculated, and the sign of
the margin determines the corresponding class label.

Over-fitting occurs when a classification model becomes sensitive to random noise instead of
the underlying relationship. In general, over-fitting is found for models that are excessively
complex, e.g., an unreasonable number of features relative to the number of observations is
used or the observations used as training set have excessively specific characteristics such that a
generalisation is problematic to accomplish. A model that has been over-fit has poor predictive
performance, because it can exaggerate minor fluctuations in the data. Most classifiers have
incorporated methods to reduce the possibility of over-fitting. Cross-validation is one of these
techniques. The training dataset is partitioned into k complementary subsets. One of the k
subsets is kept for validation of the model, while the other k−1 subsets are used for the training.
This procedure is repeated k-times, where each subset is used once for validation. The results
can be averaged and used to estimate the training error. This method takes all observations
for both training and validation into account. Although most of different algorithms under
consideration can calculate the training error in-place, cross-validation is also used to maintain
a consistent way of calculating the training error.

4.4.3 Predictive performance

In this section, the performance results of the classification strategy are described. Two indica-
tors are used to measure the performance of the classification: the testing error , which is the
error of the prediction with respect to the simulation truth including mis-predicted BIPs and
false alarms, and the success of training , which is the ratio testing error to training error and
the ratio indicates whether the model is under-trained (< 1) or over-trained (> 1). As an overall
result, binary class labels as output are more than twice as effective as multiple class labels. The
binary class labels are the standard output of the subsequent results that are presented. Weak
classifiers, such as Naïve Bias and Decision Trees, have high testing error above 14% and they
are neither more robust against changing ambient noise conditions nor significantly faster than
other classifiers (cf. Fig. 4.8(a)). Although the SVM is a strong classifier, its significant nu-
merical complexity and lack of robustness disqualify it for further applications (cf. Fig. 4.8(b)).
Thus the most favourable classifiers are Random Forest and Boosting Trees. In addition, the
usage of clusters shows a substantial improvement over individual sensors. Random Forest and
Boosting Trees are robust and stable, and they produce well-trained models. The elapsed time
for processing one event is less than a second. For the individual sensors and the extracted
features as input, a testing error of about 5% for the Boosting Trees and for the Random
Forest of about 10% is achieved, which is further improved by combining the sensors into
clusters, similar to an acoustic storey in the AMADEUS detector. The testing errors are well
below 2% for successfully trained models (cf. Fig. 4.9(a) and Fig. 4.9(b)). Using the extracted
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waveform as input yields similar results, the Random Forest achieves a testing error of about
6 % and the Boosting Trees of about 12%. These errors are also improved, when combining
the individual sensors to clusters, resulting in a testing error below 4% (cf. Fig. 4.10(a) and
Fig. 4.10(b)).
An ensemble of the classifiers is used to determine the signal type of an event detected by
the AMADEUS system to account for the varying and very diverse transient noise conditions
at the ANTARES site. This ensemble of classifiers consists of Random Forest and Boosting
Trees classifiers to make predictions for the signals recorded by individual sensors and sub-
sequently to make a prediction for the corresponding acoustic storey. From the latter, the
prediction of an event’s signal type for the complete detector is derived by majority vote. As
the training and testing of the classifiers was performed using the simulation of transient sig-
nals, the performance of the resulting ensemble of classifiers was validated by the simulation
of the neutrino-induced acoustic signals (cf. Sec. 3.1). The ensemble achieved a testing error
of 1.3± 0.3% for the prediction of bipolar pulses on the detector level.
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Figure 4.8: (a) The testing error is shown as a function of the training samples for Decision
Tree, Naïve Bias and SVM classifiers. (b) The success of the training is shown as a function
of the training samples for Decision Tree, Naïve Bias and SVM classifiers. A value of one
indicates that the model is well-trained. The extracted feature vector is used as input and the
binary class labels are used as output for the individual sensors.

The results show that the use of machine learning algorithms is a robust, effective and ef-
ficient classification strategy. The classifiers perform well under different levels of ambient
noise and are able to distinguish between bipolar signals — one of the characteristics of the
acoustic signature of a neutrino interacting — and other signals, especially to differentiate
them from short, multi-polar signals. In Sec. 5.1, the classification strategy is used to perform
an analysis of the temporal and spatial distribution of the background of the bipolar signals.
For further applications, the strategy must be extended to classify neutrino-like events with all
their features, in particular their disk-like spatial propagation. For the AMADEUS detector, the
determination of this propagation pattern is not feasible due to the geometry of the detector.
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Figure 4.9: (a) The testing error is shown as a function of the training samples for Random
Forest and Boosting Trees classifiers. (b) The success of the training is shown as a function of
the training samples for Random Forest and Boosting Trees classifiers. A value of one indicates
that the model is well-trained. The extracted feature vector is used as input and the binary
class labels are used as output for the individual sensors and the clusters of sensors (indicated
by “clustered”).
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Figure 4.10: (a) The testing error is shown as a function of the training samples for Random
Forest and Boosting Trees classifiers. (b) The success of the training is shown as a function of
the training samples for Random Forest and Boosting Trees classifiers. A value of one indicates
that the model is well-trained. The extracted waveform of the signal is used as input and the
binary class labels are used as output for the individual sensors and the clusters of sensors
(indicated by “clustered”).
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4.4.4 Density-based spatial clustering

This is an approach to classify signals by their spatial distribution rather than their waveform
characteristics. Under the assumption that density-clustered events can be associated with
sources of transient background signals, such as ships and marine mammals, these events
can be identified and rejected. The density-based spatial clustering of applications with noise
(DBSCAN) algorithm [79] is used to recognise the density-clustered events within the data.
The basic idea is that a point p is direct density-reachable from a point q if the distance
d between them is less than a given distance ϵ and that the point q is connected to more
than a given number of other points Nmin. So a minimal number of points is required to form
a cluster. The DBSCAN algorithm starts with an arbitrary starting point that has not been
visited yet. This point’s ϵ-neighbourhood is retrieved, and if it contains a number of points
greater than Nmin, a cluster is started. Otherwise, the point is labeled as noise. This point
might later be found in a sufficiently sized ϵ-neighbourhood of a different point and hence
be made part of a cluster. The advantages of this algorithm are that only two parameters
are needed: The maximal distance between points ϵ and the minimal number of points Nmin

for a cluster to form. The algorithm can discover clusters of arbitrary numbers and shapes.
For the analysis of data taken with the AMADEUS detector, this method can be used to
identify sound-emitting objects. It is assumed that the sources of the transient background,
such as ships and marine mammals, are located at or near the surface of the sea. Since the
position reconstruction has considerable uncertainties, the incident direction retrieved from
the direction reconstruction is used instead of locating the position of the acoustic source at
the surface of the sea. This is done by calculating the intersection point of a straight line
pointing into the direction reconstructed for this acoustic storey and the surface of the sea.
The DBSCAN algorithm performs an analysis of the clusters of points projected onto the
surface of the sea in this manner. The minimal size of a cluster Nmin is set to three, and the
distance d < ϵ = 100m is calculated as shown:

d =
√
∆x2 +∆y 2 + (c∆t)2, (4.7)

