
Modellunabhängige Suche nach
Neutrinoquellen mit dem

ANTARES Neutrinoteleskop

Model-independent search for neutrino sources
with the ANTARES neutrino telescope

Der naturwissenschaftlichen Fakultät
der Friedrich-Alexander-Universität Erlangen-Nürnberg

zur Erlangung des Doktorgrades Dr. rer. nat.

vorgelegt von
Stefan Geißelsöder
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Kurzzusammenfassung

Der Ursprung der hochenergetischen kosmischen Strahlung, die wir auf der Erde
beobachten können, ist trotz jahrzehntelanger intensiver Forschung immer noch
nicht eindeutig bekannt. Viele Theorien, die versuchen die Entstehung dieser
Teilchen zu erklären, sagen auch einen Fluss von hochenergetischen Neutrinos
aus dem Kosmos vorher. Zwar wurde vor kurzem die Existenz dieser Neutri-
nos bestätigt, die Quellen konnten dabei aber nicht identifiziert werden. Das
ANTARES Neutrinoteleskop wurde im Mittelmeer 40 km von Toulon in einer
Tiefe von 2475 m gebaut, um diese und andere Fragen zu klären. Es besteht
aus 885 Photovervielfachern, die in einer dreidimensionalen Struktur angeordnet
sind, um die Tscherenkovstrahlung zu detektieren, die von Teilchen ausgesendet
wird, die bei der Interaktion von Neutrinos mit dem Meerwasser entstehen.

Die Interaktionen von Neutrinos in den ANTARES Daten zu identifizieren
und zu rekonstruieren stellt herausfordernde Aufgaben dar. Die ersten bei-
den neuen Methoden, die in dieser Arbeit vorgestellt werden, versuchen diese
Aufgaben möglichst effizient durch Mustererkennung zu lösen. Der erste Algo-
rithmus klassifiziert die Daten in von unterhalb des Detektors kommende Neu-
trinosignale und von oberhalb kommende Teilchen, um einen Großteil der von
oben kommenden atmosphärischen Muonen ausfiltern zu können. Der zweite
Algorithmus verbessert die Richtungsrekonstruktion, indem er für jedes Neu-
trino den jeweils genausten Rekonstruktionsalgorithmus auswählt.

Der Hauptfokus dieser Arbeit liegt auf einer neuen Methodik, die die
Verteilung der rekonstruierten Neutrinos auswertet. Im Gegensatz zu den meis-
ten Analysen in ANTARES versucht diese Suche nicht, ein spezifisches, theo-
riebasiertes Modell einer Neutrinoquelle zu detektieren, sondern zielt darauf
ab, die deutlichste Überfluktuation mit beliebiger Größe, Form und Verteilung
der Neutrinos an einer beliebigen Position im Himmel zu finden. Um dieses
Ziel zu erreichen wird die Dichte der Neutrinoereignisse in 180 voneinander
unabhängigen Skalen ausgewertet. Wenn eine Region mit unerwartet hoher
Neutrinodichte identifiziert worden ist, wird das potentielle Neutrinosignal mit
Pseudoexperimenten mit zufälligen Neutrinoverteilungen verglichen, um seine
Signifikanz zu bestimmen. Die Stärken einer derart flexiblen modellunabhängigen
Suche liegen üblicherweise nicht in einer hohen Sensitivität bezüglich einer
bestimmten Quellannahme, sondern im Entdecken einer Hypothese, die dann
genauer ausgewertet werden kann.

In den Daten, die zwischen 2007 und 2012 aufgezeichnet wurden, wurde eine
sehr große, ausgedehnte Struktur in Richtung des Zentrums unserer Galaxie ge-
funden. Die Signifikanz beträgt 2.52σ, was als konsistent mit zufälligen Fluktu-
ationen betrachtet werden kann. Um eine unabhängige Überprüfung der Ergeb-
nisse vorzunehmen wurde der IC40 Datensatz analysiert, der von der IceCube
Kollaboration veröffentlicht wurde. Bei dieser Auswertung wurde tatsächlich in
dem Bereich, an dem die Struktur aus den ANTARES Daten mit dem für Ice-
Cube sichtbaren Bereich überlappt, ebenfalls eine Überfluktuation festgestellt.
Die so identifizierte Struktur hat eine Signifikanz von 2.14σ.

Da trotz diverser weiterer Studien anhand der vorliegenden Daten keine
eindeutige Erklärung der Ergebnisse möglich ist, wird eine weitere Analyse
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empfohlen, die auf die gefundenen Ergebnisse spezialisiert sein kann und daher
deutlich eindeutigere Erkenntnisse liefern könnte.

Unabhängig davon ist das erhaltene Ergebnis gegenwärtig die signifikan-
teste, räumlich begrenzte Hypothese für einen erhöhten Fluss hochenergetischer
astrophysikalischer Neutrinos.

Abstract

The origin of high energetic cosmic rays has been puzzling since their discovery.
Many theories about the sources of these cosmic rays also predict a flux of high
energetic cosmic neutrinos. Recently, the existence of such a high energetic neu-
trino flux has been confirmed, but the location and nature of its sources remains
unknown. The ANTARES neutrino telescope was built in the Mediterranean
Sea, 40 km off the French coast near Toulon in a depth of 2475 meters to help
answer this and other questions. It consists of a three dimensional array of 885
photomultiplier tubes that detect the Cherenkov light emitted by secondary
particles, which are produced in interactions between neutrinos and nuclei in
the water.

The identification and reconstruction of the observed neutrino events con-
stitute challenging tasks. Parts of this thesis deal with algorithmic approaches
to improve these tasks using pattern recognition. The first application is the
suppression of undesired background by a classification algorithm. The second
approach is the selection of the best available direction reconstruction for each
neutrino.

The main focus of this thesis lies on a new method to evaluate the spatial
distribution of the observed neutrinos. While most approaches test one specific
hypothesis for a specific source, derived from theory or other measurements,
this search refrains from optimizing for individual source hypotheses and tries
to detect the most pronounced density fluctuation in the spatial distribution,
regardless of its specific position, size, shape or internal distribution as unbiased
as possible. To achieve this, the statistical likelihood for the observed neutrino
density is evaluated in multiple scales up to distances between events of 180◦. To
recognize a potential cosmic neutrino signal, regions with the most pronounced
deviations are identified and compared to the expectations from a random back-
ground hypothesis. The strength of such a flexible, model-independent search
is not the sensitivity for a specific source hypothesis, but instead to detect also
unexpected hypotheses that can then be analyzed in more detail.

In the data recorded from 2007 to 2012 this search found a very large struc-
ture close to the direction of the center of our galaxy with a post-trial signifi-
cance of 2.52σ. It can therefore be explained best by a statistical fluctuation.
As a simple crosscheck this method has been applied to a publicly available
data sample recorded independently by the neutrino telescope IceCube. This
evaluation also resulted in an overfluctuation at the location where the most
significant structure from ANTARES data overlaps with the field of view of
IceCube. With the devised analysis method the found structure in the IC40
data has a significance of 2.14σ.
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While this is intriguing, ultimately, a dedicated follow-up analysis that is
optimized for the derived hypothesis is necessary to find unambiguous evidence
for its true nature.

Since, despite further studies, no unambiguous explanation could be found
for the obtained results, a follow-up analysis is recommended, that can be
adapted specifically to the results and therefore has a higher chance to provide
unambiguous insights.

Nevertheless this result constitutes the most significant spatially resolved
hypothesis for the sources of high energetic astrophysical neutrinos so far.
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Part I

Introductions

This part of the thesis introduces various basic concepts useful for the under-
standing of the methods and results. It covers aspects of neutrinos in general,
the ANTARES experiment, the underlying physics and of the algorithms used.
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1 Motivation

The sky has always been fascinating for mankind, making us wonder about
the mechanisms behind the universe. Until the 20th century, observing the sky
was limited to the visible part of the electromagnetic spectrum. This began
to change in 1931 when Karl Guthe Jansky noticed that a part of the back-
ground noise in transatlantic radio communications originated from the Milky
Way [1]. Over the course of the following decades the sky was studied not only
in radio wavelength, but also in all other parts of the electromagnetic spec-
trum like microwaves, infrared, ultraviolet, X-ray or γ-ray. An example for the
different aspects revealed by different parts of the electromagnetic spectrum is
shown in Figure 1. Another good example for a multiwavelength observation
revealing different aspects of the same object can be seen in Figure 5. With
every new analyzed energy range new phenomena were discovered, deepening
our understanding of the processes that shape our universe.

Figure 1: Our galaxy as seen in different wavelength bands. Taken from [2].

Unfortunately for astronomy, electromagnetic waves are absorbed if dense
matter is between us and the source. This prevents a glimpse into some of the
most interesting regions, for example the center of our galaxy.

A completely different approach in astronomy is to rely on other particles
instead of photons. One candidate are so called cosmic rays. These particles
have first been described by Victor Hess in 1912 in [3]. They consist mainly out
of protons and alpha particles and their flux extends to very high energies as
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seen in Figure 2. It shows the flux of cosmic rays versus energy, measured by a
multitude of independent experiments. For the low energy range, which is not
covered in this plot, direct measurements of cosmic rays can be performed, for
example by experiments on balloons, satellites or the International Space Sta-
tion. The shown high energy range is mainly covered by Cherenkov telescopes,
for instance the Pierre Auger Observatory [4]. But cosmic rays are charged
particles and therefore they’re influenced during their propagation by galactic
and extragalactic magnetic fields. Hence only the most energetic particles are
deflected little enough that they approximately point back to their origin.
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Figure 2: The energy spectrum of cosmic rays. From [5]. Multiple experiments
have measured different energy ranges with different techniques. The features
that can be observed in this energy distribution are the so called “knee” at
around 108GeV and the “ankle” around 1010GeV. The distribution has dif-
ferent spectral indices between them. These features suggest that different
mechanisms could be involved.

The relatively new field of neutrino astronomy is a promising candidate to
overcome these drawbacks. Neutrinos are electrically neutral particles, so they
are not deflected by magnetic fields. They interact only by gravity and the
short ranged weak force, allowing them to travel large distances even through
matter. Because neutrinos cannot be observed directly, their detection must
rely on secondary particles, which are generated once a neutrino interacts with
matter. These secondary particles can emit Cherenkov radiation, which occurs
when charged particles travel faster than the speed of light in the medium they
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are currently traversing [6]. This radiation can then be measured for instance
by highly sensitive photomultipliers.

The “Astronomy with a Neutrino Telescope and Abyss environmental RE-
Search” project (ANTARES, described in [7]) is a Cherenkov radiation based
neutrino telescope, located in the Mediterranean Sea, 40 km off the French
coast. Other collaborations, for instance BAIKAL [8] and IceCube [9], are also
doing research in the promising field of neutrino astronomy, with ANTARES
being the largest operational telescope in the Northern Hemisphere.

For the success of every current, complex experiment sophisticated simula-
tion and data analysis software is absolutely essential. This thesis illustrates
improvements of several steps in the data evaluation chain of ANTARES. These
improvements are not limited to this experiment as only minor details are ap-
plication specific, but the ideas behind them are general and can be applied to
a multitude of scenarios.

The first improvement is an enhanced classification to separate neutrino
signals from undesired background. The second presented idea is to efficiently
combine multiple independent reconstruction algorithms using a classification
algorithm to obtain a more accurate reconstruction result. The main part of
this thesis is a new strategy to detect structures of arbitrary position, size, shape
and neutrino distribution in the observed neutrino signal which are incompat-
ible with a random background assumption. This method does not require a
theoretical model of the neutrino emission.

Chapters 2, 3 and 4 sketch an overview over neutrinos, neutrino detection
with ANTARES and pattern recognition, covering properties of neutrinos, pos-
sible scenarios for neutrino emission, the architecture of the neutrino telescope
itself, its data taking and the software used for data processing and simulations.

The new methods that have been developed for this thesis are explained in
detail in chapters 5, 6 and 8.

The results of the created data processing chain and their explanations are
presented in chapter 9, while the interpretation of these results can be found in
chapter 10.
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2 Neutrinos

The existence of neutrinos has first been postulated by Wolfgang Pauli in 1930
to explain the continuous energy distribution of electrons in beta decays, see
[10]. The first proof of their existence was found in 1956 with the Cowan-Reines
experiment, see [11], when electron-antineutrinos produced by a nuclear reac-
tor were observed by inverse beta decay. Since then many other experiments
have investigated the properties of neutrinos. They are electrically neutral and
therefore only interact via gravity and the weak force. This is also the reason
why they are so hard to detect, as they do not interact with magnetic fields,
not by strong force interactions and, similar to to photons, hardly by gravity,
see [12]. Neutrinos are fermions as they have a half-integer spin. There are
three known types of neutrinos, the so called flavors. Together with the three
leptons e, µ and τ , the three neutrinos (and the respective antiparticles of each
particle) form the leptons, a group of light elementary particles. An overview
over the standard model of particle physics with leptons in green is shown in
Figure 3. Each neutrino flavor is named after the lepton the neutrino produces
in charged current interactions. Maybe the most remarkable characteristic of
neutrinos is that they oscillate between the different flavor states, alternating
between electron, muon and tau flavor. Therefore neutrinos can be expected to
have a mass greater than zero, since from theory it is known that oscillation be-
tween the neutrino flavors isn’t possible for massless neutrinos, see for instance
[13], [14], [15] and [16]. Nevertheless their exact masses are still unknown. The
mass of the electron-neutrino νe for instance is known to be below 2 eV from
measurements of the beta decay of tritium [17]. The standard model of cos-
mology together with the interpretations of different observations give upper
limits for the sum of the masses of all neutrino flavors of below 1 eV [18] or
even below 0.23 eV [19].

Since no difference between neutrinos and antineutrinos will be relevant for
any part of this thesis, antineutrinos will not be addressed separately, but are
included when referring to neutrinos from here on.

2.1 Sources

Neutrinos of different energy scales are produced by different objects and pro-
cesses. The first observed electron-(anti)neutrinos from radioactive decays in
nuclear reactors for instance had energies of a few MeV. A well established ex-
traterrestrial source of neutrinos is the sun [21], which is also emitting neutrinos
with energies up to few MeV [22]. Until now the only identification of a neutrino
source outside of our solar system has been possible during the outburst of the
supernova 1987A. It occurred on 23. February 1987 in the Large Magellanic
Cloud, a nearby galaxy. Three neutrino experiments that have been active at
that time, Kamiokande II [23], IMB [24] and Baksan [25] in total observed 25
neutrinos from the supernova, also with energies of few MeV. But there are
neutrino sources that reach orders of magnitude higher energies.