where ∆x , ∆y are the differences of corresponding coordinates in the projection onto the
surface of the sea and t is the time between events. The time is taken into account for the
distance calculation to avoid clusters that contain events that are not necessarily from the
same source because of time between them. It is assumed that the sources are constantly
emitting and c = 10m/s is the assumed average speed of the object, e.g, a vessel or a sea
mammal.
To determine moving, sound-emitting objects from the results of the clustering, straight tracks
are assumed and searched for this specific shape of clusters. This search is performed by fitting
a straight line to the points within a cluster and evaluating the Pearson correlation coefficient
r as an estimate of the goodness of the straight-line model for the given set of data points.
So, it is possible to separate moving acoustic sources at or near the surface of the sea from
other spatially-clustered events. In Fig. 4.11, the surface projection of signals that have been
identified as moving, sound-emitting objects is given. The cluster analysis can be used as a veto
for the identification of neutrino-like signals, because the probability of neutrino interactions
to form spatial clusters is negligible.
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Figure 4.11: The surface projection of signals that had been identified as moving emitters by
the DBSCAN algorithm as described in the text. The x and y are the coordinates relative to
the detector centre at the surface of the sea. The colour encodes the date. The measurement
period was 11/2009 - 09/2010.
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The capabilities of the simulation and analysis chains were discussed in the previous chap-
ters. It was shown that the simulation reproduces neutrino-induced, acoustic signals as well as
transient signals, the data acquisition of the AMADEUS detector, and the ambient background
noise in the Mediterranean Sea. The analysis chain was presented, which includes techniques
for the reconstruction of incident direction of a recorded signal, the reconstruction of the po-
sition of acoustic sources, and a classification strategy for neutrino-like bipolar pulses. In this
chapter, the calculation of an effective volume and a transient-free, limit-setting potential of
the AMADEUS detector are presented. Furthermore, the results of an analysis of the transient
background for about 10 month’s worth of data are discussed.

5.1 Transient background at the AMADEUS site

In the following, the results of researching the background of transient signals at the AMADEUS
detector site in the Mediterranean Sea are presented. As BIP-like waveforms can mimic the
acoustic signature of a neutrino and can be produced by various sources, the spatial and
temporal distribution of these events is of special interest. Depending on the size and geometry
of a future detector, it will be challenging to verify the disk-like shape in which a sound wave
propagates when it is produced by a neutrino interaction. In consequence, the background of
BIP-like signals is at least partially irreducible and thus a limiting factor for the feasibility of
acoustic neutrino detection. For a future, large-scale detector, simulations based on the results
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of this background study need to be implemented in order to quantify and optimise the effects
of the geometry of such a detector.
This study includes data from 1583 selected runs from 11/2009 to 09/2010, which are about
3754 hours of measurement time. During this period, all six storeys of the AMADEUS detector
were basically operational. The following requirements were used to determine the runs that
could be included in this analysis:

• The time synchronisation of the detector was working correctly, meaning that the starting
time of the run was synchronised between the acoustic storeys (cf. Sec. 2.5.3) and that
the time when the run started was recorded. This is required for the positioning of the
acoustic storeys.

• The position calibration of the individual acoustic storeys within the AMADEUS detector
was available (cf. Sec. 2.5.1).

• The run was not marked as a special run, e.g. for testing hardware or software configu-
rations.

• No failure of the hardware or software involved in the data taking has occurred during
the run. The data acquisition of the AMADEUS detector is robust, but occasionally
interruptions occur occasionally, resulting in possible losses of data.

• Only the data pre-selected by the on-line filter used for selecting BIP-like signals was
used (cf. Sec. 3.4). The data selected by the threshold and minimum bias filters were
not considered.

5.1.1 Directional distribution

The directional distribution of transient signals selected by the on-line filter of the AMADEUS
detector is analysed, as is the effect of the classification of BIP-like signals. The direction
reconstruction is performed for each storey, as described in Sec. 4.2. A cut on the Pearson
correlation coefficient selecting reconstructed directions with r > 0.999 is applied. This is
used to reduce the influence of mis-reconstructed directions, and 31% of the data for which
the direction was reconstructed passed this quality cut. The resulting angular distributions for
each storey is shown in Fig. 5.1. The distributions vary between the different storeys due to the
different types of sensors used. The storeys equipped with HTI hydrophones have comparable
results (cf. Fig. 5.1). The angular distributions of the Storey 3 and Storey 23 have a slightly
different behaviour, due to the higher sensitivity of the LTI hydrophones and, consequentially,
higher probability that signal clipping distorts the determination of the arrival times. Further-
more, the hydrophones of Storey 22 are mounted in a different way, i.e., pointing downward
while the others were pointing upward (cf. Sec. 2.5.1). Storey 21, holding the AMs, have poorer
performance due to the alignment of the sensors. They are arranged in the horizontal plane, so
their lack of expansion along the z-axis leads to a higher probability of mis-reconstructions due
to symmetry effects, especially for the zenith angle (cf. Fig. 5.7, at the end of this chapter).
The main contribution of the transient signals has an arrival direction that points to the upper
hemisphere to the extent of about 7◦ below the horizon (cf. App. A). Taking refraction due to
the depth-dependent speed of sound into account, this is in agreement with the assumption
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that transient signals are predominantly coming from sources at or near the surface of the
sea. In the upper hemisphere, curved structures can be identified, which can be associated
with sound-emitting objects moving at or near the surface of the sea, such as ships or marine
mammals. The lines converge in spots located at the horizon, where the objects are leaving
the surface area accessible by the AMADEUS detector. The direction in which the spots are
pointing is correlated to harbours along the coastline of France (Marseille and Toulon) and
Corsica.
In Fig. 5.2 the directional distribution of BIP-like signals is shown for Storeys 2, 3, and 22,
which are equipped with HTI hydrophones (cf. Fig. 5.8 for Storeys 6, 21 and 23). These sig-
nals were selected by the classification strategy described in Sec. 4.4. The number of signals is
reduced by more than a factor of 30 with respect to all of the transient signals reconstructed.
For the resulting sample, mainly the area above the detector contributes to the distribution of
reconstructed directions. The density of the reconstructed events remains high. As the curved
lines, which indicate the presence of sound-emitting, moving objects such as ships, are still
visible, these objects contribute, as expected, to the rate of transient bipolar pulses that can
mimic the acoustic signature of a neutrino interaction. In the following, the spatial distribution
of position-reconstructed events is analysed.

5.1.2 Spatial distribution

The spatial distribution of transient signals as reconstructed by the acoustic source position
reconstruction algorithm is presented. The density of the transient background, especially
of BIP-like signals, can be used to identify regions in which the probability of undisturbed
detection operations is high. These regions can define a fiducial volume for neutrino searches.
For this analysis, the position reconstruction described in Sec. 4.3 was used; For 17 % of
all events selected by the on-line filter, the acoustic source position has been successfully
reconstructed. In Fig. 5.3, the density of transient signals as a function of the depth z and the
distance r from the detector centre is given. In Fig. 5.3(a), the overall density of the transient
signals, as reconstructed for the signals selected by the AMADEUS on-line filter, is shown.
The signal density is high over the displayed volume of 7.85 · 102 km3. The mean density is
about 15 · 103 km−3 year−1 for the volume given in the figure. Due to the challenges of the
position reconstruction described in Sec. 4.3, the reconstructed positions at distances greater
than about 1 km from the detector have sizeable uncertainties. Briefly said, the small, two-
dimensional detector, in conjunction with the fact that there are small inaccuracies in the
angular reconstruction, lead to sizeable uncertainties of the position reconstruction for sources
at great distances. If the classification strategy is applied, the density of signals is significantly
reduced. Mainly, the volume around the detector contributes, as shown in Fig. 5.3(b). The
cluster analysis based on the DBSCAN algorithm, as described in Sec. 4.4.4, can be applied to
the data, and the results are shown in Fig. 5.3(c). If the position of the source is assumed at the
surface of the sea, a significant part of the event density can be associated with sound-emitting
objects that form spatial clusters. The result of this clustering technique can be used as a veto
and in combination with the classification. The spatial density of BIP-like events that are not
spatially correlated, is shown in Fig. 5.3(d). The rate of these BIP-like signals in the same
fiducial volume, as above, is about 100 km−3 year−1. For further applications, this rate can be
further reduced by taking into account the disk-like propagation pattern of a BIP originating
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(c) IL Storey 2

Figure 5.1: Directional distribution of transient signals for Storeys 2, 6, and 22 of the
AMADEUS detector: These three storeys are equipped with HTI hydrophones.
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Figure 5.2: Directional distribution of transient BIPs as selected by the classification strategy
for Storeys 2, 6, and 22 of the AMADEUS detector: These three storeys are equipped with
HTI hydrophones.
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from a UHE neutrino interaction in water. For the AMADEUS detector, the determination of
this propagation pattern is barely feasible due to the geometry of the detector. For a future,
large-scale detector with an optimised configuration, which would result in a better precision
of the position reconstruction, the volume near the surface of the sea should be excluded in
the search for neutrinos.

5.1.3 Temporal distribution

As was the case for the spatial distribution, the temporal distribution of signals can be used
to define times that are favourable for the detection of neutrinos. The temporal distribution
of transient signals as a function of the time of the day is shown in Fig. 5.1.3 for the complete
dataset and three subsets. The mean rate of the position-reconstructed signals (events) for
each bin of one hour was calculated. The distribution for the complete dataset used in this
analysis is shown in red. The distribution shows that the mean rate of events at night is as
much as five times greater than during the day. The overall mean rate is about 0.3 Hz. The
dotted blue curve represents the temporal distribution of events that the spatial clustering
algorithm (cf. Sec. 4.4.4) identified as part of a spatial cluster, when the source is assumed
to be at the surface of the sea. This distribution is almost identical to the distribution of the
complete data. The correlation coefficient between the two distributions is 99.8%. So, most
of the sources of the recorded signals originate at or near the surface of the sea, as mentioned
above. As part of the clustering method, a search for sound-emitting objects moving along
straight tracks was performed. The temporal occurrence of events identified as such objects
(11 % of all clustered events) is shown as the dotted pink curve. This distribution also is
correlated (correlation coefficient < 80%) with the temporal structure of all events. The
main contribution of the events from these moving sound emitters is around four o’clock
in the morning and 11 o’clock in the evening. Those periods approximately coincide with
the times where ferries (from Marseille, France to Ajaccio, Corsica and back) would be near
the ANTARES detector. The possibility of high bio-acoustic activity at night time was also
researched, however, so far no positive indications were found. The resulting distribution after
classification for bipolar pulses (dashed green line) has an overall mean rate of 0.01 Hz. The
distribution is a highly correlated subset of all reconstructed events, which indicates that the
sources of transient signals, most probably shipping traffic and marine mammals, can emit
various waveform types including bipolar pulses. Ships can produce BIPs by cavitation or by
using sonar systems. Sea mammals, like dolphins, use bipolar pulses for echo sounding and
other types of signals for communication between individuals. As excluding the times of high
activity would reduce the measurement time significantly, an exclusion of the sources of the
transient signals based on their position is favoured. Using the spatial clustering technique as
a veto and the classification of BIP-like signals, the mean rate of the remaining events is about
0.002 Hz.
To summarise, the rate of BIP-like signals, which can mimic neutrino signatures, is around
100 events per year per km3 at the AMADEUS detector site. The main contribution is from
objects that can be located at or near the surface of the sea and they seem to emit various
types of waveforms for a given period of time. So, it would be ideal to exclude that region of
the surface of the sea from the fiducial volume. For the AMADEUS detector, this is hardly
feasible because the position reconstruction is severely hampered by the size and geometry of
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(c) Result of the cluster analysis
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(d) After classification and cluster analysis

Figure 5.3: Spatial density of transient signals as a function of the depth z and the distance r .
In (a) the density of the transient signals as filtered by the AMADEUS online-filter is shown.
The density of BIPs-like signals as selected by the classification strategy is given in (b). In (c),
the spatial density of the events that have been identified by the cluster analysis is shown. In
(d), the resulting density distribution after classification and cluster analysis (see text).
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the AMADEUS detector.

5.2 Effective volume of the AMADEUS detector

An effective volume of the AMADEUS detector is presented and discussed in this section. The
simulation and analysis chain, as described before, was used to simulate the data needed for
this study. Following the approach derived in [80], an effective volume Veff can be defined as:

Veff(Eν) =

∑
Ngen

δselectedp(Eν , r, ep)

Ngen
Vgen, (5.1)

where Ngen is the number of generated neutrino interactions in a volume Vgen around the
detector centre, and p(Eν , r, ep) is the probability that the neutrino can reach the interaction
vertex set in the simulation. The term δselected ∈ {0, 1} expresses that the probability is only
taken into account for the effective volume Veff , if the pressure pulse corresponding to the
neutrino interaction was selected by the on-line filter within a time window of 128 µs around
the expected arrival time. So the effective volume depends on the cuts chosen to select the
neutrino events and is specific to the analysis presented in this work. The probability that the
neutrino reaches the vertex is defined as:

p(Eν , r, ep) = e−dWE(r,ep)/λwater(Eν) , (5.2)

where r is the position of the interaction vertex, and ep is the unit vector of the direction of
the flight trajectory. The mean free path λwater(Eν) of the neutrino, as described in Sec. 2.1, is
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inversely proportional to the neutrino’s total cross section. The total cross section as a func-
tion of the energy Eν was parameterised using values from [9]. The distance dWE is the water
equivalent of the distance traveled through matter of varying densities encountered along the
flight path. For the determination of the density distribution over the flight path, the Prelim-
inary Reference Earth Model (PREM) [10] was used to model the earth’s density profile. In
addition, it is assumed that the earth is covered by water with a depth of 2.5 km and that the
detector is placed on the sea floor.
For the calculation of the effective volume, Ngen = 107 neutrinos with energies uniformly dis-
tributed between 109 GeV and 1012 GeV were simulated. The simulation is limited to 1012 GeV
(cf. Sec. 3.1). A uniform energy distribution was chosen to ensure a sufficient number of events
over the entire energy range under consideration. The interaction vertexes of these neutrinos
were chosen in a cylindrical volume of 1200 km3 around the AMADEUS detector. The head-
ings of the flight paths were ranging from 0◦ – 360◦ in the azimuth and from 0◦ – 100◦ in the
zenith1, meaning that the solid angle was extended from the upper hemisphere to 10◦ below
the horizon. Neutrinos entering the generation volume from below the horizon will traverse
an increasing amount of matter. Below 10◦, the probability is practically zero that a neutrino
in the energy range under consideration would reach the interaction vertex. To determine the
random coincidences formed by the ambient noise a separate set of simulated data was created
that did not contain any signals. The corresponding model used to simulate the ambient noise
is described in Sec. 3.2.2. The effective volume has been calculated for three different “Stages”
that describe increasingly realistic conditions and reconstruction requirements:

Stage 1: The ambient noise is assumed to be minimal, matching the lowest exspected noise
level (sea state 0) at all times, and the coincidence requirement for the on-line filter
simulation is that at least two sensors on one storey must respond.