As already mentioned in chapter 1, Victor Hess discovered cosmic rays in
1912. On further investigation it was discovered that this flux of charged par-
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Figure 3: The standard model of particle physics. Taken from [20].

ticles extends to very high energies as seen in Figure 2. But even today the
sources of the highest energetic cosmic rays are still unclear. There are models
for a variety of galactic and extragalactic objects that predict the acceleration
of hadrons to highest energies, making these objects potential candidates for
sources of high energy cosmic rays. If these theories are true, the same hadronic
processes must also generate very high energy neutrinos. Once an accelerated
proton produces a hadronic shower, the resulting charged pions can produce
neutrinos as described in equation 1 (Branching ratio >99.9%) followed by
equation 2. Charged kaons which are also produced in hadronic showers can
produce neutrinos either by decaying to charged pions (28%), resulting again
in equation 1, or directly to muons (64%), resulting in equation 2.

π− → µ− + ν̄µ (1)

π+ → µ+ + νµ

µ− → e− + νµ + ν̄e (2)

µ+ → e+ + ν̄µ + νe

The existence of such a high energy neutrino flux has recently been con-
firmed by the IceCube neutrino telescope, published in [26] and [27], but it has
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not been possible to identify a source of the observed neutrinos.

In our galaxy there are several candidates for sources of high energetic
neutrinos. A promising candidate would for instance be supernova remnants
(SNRs). The shock front generated by the immense release of energy during a
super nova explosion propagates into the surrounding interstellar medium. By
repeated scattering in front of and behind this shock front, particles from the
interstellar medium can be accelerated to high energies. This acceleration pro-
cess is known as Fermi-acceleration. It is explained in detail in [28]. Probably
the most famous SNR, the crab nebula, is shown in Figure 4.

Figure 4: Supernova remnants like the crab nebula could be a source of cosmic
neutrinos. Taken from [29].

Apart from SNRs, also pulsars could be possible sources of high energetic
neutrinos. Pulsars are fast rotating neutron stars which have strong magnetic
fields, allowing them to accelerate charged particles powerfully.

Another possibility for galactic neutrino sources could be the jets of so
called micro-quasars, stellar black holes of a few solar masses accreting matter
for instance from a companion star.

The Fermi Bubbles are large extended regions in our galaxy that reach 50◦

above and below the Galactic Center, with a width of up to 40◦. They were first
described in 2010 in [30]. As their origin is not completely clear, the detection of
a neutrino flux originating from these bubbles would help clarify their formation.
A possible scenario could for instance be a jet produced at the Galactic Center,
which could also accelerate hadrons and thus produce neutrinos.

On the other hand models of these potential galactic sources show that
these phenomena can’t produce the most energetic observed cosmic rays, as
explained for instance in [31]. Therefore even more powerful mechanisms must
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be involved. As there are no such mechanisms known within our galaxy and
the gyroradius of these particles would already be larger than the extension of
our galaxy, the highest energetic particles are believed to be of extragalactic
origin.

One of the most promising candidates would for instance be active galactic
nuclei (AGNs), see [32]. AGNs have a massive black hole in the center of the
host galaxy. When matter is accreted and consumed by the black hole, jets are
formed orthogonal to the plane of the accretion disk. These jets could be an
excellent method to accelerate particles to highest energies. An image of such
an AGN can be seen in Figure 5.

Figure 5: The AGN Centaurus A as overlay of multiple wavelength measure-
ments. Taken from [33].

Another interesting possible source could be gamma-ray bursts (GRBs).
They are short but very intense outbursts of highly energetic γ-radiation. As
they are distributed isotropically over the sky, it was realized quickly that they
must be of extragalactic origin, see for instance [34]. The typical timescale
of GRBs is rather short, with two different timescales being observed. Short
GRBs have a lifetime of below 2 seconds, whereas typical long GRBs last up
to minutes. After both types a longer afterglow can be observed. Possible
explanations for GRBs include for instance the collapse of a massive star to a
neutron star or a black hole. More insight on GRBs can be found for instance
in [35] or [36].

There are several other extragalactic objects which might contribute to the
production of high energetic neutrinos. A more complete list is given for in-
stance in [31]. But besides the already suspected candidates, of course there is
also the possibility that the involved mechanisms are still unknown or not fully
understood yet.
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2.2 Propagation

Once a neutrino is generated at its source, it is hardly influenced during its
propagation through space. As they are electrically neutral, they cannot be
deflected for instance by galactic or extragalactic magnetic fields along their
path. As explained in [12], they are not influenced by gravitational effects
significantly more than photons due to their small mass and high velocity. This
makes them ideal candidates for astronomy, since, unlike photons, they can
traverse dense matter. Cosmic rays on the other hand are charged particles
and therefore, except for extremely energetic ones, are deflected by magnetic
fields along their way, obscuring their origin.

Since neutrinos oscillate between the three flavor states and the typical
traveling distance is far longer than the distances required for oscillation to
occur at the considered energies, the expected flavor ratio of cosmic neutrinos
on earth is 1:1:1, regardless of the original flavor(s) that have been produced at
the source, see for instance [37].

2.3 Detection

The biggest advantage of neutrinos for astronomy, their low probability to inter-
act between the source and the Earth, becomes the most relevant disadvantage
when trying to detect them with a neutrino telescope. A direct detection of
neutrinos is beyond the capabilities of todays technology. Therefore the detec-
tion of neutrinos has to rely on the secondary particles created when a neutrino
interacts via the weak force with a nucleus of the matter it traverses. The
deviation between the direction of the neutrino and of the produced secondary
particle is small at the energies relevant for this thesis as shown in [38], page 43.
For example the median angular difference betweeen the direction of a muon-
neutrino with an energy of 1 TeV and the muon resulting from a CC interaction
is below 1◦.

There are two possibilities for interactions between neutrinos and matter.
The interaction can occur as a neutral current (NC) interaction with a Z0 boson
as a mediator, shown in Figure 6, or as a charged current (CC) interaction, with
a W+ or W− as mediator and the charged lepton corresponding to the flavor
of the neutrino as resulting secondary particle, shown in Figure 7.

Figure 6: Feynman graph for the deep inelastic neutral current neutrino inter-
actions of all flavors. From [39].
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Figure 7: Feynman graphs for the deep inelastic charged current neutrino in-
teractions. From [39].

If the interaction occurs in a dielectric medium and the produced charged
secondary particles move faster than the speed of light in this medium the so
called Cherenkov radiation, described for instance in [6] and [40], is emitted at
a characteristic angle ΘE .

ΘE = arccos
1

nβ
(3)

Equation 3 shows the dependence of ΘE on the refractive index of the medium
n and the velocity v of the traversing particle with β = v/c. c denotes the speed
of light in vacuum. For the considered energies and seawater this angle is about
42◦. A schematic of the emission of Cherenkov light is shown in Figure 8. This
light can be measured to detect the neutrino and to reconstruct its properties.
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Figure 8: Schematic of the emission of Cherenkov radiation along the track of a
particle. S’ marks the starting point where the interaction took place, S is the
current position of the particle. Due to the movement of the particle, which is
faster than the speed of the light in the medium, a cone shaped light front is
formed. Image taken from [39].
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3 ANTARES

As explained in chapter 2.3, secondary particles produced by neutrino interac-
tions emit Cherenkov radiation, which can be detected. Photomultiplier tubes
(PMTs) can be used to measure these photons. Since the probability that a
neutrino interacts close to a PMT is low, a large volume covered by a high
number of PMTs is favorable. Of course this volume has to be filled with an
optically transparent medium to allow the photons to propagate to the PMTs.
Since a neutrino interaction only produces few photons compared to a visible
light source, as few other light sources as possible should be interfering with
the measurement, making the deep sea or deep in the antarctic ice favorable
options for the location of a neutrino telescope. From the position, time and
amplitude information measured by the PMTs, the direction of the secondary
particle and therefore of the neutrino can be reconstructed and its energy can
be estimated . All modern neutrino telescopes follow this general scheme. At
the time this thesis is written, ANTARES (“Astronomy with a Neutrino Tele-
scope and Abyss environmental RESearch”) is the largest operating neutrino
telescope in the Northern Hemisphere. It is located in the Mediterranean Sea1,
40 km from the French coast near Toulon at a depth of 2475 meters to partly
shield it against muons produced in the atmosphere. It uses the water of the
deep sea as optical medium for neutrino detection.

The international ANTARES collaboration consists of 32 institutes from
France, Italy, the Netherlands, Germany, Spain, Russia and Morocco.

3.1 Detector layout

The PMTs measuring the Cherenkov radiation in ANTARES have a diameter
of 25.4 cm. They are enclosed in glass spheres together with some necessary
electronics. These spheres are called optical modules (OMs). Three OMs and
some additional electronics are grouped together in so called “storeys”. The
OMs of each storey have a spacing of 120◦ between them to optimally cover the
whole surrounding. The structure of a storey can be seen in Figure 9. Each OM
is oriented downwards by 45◦ because about 106 times more muons generated by
cosmic ray interactions in the atmosphere than from neutrino interactions reach
the telescope from above, resulting in a large background. On the other hand,
only neutrinos reach the telescope from below, as they are able to traverse
the earth. Therefore ANTARES has been optimized for upgoing muons. A
schematic visualizing the possible paths of muons that can reach ANTARES is
shown in Figure 10.

Twenty-five storeys2 are attached to each line with a distance of 14.5 m
between the storeys. The layout of ANTARES contains 12 of these lines that
are anchored at the sea bottom, each held upright by the buoyancy forces of a
buoy attached at the top of the line and of the OMs along the line. The lines
have a mean distance of about 70 meters between them. The footprint of these
lines can be seen in Figure 11. All together this setup results in an extension of

142◦48’N, 6◦10’E
2One line has only 20 instead of 25 storeys
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Figure 9: An ANTARES storey with the three OMs. Taken from [41].

about 210 by 210 by 350 meters and an instrumented volume of about 0.01km3.
An artists impression of the overall structure can be seen in Figure 12.

Since the whole setup is exposed to sea currents, the lines are not always
aligned exactly vertically. This effect is compensated by a calibration of the
telescope geometry. The measurement of the current geometry is performed
every two minutes using acoustic emitters and hydrophones located at every
fifth storey. With the help of other techniques, these measurements allow po-
sition calibrations by triangulation with a precision of < 10 cm, see [44]. The
obtainable time resolution, also achieved by sophisticated calibrations, is at a
level of 1 ns.

Many more details about the components, structure, calibration and oper-
ation of ANTARES can be found for instance in [7].

3.2 Event processing

ANTARES follows the “all data to shore” concept, meaning that all measure-
ments above a certain low threshold are sent to a computer farm at a shore
station via optical cables. The measurements are then called a “hit”. Every hit
has a timestamp assigned by the electronics. Therefore the hits generated by
the same physical event at similar times can be grouped together by the data
processing chain to be recognized as one ”event”, sometimes also referenced as
a “frame”.
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Figure 10: Sources of muons in ANTARES. Atmospheric muons from cosmic
ray interactions in the atmosphere reach the detector from above, but only
from interactions of muon-neutrinos can muons reach it from below. Image
taken from [42].

To filter out events that contain only noise, caused for instance by biolumi-
nescence, algorithms analyze the incoming data before they are stored. There
are many ideas about how these so called triggering algorithms or “triggers” can
search for potentially interesting events. In ANTARES they rely on a preselec-
tion of the measured hits, where only hits above a threshold or in coincidence
with other hits on the same storey are analyzed further. The trigger algorithms
then analyze these preselected, so called L1 hits. If any of the simultaneously
active trigger algorithms identifies an event as potentially interesting, it is writ-
ten to disk together with the hits contained in a time window of ± 2200 ns
before and after the first and last triggered L1 hit. In this thesis two trigger
algorithms are used for data selection.

• 3N trigger:
It searches for L1 hits that fulfill equation 4:

|∆t| < |∆x|
cmedium

(4)

with ∆t being the time difference between two hits, ∆x the distance
between the position of these two hits and cmedium the speed of light in
seawater.

If a cluster of at least five connected hits that fulfill this criterion is found,
the hits are checked if they are compatible with a muon trajectory. If this
is the case, the event is triggered by the 3N trigger.
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Figure 11: Footprint of the lines in the ANTARES telescope. Taken from [42].

• T3 trigger:
At least two of the L1 hits are detected on neighboring storeys within 100
ns, or on next to neighboring storeys within 200 ns. If an event contains
two of these coincidences, the T3 trigger keeps the event.

More information on the trigger algorithms can be found for instance in
[45], [46] and [47].

The data taking in ANTARES is organized in so called “runs”. A run
typically lasts several hours and is intended to be a data taking period of similar
conditions. The runs are identified using a runnumber, which is a six digit
number. Until today for every run the first digit of the runnumber is zero. This
leading zero will be omitted when listing runnumbers in this thesis.

Since one storey doesn’t provide enough information to reconstruct an event
decently, but low-energetic events often do not produce enough light to be
observed by multiple storeys, a neutrino telescope has a lower limit for the
energy of reconstructable events depending on the geometry, the data taking
conditions and the applied reconstructions. For ANTARES this lower limit lies
somewhere around 10 GeV, depending on the exact evaluation methods.
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Figure 12: Overview over the ANTARES neutrino telescope. Based on a de-
piction from [43].

3.3 Event signatures

With the achievable resolution of ANTARES one cannot distinguish all possi-
ble types of neutrino interactions from each other. With three neutrino flavors,
two possible interactions per flavor and one antiparticle per particle, in prin-
ciple there are twelve different interactions. Since there is no way to measure
the charge of the generated particles, the interactions of particles and antipar-
ticles look alike. From the remaining six interactions all neural current (NC)
interactions produce indistinguishable hadronic cascades, also called hadronic
showers. This is indicated in the overview in Figure 13, with only four differ-
ent signatures remaining. For energies relevant in ANTARES the signature of
all particle cascades is almost pointlike. This can be seen in Figure 14, where
the traveling distances for showerlike events are short, keeping in mind that
the distance between two lines is about 70 meters in ANTARES. To resolve
those structures a much denser detector is necessary, like for instance Super-
Kamiokande, see [48], but these detectors do not yet cover such large volumes.
With the dense instrumentation of future projects like ORCA, described in [49],
it will be possible to resolve such small structures even for large volumes.