Stage 2: The complete ambient noise model (cf. 3.2.2) and the standard on-line filter used
for the AMADEUS detector (cf. 3.4) are used, which requires at least four sensors on
two storeys each.

Stage 3: In addition to Stage 2, the reconstruction of the acoustic source position is required
to have a maximum deviation of less than 100 m from the simulated position.

The results of this study are shown in Fig. 5.5 for the three Stages. For Stage 1, the ef-
fective volume obtained is consistent with the random coincidences up to a neutrino energy
of 1.8 · 1010 GeV and for 1012 GeV the effective volume is above 2 km3. The requirements of
this Stage 1 are minimal and so this can be seen as an idealised detection threshold of the
AMADEUS detector. For Stage 2, in which the complete ambient noise model and the stan-
dard settings for the on-line filter of the AMADEUS detector are used, the effective volume
exceeds the background of random coincidences with statistical significance at 1.8 · 1011 GeV,
and it reaches a size of about 0.1 km3 at an energy of 1012 GeV. The effective volume for
Stage 3 shows that the determination of the position of the interaction vertex has sizeable
uncertainties for a small detector that essentially has a two-dimensional configuration. The
effective volume is below 0.01 km3 at the highest energy in the given range, and the detection
threshold is 3.2 · 1011 GeV.

1A zenith angle of 0◦ corresponds to a neutrino coming from straight above.
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the text. Also shown are the random coincidence rates for the Stage 1 (black solid line) and
the Stage 2 and 3 (black dashed line).

5.3 Transient-free, limit-setting potential of the AMADEUS
detector

The calculation of the transient-free, limit-setting potential of the AMADEUS detector to a
flux of UHE neutrinos is described in this section. To estimate the potential of the acoustic
detection method for UHE neutrinos, a flux limit for the AMADEUS detector is calculated
assuming that the background of transient signals can be completely suppressed. However, this
is not possible for the AMADEUS detector without further improvements of the background
reduction technique, which is beyond the scope of this work. This estimate is used mainly to
determine how the lower energy threshold of a neutrino flux measurement is affected by the
ambient background. Following the approach derived in [81], an model-independent flux limit
can be calculated as:

Φ90%CL =
N90%CL

ΩTEν [Veff(Eν)/λwater(Eν)]
, (5.3)

where N90%CL = 2.44 is the 90% confidence level (CL) [82] from an average upper limit that
would be obtained by an ensemble of experiments with the expected background of zero events
and no true signal observed, Ω is the solid angle, T is the assumed integrated measurement
time, Veff is the effective volume and λwater is the mean free path of the neutrino as described
in the previous section.
The effective Volume Veff for the three so-called Stages defined in the previous section were
used for the transient-free limit estimate. The assumed integrated measurement time used is
one year; the energy range is from 109 GeV to 1012 GeV and the solid angle is the same as that
used for the calculation of the effective volume. In Fig. 5.6, the estimate of the AMADEUS
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transient-free, limit-setting potential is shown together with the theoretical cosmogenic neu-
trino flux predictions [83]. The calculated transient-free limit estimates of the AMADEUS
detector are characterised mainly by the effective volumes and energy thresholds derived for
the three Stages. In particular the effective volume reflects the detector’s small physical size
and basically two-dimensional configuration, which is also the reason why the requirement for
the precision of the position reconstruction used for Stage 3 is difficult to accomplish for the
AMADEUS detector. Nevertheless, the transient-free, limit-setting potential is promising and
encourages further studies for large-scale detectors. A larger physical size with an optimised
configuration of the sensors — taking advantage of the large attenuation length — would
increase the effective volume significantly and presumably would lower the energy threshold.
In Sec. 5.1, the rate of BIP-like signals was derived as about 100 events per year per km3. A
significant reduction of this background rate is possible by excluding the region of the sea’s
surface, where most of the transient signals originate, furthermore, by taking into account the
disk-like propagation pattern of a BIP originating from a UHE neutrino interaction. This is
hardly feasible for the AMADEUS detector in the current setup, but it would be possible in a
large-scale three-dimensional detector.
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Figure 5.6: The transient-free, limit-setting potential of the AMADEUS detector is shown
together with predictions of the cosmogenic neutrino flux [83] (orange pattern).
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(c) IL Storey 3

Figure 5.7: Directional distribution of transient signals for Storeys 3, 21, and 23 of the
AMADEUS detector.
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(c) Line 12 Storey 21

Figure 5.8: Directional distribution of transient BIPs as selected by the classification strategy
for Storeys 3, 21, and 23.
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Chapter 6
Summary

The main objective of this work was to study possible methods for classifying neutrino-induced
acoustic signals in the presence of acoustic background in the deep sea. This required the de-
velopment of a suitable simulation and analysis chain. This chain was designed within the
SeaTray/IceTray software framework. Its modular architecture is highly flexible and making it
easy to adapt to different environmental conditions, different data acquisition hardware, and
different detector geometries. In this framework, analysis tools can be implemented efficiently
or extended in a consistent way for further application. The simulation chain is capable of
reproducing all of the aspects required for acoustic neutrino detection — the generation of
the acoustic signal of an ultra-high-energy (UHE) neutrino that induces a particle cascade,
the acoustic deep-sea environment with its variable and diverse noise conditions, and differ-
ent detector geometries and hardware components. In the current stage of development, the
detector geometry, data acquisition hardware, and background models used in the simulation
chain are equivalent to those of the AMADEUS1 detector. The AMADEUS system consists
of an array of 36 acoustic sensors arranged in six clusters distributed over the ANTARES2

neutrino telescope on different length scales. The ANTARES detector, of which AMADEUS
is a subsystem, is located in the Mediterranean Sea, 40 km off the coast of Toulon, southern
France in a depth of about 2500 m.
The simulation chain consists of modules that build on each other to create a simulated event
that corresponds to the output of the detector. The first major step of the simulation chain
is the calculation of the acoustic pulse from a hadronic cascade produced by a UHE neutrino
interaction in the water. Following the thermo-acoustic model, an acoustic pulse is produced by
the energy deposition of a hadronic shower originating from a UHE neutrino interaction. The
local heating caused by fast deposition of the energy leads to a characteristic bipolar pressure
pulse (BIP). Due to coherent emission over the cylindrical geometry of the hadronic shower,
the resulting pressure pulse propagates through the medium in a disk-like shape perpendicular
to the main axis of the cascade. In the simulation, a parametrisation of the energy deposited by
the cascade was used to calculate the resulting acoustic signal, including complex attenuation
over the path from the origin of the shower to the position of the acoustic sensor.
The background for acoustic neutrino detection in the deep sea consists of two different types

1ANTARES Modules for Acoustic Detection under the Sea (AMADEUS)
2Astronomy with a Neutrino Telescope and Abyss Environmental Research (ANTARES)
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of acoustic noise: transient and ambient noise. Transient noise signals have short durations and
amplitudes that exceed the ambient noise level. These signals can mimic bipolar pulses from
neutrino interactions. In the simulation, four types of transient signals were implemented based
on observations made with the AMADEUS detector: bipolar and multipolar pulses, sinusoidal
signals, and signals with Brown noise frequency characteristics. These four types of signals
can be generated by anthropogenic sources, such as shipping traffic, and by marine mammals.
The ambient noise is caused mainly by the agitation of the seaâĂŹs surface, e.g., by wind,
breaking waves, spray, and cavitations. Thus, it is correlated to the weather conditions, mainly
wind speed. The model used for the simulation of ambient noise was based on the so-called
Knudsen spectra, which were adapted to the deep sea enviornment by applying attenuation
effects. The resulting noise model was in general agreement with the measured noise spectra
and the noise levels that occurred.
The simulation of the data acquisition hardware comprises the simulation of the acoustic
sensor’s response and the read-out electronic’s response to an incoming signal. This includes
sensors using the piezoelectric effect to convert the pressure signal into a voltage signal and
read-out electronics to amplify, filter, and digitise this signal. The inherent noise and the system
transfer function, for both the sensors and the electronics, were measured in the laboratory.
From these data, parametrisations of the inherent noise spectrum and the system response
function for each part were derived and used to simulate the effect of the data acquisition
hardware. The sensors show a directional dependency on the sensitivity, therefore signal and
ambient noise must be treated separately. For the ambient noise, the sources defining the
incident direction is the surface of the sea area above the detector.
Finally, an implementation of the AMADEUS on-line filter system was applied, which, for real
data, was used to reduce the amount of data that had to be stored and to select signals for
further off-line analysis. The filter of main importance for this work was based on a matched
filtering technique, which uses a defined bipolar pulse as a reference to select signals with
bipolar shape. In addition, a coincidence test between the sensors was performed. In the cur-
rent setup, at least four sensors in one cluster of sensors and at least two clusters must have
responded to the filter.
Furthermore, the analysis chain uses strategies for the reconstruction of the acoustic source
position and the classification of bipolar pulses, which are the acoustic signature of a UHE neu-
trino interaction. The precise reconstruction of the arrival time of the signal is crucial for the
direction and position reconstruction of the acoustic source. For bipolar pulses, the arrival time
is determined by performing up-sampling of the filtered waveform sample and cross-correlation
with a pre-defined bipolar pulse. This procedure achieves a precision of about 1 µs. Due to
the narrow opening angle of the acoustic emission of a neutrino interaction, local clusters
of sensors would be preferred in the design of a potential future acoustic neutrino detector.
Such clusters, consisting of several sensors arranged with interspaces of a few meters, also
have advantages for the coincidence test used by the on-line filter and for the reconstruction
of acoustic source positions. The direction reconstruction is based on a least squares fit of
the measured arrival times compared to the expected arrival times at a given sensor in the
cluster for an assumed incident direction. The angular resolution reached with this algorithm
is centred around zero and the standard deviation of the distribution is about 0.7◦ for both
the zenith and azimuth angles. The application of the algorithm on simulated acoustic sources
was validated successfully by using experimental data of the emissions of the acoustic posi-
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tioning system of the ANTARES detector. Each detection line in the ANTARES detector has
an acoustic transducer at the anchor of the line, which emits every 2 min.
The position reconstruction of the acoustic source was obtained using a ray tracing technique.
If the incident direction was reconstructed for at least two of the sensor clusters, the intersec-
tion point of the rays, starting from the storeys and pointing into the reconstructed direction,
was searched for. In the implementation of this algorithm, the point was used at which the sum
of the squared distances to the rays was minimal. From the simulation of acoustic sources in a
cube of the size of 5× 5× 2.5 km3 around the centre of the detector, a resolution better than
15 m for each coordinate was derived. The uncertainty of the direction reconstruction results
in an increasing uncertainty of the position reconstruction with the distance to the acoustic
source. As for the direction reconstruction, the position reconstruction was verified with the
emissions of the acoustic positioning system. The reconstructed positions are in agreement
with the true positions of the emitters. The resolution of the position reconstruction for these
emitters is about 5 m.
A classification strategy based on machine learning algorithms was deployed as a robust, ef-
fective, and efficient way to determine bipolar signals in the diverse transient background. The
classifiers included in the strategy were trained and tested with data from the complete simu-
lation chain. Two classifiers — the Random Forest and the Boosting Trees algorithms — have
achieved the best results for predicting the data of individual sensors and for the combined
result of clusters of sensors. For individual sensors, the classification error is of the order of
10% for a well-trained model. The combined results of the individual sensors in a cluster were
used as new input for training. This method obtains a classification error of less than 2%.
On that basis, an analysis of the transient background as measured at the AMADEUS site
was performed. The spatial and temporal distributions of events for which the position had
been reconstructed were researched. The rate of BIP-like signals, which can mimic neutrino
signatures, is around 100 events per year per km3 in the vicinity of the AMADEUS detector.
The objects that contribute to these signals are located mainly at or near the seaâĂŹs surface.
These objects, most probably ships and marine mammals, can emit various waveform types
including bipolar pulses. So, it would be ideal to exclude the region of the surface of the sea
from the fiducial volume. For the AMADEUS detector, which has a particular geometry and
is rather small, this is barely feasible due to the uncertainty of the position reconstruction.
The calculation of an effective volume and a transient-free, limit-setting potential of the
AMADEUS detector to a UHE neutrino flux was performed based on the simulation and
analysis chain that was developed. The expression “transient-free, limit-setting potential” was
introduced to define a limit that could be established with the AMADEUS detector, if it is as-
sumed that the remaining transient background can be suppressed completely. It is used mainly
to determine how the lower energy threshold of a neutrino flux measurement is affected by the
ambient background. The effective volume of the AMADEUS detector was calculated from
107 simulated neutrinos in a volume of 1200 km3 with energies distributed uniformly between
109 GeV, at which a neutrino-induced interaction begins to produce an acoustically detectable
signal, and 1012 GeV, the energy up to which the underlying parametrisations of the simulation
are specified. The solid angle, from which the incident direction of the neutrinos was cho-
sen, was extended from the upper hemisphere to 10◦ below the horizon. The probability of a
UHE neutrino to reach the AMADEUS detector after propagating through an angle-dependent
amount of soil and water was taken into account. Below that angle and in the energy range
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under consideration, the probability of a neutrino to reach the interaction vertex is practically
zero. The assumed integrated measurement time was one year. The ambient noise model for
the Mediterranean Sea, which is included in the simulation, was used for this study, but tran-
sient sources were not considered. The effective volume and the transient-free, limit-setting
potential were evaluated for different stages describing the increasingly realistic conditions of
the ambient noise level and of the on-line filter settings.
The detection threshold of the AMADEUS detector for idealised conditions is at about 1.8 · 1010 GeV
and the effective volume exceeds 2 km3 at 1012 GeV. This indicates the potential of acoustic de-
tection of UHE neutrinos. The transient-free, limit-setting potential derived for the AMADEUS
detector is determined mainly by the detector’s effective volume, which, for the current setup
of the detector, is less than 0.1 km3 at 1012 GeV, and the threshold energy of 1.8 · 1011 GeV.
For a small detector, such as AMADEUS, the transient-free, limit-setting potential is promis-
ing and encourages further studies for larger-scale detectors. These studies can be based on
the simulation and analysis chain developed for this work. Furthermore, the measurement of
the rate of BIP-like signals from the observations made with the AMADEUS detector is an
important step forward in the effort to reach a conclusion on the feasibility of the acoustic
neutrino detection in the Mediterranean Sea.
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Kapitel 7
Zusammenfassung