The charged current (CC) interactions of neutrinos produce the lepton corre-
sponding to the flavor of the neutrino, accompanied by a hadronic shower. The
electron created by νe CC interactions produces an electromagnetic cascade with
a pointlike signature that is so similar to the ones generated by hadronic cas-
cades that these cannot be distinguished with ANTARES for individual events.
Therefore the interactions c) and d) in Figure 13 can be considered to have the
same signature.
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Figure 13: Possible event signatures for a neutrino telescope. Taken from [50].

In contrast to that, muons created by νµ CC interactions travel considerable
distances depending on their energy as seen in Figure 14. With a typical energy
loss, the track length of muons between 100 GeV and 1 TeV can already surpass
the instrumented volume of ANTARES.

Since they emit light along their path, their signature is elongated and
tracklike. Therefore muon-neutrinos can be distinguished from the showerlike
event signatures. The signature of ντ is highly energy dependent. For ener-
gies below 100 TeV these events look pointlike since the τ has a lifetime of
(290.3± 0.5) · 10−15 s (see [17]) and therefore decays quickly, producing a sec-
ond cascade within or next to the first hadronic one, making it similar to the
νe signature. The expected traveling distance increases rapidly with energy at
about 50 m/PeV, theoretically resulting in a tracklike event signature for high-
est energies. In between these two cases, a so called “double bang” signature
is expected. Due to the size of ANTARES, it is unlikely that both cascades
can be observed within the detector volume and can be distinguished from an
ordinary track event with an additional energy loss due to a shower along the
track. Furthermore, a nuτ can also result in a track if the produced τ decays
to a µ, which occurs in about 17.4% of all events, see [17].

This leaves us with two distinguishable signature types, the pointlike shower
events and the elongated tracklike events as seen in Figure 15.

Due to its elongation the tracklike signature contains more information
about the direction and therefore also allows a more precise direction recon-
struction. The small size and the symmetrical shape of pointlike cascades
render a direction reconstruction especially tricky. Although there has been
substantial progress on this topic in recent years, see for instance [39], no com-
petitive level is reached yet. Therefore this analysis uses tracklike signatures
only.

3.4 Backgrounds

The desired signals are highly relativistic upgoing muons generated by cosmic
muon-neutrinos. Besides a background level of about 3 kHz per PMT by elec-
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Figure 14: Travelling distance for different events in water as a function of
energy. Taken from [50].

tronics [42], an omnipresent background for this measurement in ANTARES
are photons emitted by the radioactive decay of 40

19K. This isotope is contained
in natural sea water and, by the decays explained in equations 5 to 7, produces
electrons with energies above the threshold for Cherenkov radiation.

40
19K→ 40

20Ca + e− + ν̄e (89%) (5)

40
19K + e− → 40

18Ar + νe (11%) (6)

40
19K→ 40

18Ar + e+ + νe (0.001%) (7)

This decay produces rates of about 37 kHz per PMT. As it can only be detected
in the direct vicinity of OMs, this process generates uncorrelated background
patterns and is therefore suppressed by the requirement of correlations on more
than one storey.

Another omnipresent source of background is bioluminescence caused by
multiple species of microorganisms as well as larger animals in the deep sea.
An example for one of the larger culprits can be seen on the left in Figure 16.
While the amount of light produced by the decay of 40

19K is very steady, the
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Figure 15: Actually distinguishable event signatures for a ANTARES. Modified
from [50].

amount of bioluminescence is highly variable and influenced by different factors
for instance the sea current, as shown in Figure 17. In some cases the light
pattern caused by bioluminescence range over multiple storeys, but the pattern
and the timing is clearly different from what is expected for tracklike event
signatures. More information on the involved bioluminescence phenomena can
be found in [51].

Figure 16: Examples for bioluminescence in macroscopic animals, here a comb
jelly (left, from [52]) and an arctic comb jelly (right, from [53]).

Muons from interactions of cosmic rays in the atmosphere produce the
largest amount of triggered events, as they are orders of magnitude more fre-
quent than muons from neutrino events, see Figure 18. This problem may seem
like it can be solved entirely by only considering upgoing muon tracks with a
zenith angle3 ΘZ > 90◦ (or cos(ΘZ) < 0 in Figure 18).

Unfortunately there is a small chance that the hit pattern produced by
downgoing muons looks similar to an upgoing muon-neutrino event and there-

3Chapter 3.7 gives a brief introduction of the coordinate systems.
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Figure 17: Environment measurements from the deep sea and background rates
in ANTARES. There is a correlation observed between the optical rate in blue
and the sea current in black. Taken from [51].

fore they happen to be misreconstructed by the reconstruction algorithms. Al-
though the probability for this is tiny, the shear number of those events makes
misreconstructed downgoing muons one of the main backgrounds for data anal-
ysis. Two of the approaches that are explained later, especially in chapter 5,
deal with this problem. Depending on the accuracy of the filtering, the remain-
ing sample contains mostly upgoing muon-neutrino events.

This selection is dominated by upgoing neutrinos from interactions of cosmic
rays in the atmosphere on the other side of the Earth, which constitute an
irreducible background for the search of cosmic neutrinos. As a first order
approximation, these remaining background events are distributed isotropically
in each direction. While deviations from this isotropy are known, overall these
are too small to be relevant in this thesis. Furthermore, in the evaluation
method described in chapter 8, the numbers are derived from recorded data
and hence, to a certain extent, can take potential anisotropies into account as
explained in chapter 9.7. An analytical model for the flux of neutrinos can be
found for instance in [55] and [56].

Since the number of events expected from interactions in the atmosphere
is considerably larger than the number expected from any cosmic source, an
evaluation is required that recognizes the cosmic origin of neutrinos, for example
based on features like their energy or spatial distribution. This task is the main
focus of this thesis and will be addressed from chapter 8 onwards.

3.5 Software

The official software framework of ANTARES is called Seatray, described e.g.
in [57] and [58]. It is derived from the software framework Icetray, which is
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Figure 18: Angular distribution of the flux of muons above 1 TeV at the
ANTARES location and depth. Atmospheric muons dominate the downwards
direction almost up to the horizon. Taken from [54].

used by the IceCube collaboration. The framework is composed of several core
components which provide the necessary basic functionality and multiple so
called modules. These modules can be developed completely independent from
each other by different users, each for an own analysis or other purpose. Since
all modules are required to implement the interface defined by the Seatray core,
they can be shared and combined at will. The core is written in C++, while
users are free to write their modules either in C++ or in Python.

The feature extraction and classification used in this thesis is contained in a
module called antares-rdfclassify. The functionality which is behind this module
is also available as a stand-alone version called SGClassify. The multiscale
source search is contained in a module called signal-first, which has been the
name of this search during development. These modules can be found in the
svn version control system of Seatray.

3.6 Simulations

To be able to evaluate the performance of data analysis algorithms in detail one
would need a large sample of events for which all relevant information (Particle
type, interaction position, energy, direction, for some evaluations even the pro-
duced secondary particles, ...) has to be known. Since it is virtually impossible
to obtain this without any errors for recorded events, precise simulations have
to be conducted, generating events where this information is available. This is
achieved by stepwise Monte Carlo simulation (MC) of all involved processes.
More detailed information on this topic than what is presented here can be
found in [42].
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1. Event generation
A tool called GENHEN is used to generate neutrino events according
to the expected flux. Documentation on the internals of GENHEN can
be found in [59] and [60]. The outcome contains the trajectory of the
primary particle (the neutrino) as well as long lived secondary particles
(e.g. muons). The energy distribution of the events is expected to fol-
low a power law with a spectral index of approximately -2.0 for cosmic
neutrinos. As the simulation of these energy distributions would result
in little available statistics for events with high energies, a harder energy
spectrum is simulated and the events are assigned a numerical weight to
be able to reweight each event according to any desired flux afterwards.
The details of this weighting process are described for instance in [61] or
[42].

The background of atmospheric muons with a spectral index of -3.7 is
simulated using a tool called MUPAGE, see for instance [62]. The prop-
agation of the particles to the telescope is simulated by a code called
MUSIC [63].

2. Photon emission and propagation
The Cherenkov light emitted by all particles generated by the previous
step is calculated by a program called KM3. As the tracking of each
generated photon would be too intense computationally, a lookup table is
used to model the generation, propagation and scattering of the photons
between the track of the particle and the PMTs detecting them. This
lookup table is based on fullscale simulations conducted with GEANT.

In addition to that, there is light produced by particle showers which
occur along the tracks of the high energetic particles. To simulate these
particle showers a tool called GEASIM is used. Internally it relies on
GEANT for the simulation of the generated light, too.

3. The detector response
The outcome of the previous step are all photons that arrive at the de-
tector. The next step is to simulate the behavior of ANTARES. The tool
used for this task is called TriggerEfficiency. Information about the in-
ternals of this tool can be found in [64]. It simulates the response of the
PMTs to the incoming photons and the effect of the currently active cali-
bration on the electronics. The detected simulated hits are then processed
the same way as measured hits as described in chapter 3.2.

To obtain simulations that better reflect the actual data taking and de-
tector conditions, the simulation chain has been adapted to include the ex-
act calibrations of the ANTARES neutrino telescope which were actually used
during the simulated data taking periods. This also includes the duration of
individual runs, conditions like e.g. the bioluminescence rate and the soft-
ware setups. These individualized simulations are called run-by-run simulations
(RbRs). There are two different versions of these simulations used in this thesis.
The difference between RbR 2.2 and RbR 3.0 are the included versions of the
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used simulation tools. This thesis is written during the transition phase from
version 2.2 to version 3.0. While in principle RbR 3.0 offers the best available
simulation, RbR 2.2 are still used whenever there were not enough RbR 3.0
simulations available to guarantee a reliable evaluation.

3.7 Coordinate systems

Three different coordinate systems are especially useful for the understanding
of the argumentations and results presented in this thesis.

First of all, there is the local coordinate system of ANTARES. It is defined
by two angles, zenith Θ and azimuth Φ. The zenith angle ranges from 0 to
180 degrees. A zenith angle of 0◦ denotes a downgoing direction, directly from
above ANTARES. A zenith of 90◦ is a horizontal direction and a zenith angle
of 180◦ corresponds to a straight upgoing direction from below the telescope.
The azimuth ranges from 0◦ up to 360◦ and specifies the rotation around the
z-axis. An azimuth of 0◦ denotes the easting direction, 90◦ northing. Event
reconstructions for example give their results in this coordinate system. Figure
19 shows the final event sample, obtained as explained in chapter 7, in local
coordinates.

Figure 19: Distribution of the selection of neutrinos described in chapter 7 in
local coordinates of ANTARES.

The second relevant coordinate system in this thesis is the equatorial co-
ordinate system. In contrast to the local coordinate system, which revolves
with the Earth, a fixed point in the sky, for instance a distant star, has fixed,
unique coordinates in the equatorial coordinate system. The two angles that
identify a point in this system are called declination δ (from -90◦ to +90◦) and
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right ascension α (from 0◦ to +360◦). Equatorial coordinates are constructed
such that all points on a projection of the equator of the Earth on the sky
have a declination of 0◦. The direction straight above the north pole has a
declination of +90◦, straight ”below” the south pole is -90◦. Analogous to the
azimuth in local coordinates, the right ascension defines the rotation around
the z-axis. Using equatorial coordinates to map the sky has the useful property
that the visibility of ANTARES is approximately constant for all regions that
have the same declination, making it the coordinate system of choice for most
of the evaluations in this thesis. The distribution of the final event sample in
equatorial coordinates is shown in Figure 20. Instead of the right ascension in
degrees, this degree of freedom is often given as the so called hour angle, in
hours, minutes and seconds, ranging from 0 to 24 hours. The exact coordinates
of an object slightly vary over time due to the nutation and precession of the ro-
tation of the Earth, and over larger time scales also due to the movement of the
objects themselves. Considering the resolution of current neutrino telescopes,
these tiny changes aren’t relevant for neutrino astronomy (yet).

Figure 20: Distribution of the selection of neutrinos described in chapter 7 in
equatorial coordinates.

The third important coordinate system is the galactic coordinate system.
Similar to equatorial coordinates, a fixed object in the sky has unique fixed
galactic coordinates, too. The two angles are called galactic latitude b (-90◦

to +90◦) and longitude l (-180◦ to +180◦). Instead of being oriented at the
equatorial plane of the Earth like equatorial coordinates, galactic coordinates
are based on the galactic plane, which is the plane the galactic disk revolves in.
An object with a galactic latitude of 0◦ is located exactly in this plane, so many
galactic objects have a latitude close to 0◦. A positive latitude defines objects
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”above” the galactic plane (”above” corresponding to north on earth), negative
latitudes are below the galactic plane. A galactic longitude of 0◦ corresponds
to the direction of the galactic center, ± 180◦ defines the rotation to the left
and to the right. A schematic of the construction of galactic coordinates can be
seen in Figure 21. Figure 22 shows the night sky in galactic coordinates. One
can see nicely the benefit of this coordinate system for galactic astronomy, as
the plane of our galaxy separates the upper and the lower part of the skymap.
The distribution of the final sample of events in galactic coordinates is shown
in Figure 23. A reference for the location of some nearby galaxies in both
coordinate systems can be seen in Figure 24.

Figure 21: Concept of galactic coordinates. Modified from [65].
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Figure 22: The location of the galactic plane in galactic coordinates. Modified
from [66].

Figure 23: Distribution of the selection of neutrinos described in chapter 7 in
galactic coordinates.
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(a) (b)

Figure 24: Locations of some nearby galaxies. a) in equatorial and b) in galactic
coordinates.
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4 Pattern recognition

Pattern recognition in a nutshell is the science of finding interesting structures
in data. One of the simplest approaches to perform such a recognition is to
apply a threshold to a variable, where events are considered signal above the
threshold and background below. Of course in many applications, especially
with complex data or more differentiated goals, one can improve considerably
if a more sophisticated approach is used. This chapter introduces the basics
of pattern recognition which are helpful for the understanding of the solutions
presented in chapters 5 and 6.

4.1 Pattern recognition overview

Classical pattern recognition usually involves the individual steps as depicted
in Figure 25:

Figure 25: The pattern recognition pipeline (here for images). These are the
steps commonly involved in a pattern recognition solution. Taken from [67],
original from [68]. Image credit: Thomas Wittenberg

1. Data acquisition
The first step in data analysis is the acquisition of the data. For a digital
processing the data has to be sampled and quantized. Every day examples
for this step are digital cameras or cell phones for images and speech. In
the context of this work the PMTs and the electronics of the ANTARES
neutrino telescope perform this task.