Hauptziel der vorgestellten Arbeit war es zu untersuchen, wie man das akustische Signal, das
von einer Neutrino-Interaktion in Wasser herrührt, von transienten Untergrundsignalen, die in
der Tiefsee vorkommen, unterscheiden kann. Hierzu wurden Algorithmen, die auf maschinel-
lem Lernen beruhen, untersucht. Um diese Algorithmen zu analysieren, wurde eine geeignete
Simulations- und Analysekette entworfen und implementiert. Dies geschah im Rahmen des
SeaTray/IceTray Software Frameworks, dessen modularer Aufbau eine einfach handhabbare
und flexible Umgebung darstellt, um sie an unterschiedliche zu simulierende Detektorgeome-
trien, Datennahme-Elektronik und Umgebungsbedingungen anzupassen. Des Weiteren lässt
sich auch die Analyse-Software leicht in dieses Framework integrieren und erweitern.
Die erstellte Simulationskette ist in der Lage, alle Prozesse, die für die akustische Teilchende-
tektion notwendig sind, nachzubilden. Dies umfasst die Erzeugung der akustischen Signatur
einer ultrahoch-energetischen Neutrino-Wechselwirkung in Wasser, den variablen und vielfäl-
tigen akustischen Untergrund in der Tiefsee und einen entsprechenden Detektor und dessen
Datennahme. In der momentanen Ausbaustufe der Simulation wurde die Detektorgeometrie
und Datennahme des AMADEUS1 Detektors nachempfunden und ein Modell für den aku-
stischen Untergrund im Mittelmeer verwendet. Der AMADEUS Detektor besteht aus insge-
samt 36 akustischen Sensoren, die in jeweils 6 Clustern von Sensoren über das ANTARES
Neutrino-Teleskop verteilt sind. Dabei wurden unterschiedliche Abstände zwischen den einzel-
nen Clustern realisiert. Das ANTARES2 Neutrino-Teleskop und das dazugehörige Subsystem
AMADEUS sind im Mittelmeer, 40 km vor der französischen Küste nahe Toulon, in einer Tiefe
von 2500m installiert. Die Simulationskette besteht aus einzelnen Modulen, die aufeinander
aufbauen, um ein Ereignis zu generieren, das dem des AMADEUS Detektors entsprechen wür-
de.
Der erste Schritt in der Simulation ist die Berechnung des akustischen Signals, das durch ei-
ne ultrahoch-energetische Neutrino-Interaktion in Wasser ausgelöst wird. Entsprechend dem
thermo-akustischen Modell entsteht ein akustischer Puls, wenn durch eine hadronische Kas-
kade, die durch eine Neutrino-Wechselwirkung erzeugt wurde, Energie im sie umgebenden
Medium deponiert wird. Diese schnell ablaufende Energiedeposition und die darauf folgende
lokale Erwärmung des Mediums führt zu einem charakteristischen bipolaren Druckpuls, der
sich aufgrund der kohärenten Emission über die zylindrische Geometrie der Teilchenkaskade