2. Preprocessing
Measurements usually contain noise or artifacts. Often these can be re-
duced at least partially, for instance by the application of filters to the
data. Common examples include Gaussian and median filters, normaliza-
tions or edge detections.
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3. Segmentation
Segmentation means identifying the possibly interesting parts of the data
for further analysis. While this may seem like a simple task, in many
applications it turns out to be surprisingly difficult, yet also essential.
The variety of methods ranges from simple thresholds in black and white
images to complex algorithms, for instance the Color-Structure-Code [69].
For ANTARES multiple steps can be seen to fulfill parts of this duty, for
instance hit selections or the triggers.

4. Feature extraction
Features are numbers describing the measured data in a way which is
comparable between multiple recorded events. For images this could for
instance be the size of an object found by segmentation. In many cases
transformations can also be used to describe the data, for instance Fourier
or Wavelet transformation. A typical example for a feature for ANTARES
data would be the outcome of a reconstruction algorithm.

5. Feature selection
It is important to use meaningful features, since numbers which are un-
correlated to the current task don’t benefit the classification and can even
decrease the achieved performance. A tricky aspect is that sometimes fea-
tures are hardly meaningful on their own, but allow to exploit valuable
correlations in combination with other features. If the number of features
permits an exhaustive search this would be a favorable option as it is
guaranteed to find the global optimum. In cases where this is not fea-
sible other approaches can be used, for instance feature transformations
like the Principle Component Analysis (PCA) or the Linear Discriminant
Analysis (LDA). In cases where a clear and broad global optimum exists
without other pronounced (local) optima, even a simple greedy search
approach can lead to the desired result. A more robust approach than
greedy feature selection, that is also applicable to high dimensional feature
spaces, is described in this thesis in chapter 5.4.

6. Training
Labeled data is data for which the desired outcome of the task is known.
For all supervised learning algorithms it is required to train a model that
maps the observed feature input to the desired output. The outputs
are so called classes, integer numbers that represent one group of events
that share a common property. A simple example that is used in this
thesis is the separation in upgoing or downgoing events, considered signal
and background. But also more complex assignments are possible like
an estimation which is the best reconstruction algorithm for an event.
Examples for such algorithms are artificial neural nets, decision trees or
support vector machines.

Regression is an approach similar to classification, but the outcome is not
an integer class number but a continuous value. This is especially useful
for applications which try to estimate missing variables, but it is not used
in this thesis.
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A different branch of methods would be unsupervised learning. These
methods use similarities in the data to automatically identify classes. A
widely known example is nearest neighbor clustering. Due to the require-
ment to identify certain, a-priori defined event signatures, only supervised
learning strategies are considered in this thesis.

7. Classification
The trained model is applied to new data to estimate the outcome. A
classification of labeled data which have not been used for the training
can be used to evaluate the quality of the model and therefore to estimate
the accuracy of the outcome on unlabeled data.

The preprocessing and feature computation are application specific for the
different tasks in this thesis, but the classification algorithm is the same for all
tasks and therefore its concept is briefly introduced here.

Much more information about various aspects of pattern recognition and
the mentioned methods and concepts can be found for instance in [70], [71] and
[72].

4.2 Random Decision Forests

There is a vast variety of classification algorithms available today, each with
specific advantages and disadvantages. The selection of the classification algo-
rithm for this thesis has been done based on a comparison of several algorithms
as described already in [67]. The best performing method at that time has
been the Random Decision Forest (RDF). Due to its favorable properties like
a high classification accuracy, robust behavior, tolerance for correlated features
and relatively fast execution times, the RDF algorithm has been used for all
classification purposes in this thesis.

The concept of a RDF was first introduced in [73]. It is based on the decision
tree model. A decision tree consists of so called “nodes”. In the simplest and
also most common case one node performs one decision on one feature. For
instance it can test the value of feature number seven to be greater than 1.0.
Depending on the outcome of this decision, a different linked node is traversed
next. These linked follow-up nodes are called children nodes. Trees which are
limited to two children per node are called binary trees. The first node in a tree
is called root. Nodes without children are called leaves. These leaves can either
simply contain one clearly assigned output (the class the event belongs to) or
probabilities for different outputs. This structure allows to assign one output
to one set of input variables. A simplistic example for a decision tree with two
features F1 and F2 and two classes C1 and C2 is shown in Figure 26.

While this concept on its own is working well, many attempts to improve
its performance have been made. The RDF tries to make use of the internal
variation included in the data used for training the model. This is achieved by
training an ensemble of multiple decision trees. But instead of using exactly
the same data for each training, which would result in the same tree again
and again, only a random subset of the training data and a random subset of
the features is used for each tree. This produces decision trees that are able
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F1

F2 F2

F1C1 C2 C1

C2 C1

< 0.5 >= 0.5

< 110 >= 110 < 62.2 >= 62.2

< 0.8 >= 0.8

Figure 26: A very simple example for a decision tree with two features F1 and
F2 and two classes C1 and C2. The evaluation starts at the top. Each node
represents one decision on one feature. The outcome of this decision determines
which node to visit next. The rectangular final nodes, so called leaves, contain
the result.

to generalize the contained information better than one single tree. The final
decision which class is chosen for an event is obtained by a majority vote of
the trees. The percentage how many trees agree on the class output can to a
certain extent be used as a quality parameter. The implementation has been
forked from the 2011 open source version of the alglib library, see [74]. If not
stated otherwise, the parameters used for the training of the RDFs are set to
101 trees and for each individual tree a random subset of 60% of the events and
of 2 ·

√
n features is used for the training, with n being the number of available

features here. For the case of 804 features which is explained in chapter 5, this
results in 57 features for each training. These values have first been optimized
in a parameter study in [67] and since then some have been fine tuned further
by observations on new datasets.

There are many algorithms for the training of a decision tree. Famous ones
include for instance CART [75] or ID3 [76]. In general the optimization task is to
determine which variable to use for the next split and where to set the threshold
for this split. Since a globally optimal solution is very hard to compute (np-
complex, see for instance [77]), most algorithms aim to generate ”sufficiently
optimal” trees by an iterative greedy selection. The training algorithm used
in the implementation also follows this greedy selection scheme. To determine
the next optimal split several metrics are commonly used, for instance the Gini
impurity or the information gain. Further information on the properties and
details of various training algorithms in general can be found in [75] and [76].

The RDF algorithm has some favorable properties for an application in this
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thesis. For instance the highly popular class of boosted, tree-based algorithms
also trains multiple trees, but increases the weights of events based on the
classification result of previous trees. While this often achieves an even more
accurate classification result in cases where the available labeled data represent
the data in the application sufficiently well, it’s performance is less stable if
there are systematic deviations between the datasets. These can potentially
occur when a classifier trained on simulations is applied to recorded ANTARES
data. Compared to properly trained artificial neural networks (ANNs) the
performance can be expected to be similar, but most tree based algorithms are
less sensitive to imperfectly selected features. Strong correlations between the
features or features without useful information for the current classification task
can in the worst case prevent the training of an ANN from reaching a stable
optimum (in a reasonable amount of time). Based on the achieved performance
in many other applications4, the recent development of deep neural networks is
considered a promising candidate to further enhance the solutions in this thesis
involving classification.

4.3 Evaluation

When it comes to the evaluation of the performance of a classification one simple
rule is to be followed at all times: Never evaluate on the same data that has
been used for training. Otherwise the obtained numbers will be unrealistically
good, but they do not at all represent the performance of the classification in
a realistic application on unseen data. This can be avoided by a separation
of the available data into a disjunct training and test set. The drawback of
this method is, that events which are in the test set are never used for training
and events in the training set are not evaluated. This can easily be solved
by performing a second training and evaluation with interchanged datasets.
These results already give a first impression of systematic effects influencing
the model, but only with a “statistic” of two numbers. Additionally most
algorithms benefit from more data used for training, so a model trained on
the full dataset is likely to show a better performance than one trained only
on half of the dataset. These considerations lead to the default evaluation
method, cross-validation. It is the standard way to evaluate the performance of
a classifier introduced in almost any book on classification, for example also in
[71]. N -fold cross-validation splits the available dataset into n random, disjunct
subsets. Then the first n − 1 parts are used for training and the nth part is
evaluated. The process is repeated n times, each time with one different subset
used for evaluation and all remaining subsets combined as the training set. This
guarantees, that every event has been considered in the evaluation, while a large
fraction of the available dataset can be used for the training of the model each
time. The ideal, extreme case would be leave-one-out cross-validation, where
in each fold only one single event is evaluated. But this also means, that for
a dataset with m entries also m repetitions of the training process have to
be performed. While this constitutes the optimal case for smaller datasets, it

4See for instance comparisons at [78]
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usually is neither computationally feasible nor required for large datasets. In
this case a number of folds n < m is chosen such that the evaluation fits the
requirements.

To assess the performance of the presented classifications some specific terms
are useful. In this thesis the term efficiency of class X denotes the fraction of
events that actually belong to class X and are correctly classified to be class X.
If this efficiency is 1.0, all events of this class have been correctly identified. 0.0
means that no event of this class has been classified correctly. Purity of class
X denotes the fraction how many of the events that are believed to be of class
X actually are from this class. A purity of 1.0 means that no events from other
classes were classified to be class X. 0.0 means that only events that actually
are from other classes have been classified to be class X and none that actually
belonged to this class.

In the case of only two classes, signal and background, purity and efficiency
by default refer to the purity and efficiency of the signal class if not explicitly
stated otherwise.
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Part II

Methods

This part presents the relevant aspects of the algorithms that have been devel-
oped for this thesis5.

All comparison plots are generated by discrete cuts. Therefore only marked
data points in the Figures correspond to computed results. Lines connecting
the points in some Figures are intended for visualization purpose only. Error
bars show statistical errors if not stated otherwise.

5Chapters 6 and 8 are based on ANTARES internal notes ANTARES-PHYS-2015-001 and
ANTARES-SOFT-2015-001, which are neither published nor publicly available.
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5 Up / Down classification

5.1 Previous work

As discussed in chapter 3.4, the desired signal of upgoing muon-neutrinos is ac-
companied by a high number of background events of misreconstructed downgo-
ing atmospheric muons. Common practice to get rid of these is to only include
events with an upgoing reconstructed direction and to require a very good re-
construction accuracy. The idea explained here uses a prefiltering of events
based on a classifier that distinguishes upgoing and downgoing signatures in
the telescope. The intention of this classification is to allow a less strict cut
on the required reconstruction quality, resulting in more neutrinos for analy-
sis. The foundation for this classification has already been described in [67],
but since then several optimizations have been introduced. The status was a
classification using a RDF with two classes (up and downgoing) based on 137
features designed for this task. This achieved a mean suppression of downgoing
muons of 90.8% and a mean efficiency for upgoing muon-neutrino events of 93%.
The main problem with this result was that the number of misreconstructed
atmospheric muons is orders of magnitude higher than the number of upgoing
events. Therefore a suppression of 90.8% is not enough, especially since many
of these events would also be suppressed by other cuts which are required for
an analysis.

A modified version of this classification software has been used to investigate
the possibility of a coarse energy reconstruction in [79]. It showed that the RDF
classifier, together with the already designed and some task specific features,
can successfully be applied to other tasks in ANTARES. This property is also
observed for the classification approach described in chapter 6.

5.2 Optimizations

One of the first optimizations has been to extend the feature space. The fea-
tures described in [67] all rely on one binning of the information belonging to
an event in 100 time bins. The length of these bins varies as the duration of the
events does, reducing the accuracy with which features based on this binning
can be compared between different events. The feature computation has been
extended to include the same computations as before in multiple different, fixed
time binnings. The median time of all hits of one event is used as the center of
these time windows, with a fixed time binning of ± 250 ns and ± 1000 ns for the
feature computation. In addition to that, the number of hit selections used in
the feature computation has been extended. In [67] the features were calculated
twice, once on all hits and once on L1 hits only. A reminder of the meaning
of these hit selections can be found in chapter 3.2. The updated version per-
forms a third computation of all features on all triggered hits, so all hits that
contributed to the activation of one of the triggering algorithms. New features
from intermediate steps of the previous feature computations were also added
for each of the nine feature computations (three different hit selections and
three different timing windows). In total this results in 783 features (87 instead
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of 68 features per computation). Besides these, externally computed features
are also incorporated. These are the outputs of two standard ANTARES direc-
tion reconstruction algorithms, namely “Aafit”, described in [38], and “BbFit”,
described in [80]. For each reconstruction algorithm the reconstructed direc-
tion and the various quality parameters are used as features. For the up/down
classification used in this thesis the final feature vector for each event contains
804 features.

To address the fact that the number of signal and background events is vastly
unbalanced (106 times more downgoing atmospheric muons), at one point dur-
ing the optimization of this classification a cut was introduced that requires
80% of all decision trees of the RDF to identify an event as upgoing to actually
accept it as upgoing signal. Events with an agreement below 80% were consid-
ered “probably still a downgoing muon” and therefore discarded. This variable
is called “RDFSafety” in the data processing.

In total these changes improved the accuracy of the classification to reach
a muon suppression of 97% while still preserving a muon-neutrino efficiency of
80%.

5.3 RDF cascade

As further optimization, this classification is now used as a two-step process to
reach a higher muon suppression while preserving roughly the same amount of
upgoing neutrino events. The second classification step can exploit the changed
distribution of parameters due to the changed ratio of downgoing atmospheric
muons to upgoing neutrinos and the specific properties of those downgoing
muons that survived the first step. A further improvement was observed when
the RDFs are not trained with the same number of events for both classes.
In general the distribution of instances between the classes should mimic the
distribution encountered in an application. But if the deviation between the
classes, depending on the actual classification task, becomes too large6, the
training can become unstable and tends to ignore underrepresented classes. As
the number of downgoing atmospheric muons in this task is tremendously larger
than the number of upgoing neutrinos, the actual distribution was replaced.
Asymmetric distributions for downgoing versus upgoing of up to 10:1 turned
out to give stable results for the first classification step. To include a safety
margin for later application, a ratio of 3:1 has been used for the training of the
first RDF step. Therefore the first step identifies unclear events as downgoing

6 Too large in this case means that completely ignoring the class with fewer events leads
to a smaller error. For example, in a two class classification where 99.9% of all events belong
to class 0 and only 0.1% to class 1, the classification reaches 99.9% accuracy by labeling
every event to be class 0. Therefore the training algorithm will optimize in that direction
if the fraction of correctly classifiable events (0.999 · E0 + 0.001 · E1) is lower. (Ex denotes
the efficiency for class x, the probability that events from class x are recognized to be from
that class.) So E0 should be greater than 1 − 0.001

0.999
· E1. If we optimistically assume that

both efficiencies are equal (usually the efficiency of the smaller class is lower), then E0 should
already be greater than 99.9%. Since the efficiencies are more or less fixed for a task with given
classes and features, there is a maximal stable deviation in the number of events between the
classes. In reality the effect is a continuous trend, not a sudden change in behavior.
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muons and can be seen as a course filtering to remove most of the muons. The
training of the second step was performed with a ratio of 1:2, so with more
neutrinos than muons. The effect is that the second step is very careful not to
lose neutrino signal and is intended to only remove muons that can be identified
easily due to the shifted distributions of the classes after the first step. For the
given classification task the cascade with these distributions between the classes
outperforms cascades with homogeneous or inverted distributions. This two-
step cascade of RDFs allowed to drop the previously required cut of 80% tree
agreement, but of course this can still be applied if needed.

The final achieved accuracy of this improved classification reaches a mean
muon suppression of 99.85% ± 0.1%(stat.)±0.02%(syst.) and a mean neutrino
efficiency of 81.7%± 0.5%(stat.)± 0.8%(syst.). The systematic errors here are
estimated based on cross-validation results. They only account for the system-
atics of the classification, not those introduced by the detector, the simulations
or the rest of the data analysis. It may not be intuitive to interpret the dif-
ference between the final RDF cascade result and the intermediate step. The
2.85% gain in muon suppression (from 97% to 99.85%) may not seem like much,
but it results in a remaining number of atmospheric muons of 0.15% instead of
3%, which in the end means 20 times less atmospheric muons.

The result of this RDF cascade is shown energy resolved in Figure 27. To
generate this plot, Run-by-Run Monte Carlo simulations version 2.2 have been
used (See chapter 3.6 for more information on the simulations). It includes
muon-neutrinos and atmospheric muons that were triggered by the triggering
algorithms described in chapter 3.2. One can see that the efficiency with which
muon-neutrinos are identified is relatively constant above an energy of 100 GeV.
The suppression of atmospheric muons is very high for lower energies. The drop
at higher energies is caused by the low statistics in the simulations for high-
energetic events.

A comparison of cascade depths (numbers of RDF steps) and quality cuts
showed that a second step is more efficient than requiring a higher RDFSafety
value, but adding a third step is less efficient for this task.

5.4 Feature selection

An issue for the up/down classification in [67] was found to be the optimal
selection of the features to use. The approach had been to use genetic algorithms
for this optimization task. See for instance [81] or [82] for more information
on their usage in optimization. Although in theory they could be flexible and
directed enough to find an optimal solution in a reasonable amount of time, this
approach turned out not to converge to any stable optimum. Since the feature
space is high dimensional and the classification method is highly nonlinear, a
greedy search that iteratively selects only the one feature that gives the highest
gain in performance did not provide a stable solution either. In this context
greedy searches starting with empty, full and partially filled feature subsets
have been tested for addition and removal of features. An exhaustive search
approach that simply tests all possible combinations of features is no option
for computing time reasons here, as the feature space is large and the possible
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Figure 27: Neutrino efficiency and muon suppression versus energy for the two
step RDF cascade on RbR 2.2. The simulated events are weighted with an E−2

spectrum.

combinations are too numerous.

Therefore a different method of optimization one might call a “greedy en-
semble” has been designed to solve this problem. The idea is to heuristically
combine some of the selection criteria from genetic algorithms with the focused
direction and short runtime of a greedy search algorithm.

The search starts with an empty solution. In the first iteration the empty
solution is extended by one single feature that yields the best performance on
its own. Since this decision must be based on a certain data sample, but might
change for a different sample, the search for the optimal feature is performed N
times, each time on a random subset of the training data. All different solutions
that are generated by this process are kept. The number of new solutions per
old solution cannot be greater than the number of tested subsamples N , and
it is at least one in cases where all evaluations agree on the same feature. The
result is an ensemble of M solutions, depending on how many features have
been found to be the best possible addition for one of the previous subsets. M
denotes the current number of solutions here. As an example the first iteration
might result in M = 2 solutions with solution S1 containing feature F5 and
solution S2 containing feature F8.

In the second iteration the same process is repeated for each of the M
solutions that were found in the first iteration. For the given example the
extension of S1 might lead to a new solution S3, which contains F5 and F8, a
solution S4, that contains F5 and F6, and a solution S5, which contains F5 and
F12. The same is done with the old solution S2, which could result e.g. in S6
with F8 and F5 and S7 with F8 and F1.
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Although equal solutions like S3 and S6 can be treated as one solution, due
to the exponential growth of the number of solutions this scheme quickly reaches
a very large number of solutions to process in each iteration. Since testing tens
of thousands of solutions in each step is not computationally feasible, a cutoff
is applied at the end of each iteration. The set of all currently found solutions
is reevaluated again on a larger fraction of the full data sample and only the
K best performing solutions are kept for the next iteration. For solutions that
have already been reevaluated multiple times, the mean of all evaluations is
used, increasing the accuracy of the estimate over time.

This pruning of the list of found solutions keeps the runtime of each iteration
almost constant also for large feature spaces. If K is set to 1, the scheme is
mostly equivalent to a greedy search algorithm. In this case this approach
inherits the main drawback of a greedy search, the tendency to get stuck at
a local optimum. With a larger but fixed number of solutions per iteration
this tendency gets reduced, but not eliminated. On the other hand, apart from
effects due to hardware limitations like cache sizes, the runtime per iteration and
therefore of the whole process scales linearly with the number of kept solutions.

This iterative scheme stops either when there are no more features to add,
after a fixed number of iterations, or, and this constitutes the common case,
until the obtained solutions did not improve the performance of the classification
during the last L iterations. One could argue that no improvement in one new
iteration should be sufficient to stop the optimization, but this would neglect
the possibility that in some cases a gain in discrimination power can be achieved
only by the correlation of multiple features.

As a further tweak the stopping of iterations is not done simultaneously
for all solutions once the performance of the best solution doesn’t improve
anymore, but individually for each solution. The benefit of this strategy is that
new solutions which are not yet as good as the current best one can still evolve
further at least L iterations on their own, while solutions which are kept due to
their good performance, but which do not improve any further can already be
excluded from the iteration scheme to save time. As a result the optimization
will continue to search for better solutions as long as any of the M solutions
still improved during the last L iterations.

This algorithm shares traits with the genetic algorithms that have been used
in [67], as it also uses generations of multiple solutions and tries to iteratively
find improved new solutions derived from the old, but it also shares the fast
and highly focused aspect of greedily searching for new features with a plain
greedy search algorithm.

In the tested application scenario of up/down classification with a high
dimensional feature space of 804 features, the described parameters by default
are set to N = 3, K = 30 and L = 6. The number of currently found solutions
M varies, but is smaller (in the beginning) or equal to K after each completed
iteration.

The best solution for the full feature set on RbR 2.2 simulations has been
obtained in a detailed study by Thomas Kittler [83]. The numbers for accu-
racy in this study do not consider the weights of the events in the simulation.
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The best solution7 found in this study for a plain up/down RDF classification
reached a classification accuracy of 94.87% ± 0.42% compared to 94.02% ±
0.42% for the full feature vector. The relatively small gain can be explained
by the observation that RDFs can handle strongly correlated features excep-
tionally well, a property they share with many other tree-based classification
algorithms.

For the actually used two step RDF cascade as described in chapter 5.3, no
solution with a statistically significant improvement of the performance could
be obtained at all. The best solution8 in terms of a solution with few features
but a good accuracy reached 96.67% ± 0.16% in comparison to 96.74% ± 0.16%
for the full feature vector.

Therefore the RDF cascade in this thesis is used with the full feature vector
as this classification scheme gives the highest accuracy that has been achieved
by any means.

5.5 Possible improvements

An important improvement for an analysis would be to adapt the classification
to the individual data selection. While the trained RDF cascade is a powerful
tool to reduce the number of background events independent of the actual
analysis goal and of other applied cuts, it could improve considerably if other
cuts which are additionally applied to data in an analysis were also applied
before the training. The reason for this is that many of the events which are
filtered out by the classification would have also been rejected by other cuts,
reducing the observed benefit of the classification. A training with accurately
prefiltered datasets would also allow the classification to adapt to the desired
application in the best possible way, giving the best final result.

Another idea how to potentially improve this classification would be to eval-
uate a relatively new branch of pattern recognition methods, often called deep
neutral networks (DNNs). This contains for instance the so called deep belief
networks, see for instance [84] or deep convolutional neutral networks, see [85]
and various others. Comparisons9 between RDFs, several other classification
techniques and DNNs for different tasks indicate the potential for a substantial
gain in accuracy by DNNs.

7Using the features: 784,786,788,164,99,50,24,176,670,78,550,221,394,360,306,745,791,382,
686,295,748,271,101,495,111,192,320,124,424,265,91,755,737,622,290,425,52,611,609,679,510,
584,616,276,585,283,250,9,304,90,446,628,199,214

8Using the features: 784,788,786,252,581,438,494,27,12,36,50,791,342,686,78,513,360,285,75,
694,138,236,390,304

9For instance at [78]
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6 Selectfit

There are multiple direction reconstruction algorithms for tracklike muon events
in ANTARES. The most common way to make use of these track reconstructions
in a physics analysis is to evaluate the results of one favorable algorithm on all
events and to ignore all others. For some events however the selected algorithm
may not perform well or even fails, although these events would be reconstructed
well with another algorithm. In these cases adding a different reconstruction
avoids loosing these events and therefore benefits the final analysis. A first
approach to combine algorithms could be to use thresholds in the form of:

1. If reconstruction A has a better quality parameter than a certain thresh-
old, use reconstruction A.

2. If A has a poor quality parameter but B has a better quality parameter
than a certain threshold, take reconstruction B.

3. Otherwise, do not use this event.

With some parameter scanning for the thresholds this approach can already
give some benefit compared to a single algorithm. But on the other hand it
is a time consuming process to manually tune the thresholds for every new
application scenario. It also becomes increasingly complex if we want to use
more than two reconstruction algorithms and sometimes it does not use the
best reconstruction available for an event. An example for this non-optimal
performance would be an event where reconstruction A has a quality parameter
slightly above the threshold, but reconstruction B gives an outstandingly good
reconstruction. The simple threshold approach would still use A here.

The idea of Selectfit is to have an automated process that cannot only com-
bine many reconstruction algorithms, but can also choose the most accurate
available reconstruction for each event as reliably as possible. Additionally, a
new quality parameter for error estimation is introduced to allow the identifi-
cation of well reconstructed events, regardless of which specific reconstruction
was chosen.

6.1 Overview

Selectfit uses a classification to find the best reconstruction for a given event
and also to estimate the error of the chosen reconstruction. The current version
is designed to combine four reconstructions for tracklike events, namely Aafit
[38], Bbfit [80], Bbfit with MEstimator [80] and Gridfit [86]. Another version
exists which combines these four and the Dusj reconstruction, see [87] and [88],
and the Q Strategy for shower events as explained in [89]. The first scenario
is intended to enhance analyses using the muon-neutrino channel, whereas the
second version explores the potential of this approach to combine tracklike and
showerlike events in one single reconstruction. This would allow analyses to
use events of both signature types at the same time. The results shown in
this thesis are for the first, tracklike case only, because the handling of shower
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events in ANTARES is not yet at the same level of experience and precision as
for track events.

The same strategy can also be used to combine energy estimation algo-
rithms, but these ideas are pursued by other members of the ANTARES col-
laboration now and since energy information is not evaluated in this thesis,
these attempts are also not covered here.

Detailed example scripts on how to use Selectfit for direction reconstruction
can be found in Appendix A.1. Obviously, the logic behind Selectfit can also
be used with any other classification algorithm, software package and similar
application scenario.

6.2 Features for Selectfit

The current version of Selectfit uses the outputs of the algorithms it combines
and the number of pulses as an energy correlated variable as input. For each
reconstruction strategy it includes:

• The zenith value

• The azimuth value

• All available quality parameters

There are at least two quality parameters for each algorithm, but this is not nec-
essary. One would be sufficient, but the more useful information an algorithm
outputs about its result, the more accurate the selection and error estimation
can be in the end. A detailed list of features can be found in appendix B.

6.3 Classifier for Selectfit

The classifier used here is again the versatile Random Decision Forest as already
described in chapter 4.2. The classes in this task are not defined as upgoing and
downgoing like they have been in chapter 5, but instead as the best direction
reconstruction algorithm for each event for the first RDF and for a second RDF
as the angular error of that reconstruction that has been selected in the first
step. Selectfit consists out of these two steps.

6.4 Selecting the best reconstruction

The first and major step of Selectfit is to find the best direction reconstruc-
tion algorithm for each event. It is not necessary for all reconstructions to be
available for an event. An algorithm may not output a result for instance if
an internal optimization doesn’t converge. If one or more of the algorithm re-
sults cannot be found, the angular difference of the missing reconstructions is
internally considered to be 2π, hence this algorithm is not selected. The two
predefined possibilities, four track reconstructions or four track and two shower
reconstructions can be used in the current implementation as described in ap-
pendix A. The default outcome is a number ranging from 0 to the number of
considered reconstructions:
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• Class 0 : “No fit was available at all”

• Class 1 : “Aafit is the best available fit”

• Class 2 : “Bbfit is the best available fit”

• Class 3 : “Bbfit with MEstimator is the best available fit”

• Class 4 : “Gridfit is the best available fit”

• Class 5 : “Dusj is the best available fit”

• Class 6 : “Q Strategy is the best available fit”

The zenith and azimuth of Selectfit are set to the zenith and azimuth of the
selected reconstruction.

Since the algorithm sometimes misclassifies an event, it can happen that the
selected reconstruction is not actually the best that was available for this event.
To achieve a better overall performance compared to the best single reconstruc-
tion algorithm, the error introduced by misclassification may not become larger
than the benefit for events where a different reconstruction was chosen cor-
rectly. It has been observed that the misclassifications occur mainly for those
events, where the best and the selected algorithm have a similar angular error.
Therefore the majority of misclassified events introduces only small additional
errors. Nevertheless, for the configuration with four track reconstructions, this
prevented the addition of other, similarly designed reconstructions. If a recon-
struction is too similar to an already considered algorithm or has a too poor
performance, it will in total introduce a higher error due to more misclassifica-
tion than what can be gained by the few events it reconstructs better.