1ANTARES Modules for Acoustic Detection under the Sea (AMADEUS)
2Astronomy with a Neutrino Telescope and Abyss Environmental Research (ANTARES)
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hinweg scheibenartig ausbreitet. In der Simulation wird eine Parametrisierung dieser Energiede-
position einer Teilchenkaskade verwendet. Daraus wird das akustische Signal errechnet, das an
den entsprechenden Sensoren innerhalb des Detektors ankommt, einschließlich der komplexen
Abschwächung, der das Signal auf seinem Weg zum Sensor unterworfen ist.
Der akustische Untergrund in der Tiefsee besteht aus zwei Anteilen: dem Umgebungsrauschen
und dem transienten Rauschen. Transiente Rauschsignale sind von kurzer Dauer und besitzen
eine Amplitude, die das Niveau des Umgebungsrauschens übersteigt. Transiente Signale können
unter anderem bipolar sein und damit die akustische Signatur einer Neutrino-Wechselwirkung
imitieren. Vier verschiedene Formen von transienten Signalen, die auf Beobachtungen mit
dem AMADEUS Detektor beruhen, sind in der Simulation enthalten: bipolare und multipolare
Pulse, sinusförmige Signale und Signale, die die Charakteristik von braunem Rauschen haben
und sich in keine der anderen Gruppen einordnen lassen. Diese Signale können von Meerestie-
ren oder anthroposophischen Quellen wie Schiffen stammen. Das Umgebungsrauschen rührt
hauptsächlich von der Meeresoberfläche her, verursacht durch Wind, Wellen, Gischt und ein-
geschlossene Luftbläschen, deren Vorkommen von den Wetterbedingungen und im Besonderen
von der Windgeschwindigkeit abhängen. In der Simulation wird das Umgebungsrauschen über
ein Modell erzeugt, das auf den Knudsen-Spektren beruht. Diese wurden durch die Hinzunahme
von Abschwächungseffekten an die Tiefsee angepasst. Das resultierende Modell ist grundsätz-
lich in Übereinstimmung mit den gemessenen Rauschspektren und der Häufigkeitsverteilung
der Rauschniveaus.
Die Simulation der Datennahme-Elektronik besteht zum einen aus der Simulation der akusti-
schen Sensoren, die den piezo-elektrischen Effekt ausnutzen, und zum anderen aus der Simu-
lation der Elektronik, die für die Verstärkung, Filterung und Abtastung der von den Sensoren
erzeugten Spannungssignale zuständig ist. Sowohl für die Sensoren als auch für die Elektronik
waren Labormessungen der Systemtransferfunktion und des inhärenten Rauschens vorhanden
und diese wurden in Form einer Parametrisierung in die Simulation integriert.
Letzter Teil der Simulation ist die Implementation des im AMADEUS Detektor verwendeten
Filtersystems, das zur Vorselektierung von Signalen zur späteren Analyse und zur Datenredukti-
on dient. Für die Selektion von bipolaren Signalen wird eine Matched-Filter-Technik verwendet
und ein Koinzidenztest durchgeführt. Diese Funktionalität wurde in die Simulation integriert.
Die Analysekette enthält Methoden, um den akustischen Quellort eines Signals zu rekonstru-
ieren und eine Strategie zur Klassifizierung von bipolaren Signalen. Für die Rekonstruktion des
Quellorts ist eine präzise Bestimmung der Ankunftszeit eines Signals am Sensor von großer
Wichtigkeit. Mit den verwendeten Algorithmen ist eine Bestimmung der Ankunftszeit mit
einer Genauigkeit von 1 µs möglich. Aus früheren Studien ist bekannt, dass lokale Cluster
von Sensoren wegen des engen Öffungswinkels der akustischen Emission einer UHE-Neutrino-
Wechselwirkung vorteilhaft sind. Auch erleichtert dies den Koinzidenztest während der Vor-
selektierung der Signale durch das Filtersystem. Dieses Design ist in AMADEUS umgesetzt.
Dadurch wird es ermöglicht, für jeden lokalen Cluster die Richtung eines ankommenden Signals
zu rekonstruieren. Die Richtungsrekonstruktion basiert auf einem Least-Square-Fit, bei dem
die gemessenen Ankunftszeiten an den Sensoren in einem Cluster mit den erwarteten für eine
vorgegebene Richtung verglichen und minimiert werden. Die aus der Simulation bestimmte
Auflösung der Richtungsrekonstruktion ist 0.7◦ für den Azimut- und Zenitwinkel. Dies konnte
auch aus den Experimentdaten für die Emissionen des akustischen Positionierungssystems, das
in ANTARES integriert ist, nachvollzogen werden.
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Der Quellort wird aus der vorhergegangenen Richtungsrekonstruktion über ein Strahlverfol-
gungsverfahren bestimmt. Wenn für mindestens zwei der lokalen Cluster die Richtung rekon-
struiert wurde, kann der Ort bestimmt werden, in dem man von den Clustern ausgehend
Strahlen in diese Richtung aussendet und den Schnittpunkt der Strahlen bestimmt. In der
Implementation dieses Algorithmus wurde der Punkt gesucht, für den die Summe der Ab-
standsquadrate zwischen den Strahlen minimal ist. Diese Methode wurde ebenfalls mit den
Daten des akustischen Positionierungssystems validiert und für diese Emissionen konnte eine
Auflösung der Positionsbestimmung von ungefähr 5 m bestimmt werden. Allerdings zeigte die
Simulation, dass die Genauigkeit der Positionsbestimmung des akustischen Quellorts mit der
Entfernung abnimmt, wie es auch qualitativ aus geometrischen Überlegungen zu erwarten ist.
Für simulierte Ereignisse in einem Würfel von 5× 5× 2.5 km3 wurde eine Auflösung von besser
als 15 m für jede Positionskoordinate erreicht.
Eine Strategie zur robusten, effektiven und effizienten Klassifizierung von bipolaren Signalen,
die auf Algorithmen des maschinellen Lernens basieren, wurde entwickelt. Diese Algorithmen
wurden mithilfe der Simulation trainiert und getestet. Die Algorithmen Random Forest und
Boosting Trees haben sich als am besten geeignet herausgestellt, um die Daten von einzelnen
Sensoren und von denen der lokalen Cluster zu klassifizieren. Es konnte für einzelne Sensoren
ein Klassifizierungsfehler von unter 10% erreicht werden unter Verwendung eines austrainierten
Modells. Wenn die Vorhersagen für die einzelnen Sensoren in einem lokalen Cluster kombiniert
wurden, war es möglich, einen Klassifizierungsfehler von unter 2% zu erreichen.
Aufbauend auf der Analysekette wurde der am AMADEUS Detektor gemessene Untergrund
an transienten Signalen untersucht. Hierzu wurden die zeitliche und örtliche Verteilung der
ortsrekonstruierten Signale analysiert. Die Rate an bipolaren Signalen, die die akustische Si-
gnatur einer Neutrino-Interaktion nachahmen können, beträgt ungefähr 100 Ereignisse pro
Jahr und km3 in der Umgebung des AMADEUS Detektors. Hauptsächlich verantwortlich für
diese Signale scheinen Objekte zu sein, die sich an oder nahe der Meeresoberfläche befinden.
Diese Objekte, höchstwahrscheinlich Schiffe und Meerestiere, können verschiedene Signalfor-
men aussenden, unter anderem bipolare Pulse, in kurzer zeitlicher Abfolge. Davon ausgehend
wäre es sinnvoll, die Region nahe und an der Meeresoberfläche von der Suche nach Neutrinos
auszuschließen. Dies ist für den AMADEUS Detektor jedoch kaum möglich, da es dafür an der
Genauigkeit der Ortsrekonstruktion mangelt.
Mithilfe der Simulations- und Analysekette wurden ein effektives Volumen und ein “transient-
free, limit-setting potential” für den AMADEUS Detektor errechnet. Der Ausdruck “transient-
free, limit-setting potential” wurde eingeführt, um ein Limit zu definieren, dass vom AMADEUS
Detektor aufgestellt werden könnte, wenn man annimmt, dass der noch verbleibende Unter-
grund an transienten Signalen komplett unterdrückt werden kann. In der Hauptsache kann es
dazu verwendet werden, um zu untersuchen, wie sich das ambiente Untergrundrauschen auf
die Messung des Neutrinoflusses auswirkt. Für die Berechnung des effektiven Volumens wur-
den 107 Neutrinos simuliert, deren Energie gleichverteilt gewählt wurde zwischen 109 GeV, ab
dieser Energie wird ein akustisch detektierbares Signal von einer Neutrino-Interaktion erzeugt,
und 1012 GeV, bis zu dieser Energie sind die in der Simulation verwendeten Parametrisierungen
spezifiziert. Die Interaktionsverticies der Neutrinos wurden in einem Volumen von 1200 km3

festgelegt. Der Raumwinkel, aus dem die Flugrichtung der Neutrinos ausgewählt wurde, setzte
sich aus der oberen Hemisphäre zuzüglich 10◦ unterhalb des Horizonts zusammen. Darüber
hinaus ist die Wahrscheinlichkeit, dass ein Neutrino im betrachteten Energiebereich den Vertex
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erreicht, nachdem es eine vom Einfallswinkel abhängige Menge an Erde und Wasser durch-
drungen hat, praktisch gleich null. Die angenommene integrierte Messzeit war ein Jahr. Der
ambiente Untergrund, der in der Simulation enthalten ist, wurde für diese Studie verwendet,
transiente Signale wurden nicht mit eingeschlossen. Das effektive Volumen und das “transient-
free, limit-setting potential” wurden für drei verschiedene sogenannte Stufen untersucht, die
immer realistischer werdende Bedingungen für das ambiente Rauschen und für die Einstellun-
gen des Online-Filters beschreiben. Die Energieschwelle des AMADEUS Detektors liegt unter
idealisierten Bedingungen bei 1.8 · 1010 GeV und das effektive Volumen überschreitet ein Volu-
men von 2 km2 bei 1012 GeV. Dies zeigt bereits das Potenzial der akustischen Detektion von
UHE-Neutrinos. Das “transient-free, limit-setting potential” ist hauptsächlich durch das effek-
tive Volumen des Detektors, das für die derzeitige Detektorkonfiguration 0.1 km3 bei 1012 GeV
ist, und durch die hohe Energieschwelle von 1.8 · 1011 GeV bestimmt. Das errechnete “transient-
free, limit-setting potential” des AMADEUS Systems ist vielversprechend und sollte Studien
für einen zukünftigen großvolumigen Detektor anregen, die auf der entwickelten Simulations-
und Analysekette beruhen könnten. Des Weiteren ist mit der Bestimmung der Rate an bipo-
laren Untergrundsignalen ein weiterer großer Schritt in Richtung einer Entscheidung über die
Machbarkeit der akustischen Neutrino-Detektion im Mittelmeer getan.
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Appendix A
Acoustic Ray Tracing in Sea Water