An alternative to selecting one of the direction reconstruction results would
be to merge all results, for instance with weights resembling how likely each re-
construction seems to be the best. This approach has been tested and typically
produced a lot worse results than simply selecting the best. The reason for
this observed behavior is that a good reconstruction with a low angular error
will usually become worse by merging it with less accurate directions, even if
the worse direction has a small weight. The case where two algorithms give a
similar error, but lie on opposing sides of the true direction, is rare. Therefore
merging of results is not contained anymore in the current version of Selectfit.

6.5 Error Estimation

If only one track reconstruction is used for an analysis, one would typically
cut on the main quality parameters of this reconstruction in order to obtain
a sample of accurately reconstructed events. But when combining multiple
algorithms, cutting only on the quality parameter of the dominant algorithm
will remove exactly those events, where the addition of other algorithms im-
proved the result most. Combining the quality parameters by hand for each
algorithm is the same task as combining the fits themselves. Therefore the
chosen approach to solve this is again a classification. The main purpose of
a cut on a quality variable of a direction reconstruction is to cut away those
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reconstructions which have a large angular error. To mimic this behavior with
a classification, the events are put into bins (classes) of similar angular errors
during training. Some experiments on how these bins should be formed covered
examples of linear inter-class distances (0◦-1◦, 1◦-2◦, ..., 179◦-180◦), exponential
inter-class distances (0◦-1◦, 1◦-2◦, 2◦-4◦, 4◦-8◦, ...) and some manually hard-
coded schemes. Since an ideal distribution for the training of this classification
would have an equal number of events in all classes, also a dynamic computation
of class boundaries with equal number of events was tested. The problem with
this approach is that the class boundaries change for every training, especially
if many classes are to be trained. Therefore this idea had to be discarded. For
all remaining possibilities also the width of a class bin was varied as well as the
start and end points (e.g. 0◦-0.5◦, 0.5◦-1.5◦, 1.5◦-2.5◦, ..., 44.5◦-45.5◦, greater
than 45.5◦). The experiments showed that an exponential distribution yields
the best results. The exponential factor has some effect on the result, but its
possible range is limited. It may not be too large because otherwise there are
only few classes, which would only allow very coarse selection of events. It
may also not be too small because then the number of classes grows quickly up
to a point where not enough events for a stable training are contained in the
less likely classes anymore. The final class distribution for the Selectfit error
estimate was fixed to:

• Class 0 : 0.0◦ - 0.1◦

• Class 1 : 0.1◦ - 0.2◦

• Class 2 : 0.2◦ - 0.4◦

• Class 3 : 0.4◦ - 0.8◦

• Class 4 : 0.8◦ - 1.6◦

• Class 5 : 1.6◦ - 3.2◦

• Class 6 : 3.2◦ - 6.4◦

• Class 7 : 6.4◦ - 12.8◦

• Class 8 : 12.8◦ - 25.6◦

• Class 9 : 25.6◦ - 51.2◦

• Class 10 : 51.2◦ - 102.4◦

• Class 11 : 102.4◦ - 180.0◦

• Class 12 : “No reconstruction available”

The quality parameter of Selectfit is set to the error estimate class determined
by this classification. As for selecting the best fit, also for the error estimation
some events are misclassified. Figure 28 shows the misclassification during
error estimation. Ideally this would be a diagonal line. Figure 28a shows how
well the estimation can work. In this test the same number of events has
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been used during training for each of the (in this study still 16 instead of 12)
classes. The result of an optimization for the actual distributions is shown in
Figure 28b. As can be seen in both cases, misclassifications occur dominantly
between neighboring and next-to-neighboring classes. An increased probability
for misclassifications between neighboring classes is not surprising, as this is
for instance also caused by events with an actual angular error of 1.55◦ being
identified as class 5 (starting from 1.6◦) instead of the correct class 4 (up to
1.6◦).
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Figure 28: a) Normalized distribution for equal number of events per class
during training, 16 classes. This scenario demonstrates how well the error
estimation can be adapted in the the idealized case where each class has the
same number of events. b) Distribution for a realistic, precut sample in absolute
numbers, 12 classes, optimized to minimize errors for realistic distributions.

One idea to improve the result of the error estimation would be to use a
regression, a similar method to estimate missing values, instead of a classifica-
tion. The investigation of this possibility is pursued by another member of the
ANTARES collaboration.

6.6 Accuracy of Selectfit

Combining the fit selection and the error estimation gives Selectfit. The results
which are achieved for charged current neutrino events on the small available
sample of RbR 3.0 simulations is shown in Figure 29. The x-axis shows the me-
dian angular error between the true simulated direction and the reconstructed
direction. The different points in the figure are the results for different quality
cuts, with stricter cuts being to left. The y-axis shows the cumulative efficiency,
stating what fraction of neutrinos survive a certain cut level. The goal for a
direction reconstruction is to reconstruct as many neutrinos as possible with an
angular error as small as possible, so the best, only theoretically achievable point
in this plot is to the top left. The red curve shows the performance for Aafit,
the best and most often used single reconstruction algorithm. To obtain the
different values of the curve a cut on λ, the main quality parameter of Aafit, was
varied from -4.0 to -9.0 in steps of 0.1, which covers more than the commonly
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used range. The blue curve is the performance of Selectfit on the same data set,
with each point being a different cut on the estimated error class from 0 to 12.
One can see that regardless of the actual cutting value, Selectfit does improve
the performance of the direction reconstruction. The green curve is obtained
by the “perfect Selectfit”. For each event it chooses the best available recon-
struction and it also uses the exact angular error of the selected reconstruction
as error estimate. Therefore this is an upper limit on what could theoretically
be achieved with the Selectfit approach for muon-neutrinos in ANTARES. For
loose cut values and hence less accurate reconstruction results, the gain in the
number of neutrinos by Selectfit is around 11%. For intermediate cuts, which is
where e.g. a cut on λ greater -5.2 or -5.4 would be located, the gain is between
8% and 9%. This is between the 4.th and 5.th datapoint of Selectfit from the
left in Figure 29. For the most accurate reconstructions both reconstruction
methods deteriorate quickly, but Selectfit reaches about half the angular error
of Aafit for the tiny, most precisely reconstructed neutrino samples. In total
Selectfit shows a gain of at least 8% in the number of neutrinos for the whole
range of possible quality cuts. Since the available RbR 3.0 sample has only lim-
ited statistics and has not yet been validated at the same level of detail, Figure
30 shows the same comparison for a larger sample of RbR 2.2 simulations. All
plots showing results for RbR 2.2 do not include statistical error bars as they
are indistinguishable from zero. This plot shows all events weighted according
to an assumed signal flux of E−2.0 and also includes Aafit with a cut on a sec-
ond quality parameter β, which was set to the default optimized cut β < 1◦

as used in many analyses. One can also note that, even though the difference
between the reconstructions is very similar, there is a difference observable for
the absolute values of the median angular errors for both reconstructions. The
better performance is achieved for RbR 2.2, which seems plausible since overall
RbR 3.0 contains more realistic simulations, for instance scattered light from
interaction vertices. Still it is not absolutely clear that the magnitude of this
difference is fully covered by this effect, but since it can be observed similarly
for both reconstructions, it is not a feature introduced by Selectfit and it will
be investigated by future work on the simulations.

Figure 31 shows the individual causes of the improvement. It includes a
curve in purple for always using Aafit as reconstruction but with a RDF classi-
fication as quality parameter and a curve in black which uses Selectfit to choose
a reconstruction, but then again Aafit λ and β as quality cuts. This clearly
shows that for high efficiencies and worse median angular errors the perfor-
mance improvement is due to the selection of different fits. On the other hand
for very accurate reconstructions, Selectfit and Aafit using an RDF error esti-
mate have approximately the same performance. This shows that the gain for
small angular errors is mainly due to the RDF error estimation.

A similar behavior can be seen in Figure 32, where the effect of changing
the selection or the error estimation from Selectfit to the respective “perfect”
step from the perfect fit is shown.

The contributions of the individual fits to the Selectfit results derived from
recorded data without any cut on the error estimation are:
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Figure 29: Comparison of Aafit with a varying cut on λ, Selectfit with varying
error estimation cut, and the perfect selection of the best available fit with
a varying cut on the exact angular error on RbR 3.0. Error bars indicate
statistical errors.

• Aafit: 27.0 ± 0.02 %

• Bbfit: 2.0 ± 0.006 %

• Bbfit with MEstimator: 2.0 ± 0.006 %

• Gridfit: 69.0 ± 0.04 %

The errors for these numbers are statistical errors only.

The contributions of the individual fits to the Selectfit results in the final
data sample for this thesis as described in chapter 7 are:

• Aafit: 48.2 ± 0.6 %

• Bbfit: 0.5 ± 0.07 %

• Bbfit with MEstimator: 4.7 ± 0.2 %

• Gridfit: 46.5 ± 0.6 %

As a further improvement for this application scenario one could also drop Bbfit
without MEstimator, as it would reduce the probability for misclassifications,
resulting in a more accurate final result.

Another idea to improve the reconstruction beyond what is shown in this
thesis would be to adapt the training of Selectfit to the analysis it is used for.
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Figure 30: Comparison of Aafit with λ and β cuts, Aafit with λ cut only,
Selectfit and a theoretic, perfect Selectfit on RbR 2.2

If any other cuts that can be applied before Selectfit in the data selection of
the analysis are also applied in exactly the same way to the training data,
the resulting Selectfit models can be expected to achieve better results for an
analysis using these cuts than without this adaption.

Summarizing the observations for the developed and tested version, Se-
lectfit for the direction reconstruction of tracklike events outperforms the best
available single track reconstruction algorithm for any compared accuracy and
neutrino efficiency.
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60 6 SELECTFIT

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1  1

F
ra

c
ti
o
n
 o

f 
e
v
e
n
ts

Median angular error [deg]

Selectfit
Perfectfit

Perfect + Est
Select + Perf

Figure 32: Theoretical improvement from perfectly error-free steps instead of
trained Selectfit RDFs. The actual Selectfit performance is shown in blue. Re-
placing only the RDF selection of the best algorithm with an error-free selection
gives the red dotted line. Replacing only the estimation of the angular error
with an error-free estimation yields the purple dotted curve. Replacing both
steps by the error free versions gives the green curve.



61

7 Data selection

7.1 Run selection

The considered time period is from the beginning of the data taking with
ANTARES on 29.01.2007 until on 31.12.2012. To obtain a reliable and well
understood data set, several criteria were required for data taking runs to be
included in this analysis:

• The mean optical rate must be below 300 kHz. The purity and efficiency of
some reconstruction algorithms drops considerably for even higher back-
ground rates.

• The run setup must be a physics setup. This is to exclude e.g. data with
artificially emitted light, which was intended for calibration.

• The data quality category must be 1 or better. This category is derived
as a standard quality assessment in ANTARES for all runs. More infor-
mation on the exact procedure can be found in [90].

• The run may not be identified to contain so called “sparks”. These are
seldom malfunctions where light is produced by an electric discharge.

• The data file must have been processed correctly by the standard ANTARES
data production and have been accessible on the mass data storage.

Most of these requirements are de facto standard for ANTARES data anal-
ysis. A list of all included runs can be found in appendix H. In total this
corresponds to an effective lifetime of the detector of 1332.8 days.

7.2 Event selection

The data in the selected runs does not only contain upgoing muon-neutrino
events, but mostly atmospheric muons. To identify the desired signal some
filtering of the events is performed:

• Application of the up/down classification as described in chapter 5 to
get rid of a large fraction of downgoing atmospheric muon events. Only
events which are classified as upgoing (Class 1) are processed further.

• Selectfit as described in chapter 6 is applied to each event. Only events
with a reconstructed zenith angle of more than 90◦ (upgoing) are kept.

• The estimated angular error from Selectfit must be below 1.6◦ (only error
classes 0, 1, 2, 3 and 4 as defined in chapter 6.5 are kept).

Even after these cuts the resulting muon-neutrino sample is expected to
contain a contamination due to the vast number of atmospheric muons. This
chapter presents a comparison of the actual measurements with the event num-
bers and composition expected from simulations. But as explained in chapter
8, absolutely no information derived from simulations is used in this analysis.
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7.3 Comparison of simulations with data

To check whether the expectations derived from simulations are valid for recorded
data, a small sample of data runs has been analyzed together with the corre-
sponding RbR simulations. The subset of data files used for this comparison
is called “burn sample”. It is excluded from the actual evaluation to avoid a
potential bias. Some of the simulated contributions had to be scaled up to
compensate for missing or empty files. This introduces an uncertainty that is
not contained in the presented error bars.

Figure 33 shows the comparison of the small available sample of RbR 3.0
simulations with the corresponding data files. On the x-axis is the error esti-
mation class as defined in chapter 6.5. More accurate direction reconstructions
are to the left. On the y-axis is the number of events. The simulated events in
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Figure 33: Data Monte-Carlo comparison for RbR 3.0.

these plots have been weighted according to the expected atmospheric flux. The
plot is cumulative as the values shown e.g. at error class 2 contain all events of
classes 0, 1 and 2. Therefore these cumulative curves show the composition an
actual sample would show for different cuts on the estimated error class.

Ideally the red curve, representing the event numbers from data, and the
black curve, containing the sum of all simulated contributions, should match.
Obviously this is not true for very poor reconstruction qualities as seen for large
values of the error class in Figure 33.

This is not surprising since class 12 for instance means that there was no
reconstruction result available at all, while classes 10 and 11 denote events with
reconstruction errors between 51.2 and 180.0 degrees. Events that have such
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tremendous reconstruction errors are likely triggered due to pure noise without
any particle interaction, which is not included in the simulations.

Since no spatially resolved analysis could work with errors of up to 180
degrees, Figure 34 shows a zoom to the more interesting region of, depending on
the goal of an analysis, potentially acceptable reconstruction errors. What can
be seen here is that the agreement between data and Monte Carlo simulations
is rather good for ANTARES standards. What is also visible is that for the
used quality cut value of class 4 or better, this comparison suggests that there
is hardly any remaining contamination of atmospheric muons left.
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Figure 34: Data Monte-Carlo comparison for RbR 3.0. Zoom to realistic cut
values.

But as the statistical uncertainty for the RbR 3.0 sample is large, another
crosscheck with RbR 2.2 has been conducted. Figure 35 shows the same com-
parison as Figure 33 did, this time for a different sample of RbR 2.2 runs. The
observed behavior is similar to the previous comparison, but the gap for very
poor angular errors is even larger. Again following the reasoning that arbitrar-
ily large angular errors can’t be used for a spatially resolved analysis, the zoom
to realistic values in Figure 36 also shows a good agreement between MC and
data and mostly similar distributions as before on RbR 3.0. But it’s important
to note that in this comparison more atmospheric muons survive harder cuts,
resulting in an expected contamination on the order of 29.7% for the remain-
ing sample after a quality cut for error class 4. The applied Selectfit has been
trained using RbR 3.0 and can be expected to give more accurate results on
the more recent simulations. In the comparison using RbR 2.2, the remaining
muons may as well be muons that have not been simulated correctly in this
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Figure 35: Data Monte-Carlo comparison for RbR 2.2.

older version. Nevertheless, since a conservative estimate is preferred here and
because the comparison on RbR 2.2 has higher statistics, this is also considered
the contamination rate for the obtained final sample. Based on the numbers
for a cut on error class 4 in Figure 36, the unblinding of the full data sample
has been expected to yield 13078 ± 114 events.



7.3 Comparison of simulations with data 65

 0

 50

 100

 150

 200

 250

 300

 350

 1  2  3  4  5  6  7

C
u
m

u
la

ti
v
e
 n

u
m

b
e
r,

 w
e
ig

h
te

d

Estimated error class

Data
Muon Neutrinos

Atm. Muons
Showers

Sum

Figure 36: Data Monte-Carlo comparison for RbR 2.2. Zoom to realistic cut
values.
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8 Multiscale source search

The data recorded with the ANTARES neutrino telescope allows to address
diverse physics questions. Many sophisticated analyses have been performed,
each optimized specifically for one of the different possibly detectable physical
phenomena, see for instance [91], [92], [93], [94] or [95].

Most searches for spatially confined sources of cosmic neutrinos rely on a
model assumption derived from theory describing one specific potential source.
These searches evaluate the distribution of reconstructed neutrinos to detect
or reject this specific hypothesis. This usually means searching for an excess
beyond the expectation by atmospheric neutrinos at a known position in the
sky with a predefined size and shape.

The idea behind the model-independent multiscale source search is to ap-
proach this task the other way around. Instead of optimizing highly for one
specific prediction, this approach is intended to reveal the most significant ex-
cess of neutrinos within the recorded data in any region in the sky. A dedicated
analysis can then be optimized for the hypothesis derived from the findings of
this search.

The main advantage of this approach is that, due to its unbiasedness and
flexibility, it could potentially also reveal neutrino sources which would not be
tested in a realistic time scale by other searches. Apart from that there is a
highly reduced risk that this search suffers from deviations between assump-
tions, simulations and the reality.

Of course there are disadvantages which come with an evaluation like this.
The main drawback is the high number of trials when evaluating for sources of
arbitrary sizes, shapes and distributions on all positions in the sky. This in-
evitably lowers the sensitivity for any single specific hypothesis. But as already
explained, the main objective of this search is to identify a promising hypothesis
which can then be tested by a dedicated follow up analysis. Another negative
aspect of such a strategy is that, compared to a search for one specific hypoth-
esis, the interpretation of the result is less straightforward. Multiple plausible
interpretations can be found, which may have to be tested in more detail. Fi-
nally, instead of identifying a source, an unspecific approach like this may also
just reveal a yet uncompensated systematic effect in the measurement. While
in terms of knowledge gain on cosmic neutrinos this could be seen as a dis-
appointing result, it would definitely be useful for other upcoming analyses in
ANTARES and maybe also similar experiments like KM3NeT [96].

Taking everything into consideration, the model-independent multiscale source
search offers a good chance to identify the most dominant sourcelike structure
in the data, while, on its own, it’s unlikely to confirm such a structure with a
high significance.

8.1 Input

Once the events are selected as described in chapter 7, their direction informa-
tion is converted from local coordinates to equatorial coordinates (see chapter
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3.7). This is done with the astro package from Seatray (see chapter 3.5), using
only the reconstructed zenith, azimuth and the time the event was recorded.
Everything that is actually required as input for the multiscale source search
are the declination and the right ascension of each event. Evaluating energy
and time too is possible in general, but not included in this search.

8.2 The search space: spherical grids

To evaluate the distribution of neutrino positions a discrete grid is used. This
grid approximates a sphere by 165016 gridpoints which have a distance of ≈
0.5◦ to their next neighbors in declination as well as right ascension. The dis-
tribution of the gridpoints is 720 points at a declination of 0◦, with a reduced
number of gridpoints in other declinations according to the cosine of the angle
between the declination and the horizon. This results in rows of gridpoints with
less points per row towards the poles. This setup could be replaced by a more
optimal scheme, which distributes the gridpoints more evenly, but the current
implementation allows to exploit the regularity of the indices of gridpoints to
speed up some lengthy computations considerably. The spacing is chosen to be
0.5◦ because a spacing of 0.25◦ drastically increases the runtime of the evalu-
ation such that pseudo-experiments cannot be done in a reasonable amount of
time any more. Furthermore this spacing corresponds nicely to the expected
median angular resolution of about 0.44◦ achieved with Selectfit and the chosen
quality cut. On the other hand using a wider spacing, for instance 1◦, unneces-
sarily reduces the accuracy of the method. The radius of the spherical grid is
set to 1.0 to simplify the computations. Figure 37 shows a spherical grid with
gridpoints in blue and random events in white10. The tiles at each gridpoint
have a radius of about 0.5◦, hence they overlap and form a closed sphere. The
upper part without neutrinos is north (declination of +90◦) in equatorial coor-
dinates. The distribution of the events follows the visibility for and acceptance
of ANTARES as described in chapter 8.3.3. There will be one of these spheres
used separately for the evaluation of each of the 180 distance scales discussed in
chapter 8.3.2. According to the sampling theorem as discussed in [100] or [71],
using a grid with a spacing of 0.5◦ theoretically allows to reconstruct informa-
tion of the scale of 1◦ or larger without error. This limit is shifted for this grid
due to the discontinuities of the gridpoint spacing to around 1.5◦. This doesn’t
mean that smaller scales can’t be resolved in this search, but that they can’t
be guaranteed to be resolved without discretization errors due to the binning.

The distance of two points on the sphere is computed as the great-circle
distance, the shortest distance between two points on the surface. To minimize
numerical errors the more common equation 8 was substituted by equation 9
for computing the great-circle distance. Here φ denotes the declination, λ the
right ascension and ∆σ the angle between point 1 and point 2. Since the radius

10For the visualization of the search spheres and the events on them, the vtk file format
[97] is used. The visualization of the vtk files is done with Paraview 4.1 [98]. The skymaps in
later chapters are plotted with Gnuplot, mainly Version 4.6 patchlevel 5, see [99].
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Figure 37: A spherical grid with gridpoints in blue and random events in white.
The gridpoints are rendered with a radius of 0.5◦, hence they overlap and form
a closed sphere. Since the sphere is a three dimensional model, only the front
part facing the observer is visible here.

of the spheres is set to 1, ∆σ is also directly the distance measure.

∆σ = arccos(sinφ1 sinφ2 + cosφ1 cosφ2∆λ) (8)

∆σ = 2 arcsin(

√
sin2(0.5∆φ) + cosφ1 cosφ2sin

2(0.5∆λ)) (9)

8.3 From neutrinos to search spheres

To demonstrate the steps of the multiscale search we look at a distribution of
random events with two artificial point sources at a declination of -70◦. The
setup is shown in Figure 38. To illustrate the steps more clearly the sources are
unrealistically strong, one with 18 neutrinos within an area of 0.5◦ by 0.5◦, the
other one with 12 neutrinos.
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(a) (b)

Figure 38: a) A spherical grid with 12000 random events and two point-like
sources. View from below to the south pole (declination of -90◦). b) The same
setup displayed without the random events.

8.3.1 Counting neutrinos

The search starts by counting the number of neutrinos located in a ring around
each gridpoint with a radius corresponding to the current search scale. The
first distance scale is from 0.0◦ to 0.5◦.

for each g r i d p o i n t in g r id :
for each neutr ino :

i f 0 .0 < d i s t ance < 0 . 5 :
counter = counter + 1

For an illustration of this counting scheme see Figure 39. It shows the counting
for a search scale of 1.0◦ to 1.5◦. The result of this evaluation is one number
for each gridpoint of the search sphere. The results for three scales from the
example with two point sources from Figure 38 can be seen in Figure 40.

8.3.2 180 spheres

The process described in chapters 8.3.1 to 8.3.6 is performed for 180 different
search scales (from 0◦ to 90◦) in steps of 0.5◦. Each iteration i evaluates only
the neutrinos in a ring (not the whole circle area) between i·0.5◦ and (i+1)·0.5◦
around each gridpoint, with index i starting at 0. The result of each iteration
is computed independently (except for the smoothing between search distances
in chapter 8.3.4) and stored in an independent spherical grid.

8.3.3 Expectation from pseudo-experiments

The next step will be to compute the Poisson probability for the observed num-
ber of neutrinos at each gridpoint. To compute this probability one needs the
expected number of neutrinos. The value how many neutrinos are expected
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Figure 39: Scheme of the neutrino counting. Crosses mark the gridpoints with a
distance of 0.5◦ between them. Green and red dots are neutrinos. The red cross
is the gridpoint that is being evaluated. The current search scale is between the
black circles. In this example it is between 1.0◦ (inner circle) and 1.5◦ (outer
circle). Neutrinos which are found in the current search scale at the current
searchpoint are shown in red. In this example the outcome of the evaluation of
this scale at the red gridpoint is 13.

around each gridpoint is defined by the visibility of a point in equatorial coor-
dinates for ANTARES, folded with the acceptance of ANTARES for the local
coordinates that contribute to these equatorial coordinates, folded with the ef-
ficiency of the software reconstruction chain for these local coordinates. Even
a complex analytical model is only an approximation for the effects of all these
contributions. As an alternative the expectation can be approximated directly
from the measured data, which is done in this search. This automatically in-
cludes the properties of the acceptance and efficiency of the whole reconstruction
chain by design. Additionally, such a strategy doesn’t rely on simulations to be
“precise enough”, nor does it need any manual tuning if for example parts of
the reconstruction chain are exchanged.

To obtain the expectation the set of all neutrinos as described in chapter
8.1 is used again. If we were to have abundant statistics and only background
neutrinos without any neutrinos from sources, the measurement itself would
already be an approximation of the expectation. Since there are only few neu-
trinos and some of them could originate from spatially confined sources, the
data is scrambled first using random times within the data taking period when
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(a) (b) (c)

Figure 40: a) The spherical search grid with the number of events counted in a
ring between 0.0◦ and 0.5◦ around each gridpoint. b) Number of events between
3.0◦ and 3.5◦. c) Number of events between 10.0◦ and 10.5◦.

computing the equatorial from the local coordinates. Potential source struc-
tures in the right ascension are removed by that, placing all events randomly
in a declination band. Then the numbers of neutrinos are counted as described
in section 8.3.1.

The problem remains that there isn’t enough statistics to cover the whole
sky with the 165016 gridpoints with the few thousand events. To improve this
one can simply compute the mean of the counted values in one declination band.
This is justified because in theory the expected number of events in equatorial
coordinates should be the same at each point within one declination band, since
the rotation of the Earth is supposed to obliterate any possible inhomogeneities.
This assumption is by far exact enough at this point to estimate the expectation,
but, as described in chapter 9.7, it is not 100% exact. The result is shown as
the red curve in Figure 41. Still, these mean values per declination band show
a high fluctuation due to the low statistics, especially near the poles where only
few gridpoints belong to one band. To reduce the fluctuations of these values,
several filters are applied to the vector. These filters are well known for instance
from the field of digital image processing as explained in [100], [101] and [71].
The concept of filtering to reduce fluctuations from noise has been used before
its application to digital data. The effects of filters on signals of all kinds have
been studied extensively in the more general field of signal processing, explained
for example in [102] and [103]. The values of the first two bins are ignored by the
filtering algorithm in this case due to the large unphysical fluctuations around
the poles.

The first applied filter is a so called median filter, a non-linear filter that for
each value of the vector veci at the index i computes the median of the values
veci−1, veci, veci+1 and stores it as the new value for veci. This is a common
approach for instance in image processing to remove artifacts. The result of
this processing can be seen in the green curve in Figure 41.

The resulting expectation still contains an unreasonable amount of statisti-
cal fluctuation with a high frequency. Therefore the next step is to use a linear
low-pass filter. For linear filters the stencil notation will be used. This notation
is the common way to write down discrete linear filters, see for instance [100].



72 8 MULTISCALE SOURCE SEARCH

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

 7e-05

 8e-05

 0  20  40  60  80  100  120  140  160  180

E
x
p
e
ct

e
d
 m

e
a
n
 n

u
m

b
e
r 

p
e
r 

g
ri

d
p
o
in

t

Declination

Original values
Poles + Median

Final

Figure 41: Approximation of the acceptance of ANTARES and the reconstruc-
tion chain for the search distance between 0.0◦ and 0.5◦.

For the vector of means and one dimensional data in general, a generic stencil
looks like this:

weight [w c e ]

Applying this stencil to a value of the vector at index i, with i being the index
of the declination band here, means computing equation 10:

value(i) = weight · (w · value(i−1) + c · value(i) + e · value(i+1)) (10)

Using such a separable linear filter multiple times equals the one-time usage
of a larger filter, for example:

twice 1/4 [ 1 2 1 ] equa l s 1/16 [ 1 4 6 4 1 ]

A brief explanation for this example can be found in appendix C. The benefit
is that the larger filter doesn’t have to be implemented manually.