The approaches to reconstruct the position of the acoustic source, as described on Sec. 4.3,
is based on the assumption that the speed of sound in sea water does not depend on the
depth of the water, so the path trough the medium is linear. The method of ray tracing is
introduced here to overcome this simplification. The speed of sound in water depends on the
pressure, temperature, and salinity. The speed of sound profile cs(z)for a detector site can be
determined by either direct measurement or implicitly by measuring the quantities mentioned
above. The so-called UNESCO1 algorithm [84–86] is the standard method for calculating the
depth-dependent speed of sound from pressure, water temperature, and salinity data. The
derivation of the ray tracing equation is based on Fermat’s principle of least time and the
calculus of variations following [87–89]. Fermat’s principle can be expressed as a variation on
the travel time T for a path between two fixed points:

δT = δ

∫
dt = 0. (A.1)

In order to find the path that minimises the travel time, the differential time dt is substituted
with the differential path length dt/ds = 1/cs :

δT = δ

∫
1

cs
ds = 0. (A.2)

The path length ds in Cartesian coordinates xi is ds =
√
dxidxi . The Einstein summation is

assumed and we will explore the effect of variation on ds:

δds = δ(dxidxi)
1
2 =

1

ds
δ(dxidxi) =

1

ds
dxiδdxi =

dxi
ds

δdxi =
dxi
ds

δdxi
ds

ds = ẋiδẋids (A.3)

1United Nations Educational, Scientific, and Cultural Organisation (UNESCO)
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The variation on the travel time can be rewritten as:

δT = δ

∫
1

cs
ds (A.4)

=

∫
δ(

1

cs
ds) (A.5)

=

∫
(δ

1

cs
ds +

1

cs
δds) (A.6)

=

∫
(δ

1

cs
+

1

cs
ẋiδẋi)ds (A.7)

=

∫
(δxi∂i

1

cs
+

1

cs
ẋiδẋi)ds (A.8)

The term δ(xi∂i
1
cs
) represents the change in the travel time caused by the variation on the

speed of sound over another path and ẋiδẋi induce a change due to the variation on the path
length.

δT =

∫
(δ(xi∂i

1

cs
) + ẋiδẋi)ds (A.9)

=
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1
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ds +

∫
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ẋiδxi ]

b
a −

∫
δxi

d

ds
(
1

cs
ẋi)ds (A.11)

=

∫
δxi(∂i

1

cs
− d

ds
(
1

cs
ẋi))ds (A.12)

As Eq. A.2 must be true for all variations δxi , the term:

∂i
1

cs
− d

ds
(
1

cs
ẋi) = 0 (A.13)

must vanish everywhere along the path. So we can write the ray equation as:

ẍi = cs∂i
1

cs
− ẋi(ẋjcs∂j

1

cs
). (A.14)

Under the assumption that the profile of speed of sound profile depends only on the depth,
the ray propagates in the plane represented by the vertical z-axis and the horizontal r -axis.
The angle θ is defined between the ray and the horizontal. In this case, ẋ can be defined as:
ẋ = er cos θ + ez sin θ and Eq. A.14 can be rewritten as:

1

cs
(ez cos θ−er sin θ)θ̇ = er∂r

1

cs
+ez∂z

1

cs
−(er cos θ+ez sin θ)(cos θ∂r

1

cs
+sin θ∂z

1

cs
). (A.15)

Now, an expression for θ̇ can be written as:

1

cs
θ̇ = ∂z

1

cs
cos θ − ∂r

1

cs
sin θ (A.16)
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The derivative θ̇ can be reformulated as: θ̇ = cos θdθ/dr . As mentioned earlier, the profile of
the speed of sound profile is assumed to be only z-dependent, thus the second term can be
neglected. This leads to the first ray equation:

dθ

dr
= −∂zcs

cs
(A.17)

The second ray equation can be derived from the definition of θ as:
dz

dr
= tan θ (A.18)

As the travel time of the sound wave is of interest, a third equation can be formulated as:
dt

dr
=

sec θ

cs
(A.19)

The ray equations can be integrated using an ordinary differential equation (ODE) solver from
initial conditions: the depth z0 and the starting angle θ0. The profile of the speed of sound
profile at the ANTARES site (cf. Fig. A.1(a)) was measured during a sea campaign [90]. The
measurement included the velocity of the sound from the surface of the sea to the sea floor
in 2475 m in steps of 1 m. The measured values were interpolated using a spline interpolation
and the derivatives were calculated numerically.
This ray tracing algorithm was used to determine the maximal distance accessible by the
AMADEUS detector to a source located at the surface of the sea and the corresponding
incident angle. This distance is about 32 km for the upmost acoustic storey, which is 410 m
above the sea floor, and the incident angle is about 5.5◦ below the horizon. The surface of the
sea area accessible by the AMADEUS detector is about 32 km2. In Fig. A.1(b), the paths that
result from the profile of the speed of sound for different starting angles is shown. It is assumed
that the profile of the speed of sound and the the depth of the water do not vary in the sea
surrounding the acoustic receiver. This is, however, not completely valid for the AMADEUS
site, since the depth of the water decreases in the direction of the coast after about 10 km to
about 200 m.
A simple ray tracing technique, assuming straight rays, was introduced in Sec. 4.3 as position
reconstruction method. This was extended with the ray equations derived above in order to
incorporate the effect of the speed of sound profile. The ray tracing technique was tested with
the emissions of the acoustic positioning system integrated in the ANTARES detector as for the
original position reconstruction method. The mean position and the uncertainty was derived
by fits of Gaussian distributions to the corresponding distributions of the reconstructed x , y ,
and z coordinates for each of the emitters. The results are given in Fig. A.2. As mentioned in
Sec. 4.3, the emitters of Line 6, 4, 9, and 12 were not operational or only partially operational
at this time. The resolution of the ray tracing derived for these emissions is:

⟨σx⟩ = 5.0± 0.6m
⟨σy⟩ = 5.4± 0.7m
⟨σz⟩ = 4.5± 1.1m .

The mean deviation of mean reconstructed position and the true position of the emitters is:

⟨x⟩ = 1.0± 0.5m
⟨y⟩ = 1.8± 0.4m
⟨z⟩ = 23.9± 0.5m .
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The resolution if this ray tracing technique is better than 6m for each coordinate, which is in
agreement with the result of about 5m provided by the straight-ray method. The reconstructed
position of the emitters is in agreement with their true position only for the x and y coordinates.
For z , a significant offset of about 24m between the reconstructed coordinate and the true
coordinate is seen. Although the effect of profile of the speed of sound should be less than a
few metres for the distances of a few 100m between the emitters of the positioning system
and acoustic storeys in the AMADEUS detector. This was tested with the simulation in which
it was assumed that the velocity of sound did not change. No positive indication of the origin
of the offset had been determined at the time of writing. Also, the integration of the effect
of the profile of the velocity of sound into the simulation would require further work that is
beyond the scope of this thesis.
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Figure A.1: (a) The profile of the speed of sound as a function of the depth, which was derived
from measurements at the ANTARES site. (b) An example of the ray tracing technique with
rays starting at a depth of 2065m (upmost acoustic storey) for different starting angles. The
sea floor is at 2475m (dashed line).
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Figure A.2: (a) The distribution of the x and y coordinates of the reconstructed positions.
Also, the fitted position and the uncertainty are given (orange markers) and the true position
of the emitters (green markers). (b) The fitted z positions of the emitters (red markers) and
their uncertainty are shown, and the true z-coordinate of the emitters is given.
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