In the two dimensional case, for instance when the points of the search
sphere are considered to be pixels of an image, a linear filter looks like this:

[ nw n ne ]
weight [w c e ]

[ sw s se ]

The value is computed for the gridpoint at the center of the filter, again denoted
with c here. Applying the stencil to a gridpoint at index i, j, with i being the



8.3 From neutrinos to search spheres 73

index of the declination band and j the index of the right ascension within the
declination band, means computing equation 11:

value(i,j) = weight · (nw · value(i+1,j−1) + n · value(i+1,j) + ne · value(i+1,j+1)

+w · value(i,j−1) + c · value(i,j) + e · value(i,j+1)

+sw · value(i−1,j−1) + s · value(i−1,j) + se · value(i−1,j+1))(11)

The filter which is used here to reduce the statistical fluctuations of the
vector of expected mean values is one of the simplest one-dimensional low-pass
filters:

1/3 [ 1 1 1 ]

This corresponds to a simple mean of the three values. All of these filters need
to treat the borders in a special way, simply because there is no value left of
index 0. Due to the spherical nature of this task the best value at the index -1
(which would be one before the first index 0) is the value of index 1, because
this is also the value corresponding to the position of the other side of the pole.
The stencil for index 0 is then

1/3 [ 0 1 2 ]

For the last index it is the other way around. Simply using this filter would effi-
ciently reduce the statistical fluctuations, but it treats all values as if they were
produced with the same statistics. To compensate for this effect an additional
tweak is used here. For indices where one of the values is 0.0 the low-pass filter
is not applied. This preserves the location of the boundary where the visibil-
ity and efficiency drop to zero and therefore prevents distortions which would
occur at the tail otherwise. This filter is applied 60 times to obtain a continu-
ous approximation of the expected mean. As explained earlier this corresponds
to a one-time application of a larger lowpass filter. The filter is also applied
once without the treatment for zero values to include the uncertainty for the
measurement for values close to zero. The result of this procedure is shown
in Figure 41 as the blue curve. To further reduce fluctuations which could be
introduced by the scrambling of the data, the whole process of obtaining an ex-
pectation value for each gridpoint is conducted 30 times and for each gridpoint
the mean of the 30 computed values is used.

Since this expectation is different for every search distance that is evaluated,
this process is performed separately for each of the 180 search distances. The
results for 10◦ to 10.5◦ are shown in Figure 42. One can clearly see that, due
to the increased statistics for larger search rings, the statistical fluctuations are
a lot smaller and the approximation is more accurate.

The obtained values of these approximated expectations are then set for
every gridpoint according to its declination, resulting in expectations for the
spherical grids as shown in Figure 43 for 0, 10 and 50 degrees. The magnitude
of the expected values differs as already seen in Figures 41 and 42, therefore
the color scale (corresponding to the y-value in the two-dimensional plots) is
readjusted here. Red are high values corresponding to an expectation of more
event, blue are low values indicating the expectation of fewer events from this
direction.
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Figure 42: Approximation of the acceptance of ANTARES and the reconstruc-
tion chain for a search distance between 10.0◦ and 10.5◦.

(a) (b) (c)

Figure 43: The distribution of the expected number of neutrinos. a) 0.0◦ to
0.5◦ around each gridpoint. b) 10.0◦ to 10.5◦. c) 50.0◦ to 50.5◦. The color scale
is rescaled.
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8.3.4 Poisson probabilities

The algorithm has counted the number of neutrinos n around each gridpoint as
described in chapter 8.3.1 and has an estimate for the expected mean number
λ from chapter 8.3.3. With this information the Poisson probability P for n
could be computed using equation 12, where e is Eulers number.

P (n) =
λne−λ

n!
(12)

The problem with this computation is that it is numerically unstable for
large values of n or λ. This instability not only leads to slightly wrong prob-
abilities, but even to the failure of the computation. A possible solution to
this is to take care of the exponent and mantissa separately as in equation
13. Another idea is to use the datatype long double11 and the corresponding
library functions with a higher precision for the computations. But both of
these approaches only shift the range of the instability to higher values, they
don’t get rid of it entirely. Combining the two optimizations shifts the value
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Figure 44: Comparison of the implementations and approximations of equation
12 for P (n = λ). A probability of -0.1 denotes a failed computation.

where the computation of P (n = λ) breaks down from 27 for float and 144 for
double precision to 1547. Although this is enough in most cases of this search,

11Using g++ (SUSE Linux) 4.3.4 on the Woodcrest cluster in Erlangen long double gives
128 bit precision.
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an approximation using the so called “Stirling formula” as denoted in equation
14 is introduced for larger values.

P (n) =

e−λ

log10(e
−λ)

λn

log10(λ
n)

n!
log10(n!)

· 10log10(e
−λ)+log10(λ

n)+log10(n!) (13)

P (n) =
en(1+log10(

λ
n
))−λ√

2π(n+ 1
6)

(14)

Since the deviation of this approximation from the true values vanishes already
around P (n = λ = 20) it is used in all cases where either n or λ is above
120. The behavior of the different implementations is shown in Figure 44.
The final result using long double precision for computation gives exact results
in terms of double precision and has been confirmed numerically stable until
P (n = λ = 107), which is definitely enough for much larger searches.

The algorithm then computes the probability for the observed or a greater
number of neutrinos using equation 15 at each gridpoint.

P (x ≥ n) = 1−
n−1∑
i=0

P (i) (15)

For historical and technical reasons the Poisson probabilities are then rescaled
as in equation 16.

R = log10(
1

P (x ≥ n)
) (16)

To reduce statistical (only few events) and systematical (event reconstructions
have errors) fluctuations, the R values are low-pass filtered on the whole sphere.
The assumption is that “real” sources are more likely to extend to neighboring
gridpoints, whereas for random fluctuations the probability to have another
random fluctuation at a neighboring gridpoint is low. The stencil used for this
filtering is:

[ 1 1 1 ]
1/20 [ 1 12 1 ]

[ 1 1 1 ]

Two dimensional filters have been explained in chapter 8.3.3. This filter focuses
strongly on the central value for each gridpoint, adding only 40% of neighboring
information. This is motivated heuristically, because it preserved the signal in
various test cases. Finally a filter is applied to smooth between the different
search distances. The motivation for this is that a source which is prominent
in a search distance of for example 1.0◦ will likely be observed when searching
for 1.5◦ too, while random fluctuations are less likely to extend to neighbor-
ing search distances. For each gridpoint the neighboring values are from the
searches with a 0.5◦ smaller and 0.5◦ larger search ring. The stencil used is:

1/6 [ 1 4 1 ]

The effect of these computations on the search spheres is shown in Figure
45. Red means high values, blue means low values. The color scale is readjusted
between the different search scales.
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(a) (b)

(c) (d)

(e) (f)

Figure 45: a) The spherical search grid from Figure 40a.
b) The grid after the computations described in chapter 8.3.4.
c) and d) analog for the search radius between 3.0◦ and 3.5◦.
e) and f) analog for the search radius between 10.0◦ and 10.5◦.
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8.3.5 Segmentation

At this point of the analysis spheres have been computed where high R values at
a gridpoint indicate more neutrinos in a certain distance around the gridpoint.
Therefore potential source regions containing more neutrinos should be linked
to high values on the spheres. We can assume that low values are not linked
to detectable sources. In pattern recognition separating background from po-
tentially relevant information is called segmentation. A lot of information on
segmentation can be found in [100]. The chosen solution for this task in this
analysis is probably the simplest possible solution, applying a threshold to all R
values. Similar to the segmentation of a black and white image, a histogram of
the values of all gridpoints is analyzed to obtain the threshold. The distribution
as shown in red in Figure 46 has a long tail of non-zero values, which is where
potentially signal-related information is contained. If only the maximal values
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Figure 46: The histogram of the R values on the grid, the distribution of only
high R values and the smoothed distribution of high values.

are considered, the search still shows a good potential to find the most domi-
nant source, but a lot of information on the shape of the source and on other
less dominant sources is lost. To extract the tail of the distribution robustly,
the first step is to cut away the lower 50%. The result is shown in green in
Figure 46. Only very low values close to 0 are discarded by this. The next step
is a smoothing of the histogram 50 times with the stencil

1/3 [ 1 1 1 ]
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The result of this filtering is shown as the blue curve in Figure 46.
In the next step a line is calculated from the point where the smoothed

distribution of the upper 50% has its maximum value maxV al to the first point
on the right side where the y-value is below 0.5 ·maxV al. The x-value where
this line intersects y=0 is used as a threshold θ. This is illustrated in Figure 47.
Only values in the tail right of this threshold are kept, lower values are set to
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Figure 47: A fit from the maximum trough the half-maximum point determines
the threshold.

zero. The advantage of computing the threshold like this compared to a fixed
threshold or a fixed percentage is that the threshold adapts to the distribution.
The effect of the segmentations on the search spheres is shown in Figure 48.

An additional option, which will be used later, is to scale the distance be-
tween the previous minimum value xmin old and θ, using a factor of α. The new
threshold is then given by equation 17.

θfinal = (α · xmin old + (1− α) · θ) (17)

For now alpha is set to 0 and therefore θfinal = θ.
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(a) (b)

(c) (d)

(e) (f)

Figure 48: a) The spherical search grid from Figure 45b.
b) The grid after the segmentation described in chapter 8.3.5.
c) and d) analog for the search radius between 3.0◦ and 3.5◦.
e) and f) analog for the search radius between 10.0◦ and 10.5◦.
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8.3.6 Remapping

At this point the search has obtained spheres where only potentially signal
related gridpoints have values different from 0.0. The next step is to reconstruct
the location of the neutrinos that caused the detected overfluctuations. For
the search sphere with a search distance between 0.0◦ and 0.5◦ the situation
doesn’t change, since the information up to 0.5◦ is already located at the exact
gridpoint it originated from when counting the neutrinos. For all other spheres
with search distances d > 0.5◦, the information stored at a gridpoint originated
from counting neutrinos that are d degrees away from the gridpoint. To evaluate
where the overfluctuation actually occurred, this information must be mapped
back to the origin. This is done using a copy of the current spherical grid with
all gridpoints initially set to 0.0. Then the following steps are performed12:

for each g r i d p o i n t p(i,j) in the o r i g i n a l g r id :
f i n d the set pd o f a l l g r i d p o i n t s in d i s t ance d around p(i,j)
for each g r i d p o i n t p o f pd in the new gr id :

valuep = valuep +
valuep(i,j)
size(pd)

Afterwards the new grid contains the corresponding fractions of the overfluc-
tuations mapped back to their origin and this grid is used from there on. The
effect of these computations on the search spheres is shown in Figure 49. The
remapping distributes the information of an overfluctuation at one gridpoint
back to all gridpoints where the neutrinos causing the overfluctuation could
have been. The information where the neutrino distribution had a higher den-
sity is therefore automatically encoded in the pattern how the remapped circles
overlap, see for example Figure 49d. As already stated in the beginning, only
marginal differences are observed for the first grid as seen in Figure 49b. The
color scale for the remapped plots on the right is not readjusted between the
search scales. One can see that the point sources are detected most dominantly
by the contributions from smaller scales.

12The naive implementation of this step, as in the explained scheme, has an extremely long
runtime. Therefore the actual implementation differs slightly from the explained scheme to
exploit a much more cache-coherent access pattern. In other words: The optimized remapping
performs the same operations in a more efficient ordering.



82 8 MULTISCALE SOURCE SEARCH

(a) (b)

(c) (d)

(e) (f)

Figure 49: a) The spherical search grid from Figure 48b. b) The grid after the
remapping described in chapter 8.3.6. Nothing changes up to 0.5◦.
c) and d) analog for the search radius between 3.0◦ and 3.5◦.
e) and f) analog for the search radius between 10.0◦ and 10.5◦.
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8.4 180 to one search sphere

The current status of the search are 180 spheres, each representing the search
for overfluctuations in the number of neutrinos at a different scale. Each of
these searches is left with only the most relevant results for its distance.

A reasonable next step would be to search for structures in these 180 spheres,
taking into account the neighbors within a search sphere as well as the neigh-
boring search spheres. This has been implemented with two different clustering
approaches, but none could be optimized well enough to robustly and reliably
find the test sources. There were multiple issues with these approaches, for in-
stance when to optimally stop a cluster from growing in which direction (within
one sphere must be treated differently than between spheres), how to map the
three-dimensional clusters to a two dimensional skymap in the end and sev-
eral more. For all of these problems there were solutions found, but the search
didn’t reach a satisfactory performance.

The better and feasible solution turned out to be to fuse the 180 search
spheres into one. It is not a priori clear what value to assign to each gridpoint
in the resulting sphere when we have a vector of 180 values. Several methods
how to do this have been tested, for instance assigning the

• maximum value

• median value

• mean value

• sum of all values (L1 norm)

• L2 norm of all values (see equation 18)

• L3 norm of all values

• number of connected non-zero values

• and several others.

The Ln norm for a vector v is defined as:

Ln = n

√√√√ N∑
i=0

vni (18)

with N being the number of entries in the vector. Although taking the max-
imum value might seem like a reasonable idea, this is not robust as many
gridpoints were observed to have a random overfluctuation somewhere in the
180 values. What worked best in terms of robustness and source detection for
the scenarios tested during development was the simple sum and the L2 norm
of all values. The reason is that significant sources tend to be found on multiple
scales, resulting in many relatively high non-zero values in the sum. Random
fluctuations on the other hand can often be observed on a single scale only. The
ordinary sum was chosen for highest robustness and a good ability to identify
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source locations. During this optimization it was discovered that not including
the first evaluation bin (from 0.0◦ to 0.5◦) in the sum further enhances the
stability of the overall search. Therefore it is not included.

It should be noted that the potential of this step could be exploited even
better, either by evaluating the full 180 spheres or by a more sophisticated way
of combining the 180 to one. But the devised algorithm is the best achieved
solution. The result of the summation can be seen in Figure 50.

Figure 50: The sum of the 180 spheres

8.5 From one search sphere to clusters

Now there is only one search sphere left containing the combined information
on neutrino density from all search scales. A source could now either be a very
high value on that sphere or a larger region with “higher-than-usual” values
or a combination of both. To identify these regions where “higher-than-usual”
values are present, a segmentation can be performed exactly as described in
chapter 8.3.5. This time α is varied, resulting in different numbers of remaining
gridpoints. α = 1 means not cutting away anything at all, a lower α means
a harder cut. α = 0 is the same threshold as used for the individual spheres,
but also harder cuts with negative values are possible. One can see the effect
of different thresholds for segmentation in Figure 51. Higher positive values
introduce additional artifacts but also allow extended source structures to be
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found. Hard negative cuts only preserve the highest peaks, which works well for
the presented unrealistically strong point sources. Another illustrative example
for the effect of different segmentation thresholds can be found in appendix D.

Because all values of the whole sphere are taken into account for the seg-
mentation, this is a global approach. In contrast to that also local approaches
that focus on the change of the value next to a cluster (for example via edge
detection and heuristics) or the mean and variance of the values from within a
cluster and the surrounding neighborhood of the cluster have been tested. The
problem with these local methods was that faint random clusters in neutrino-
poor regions had an unreasonably high chance of surviving the segmentation,
whereas relatively obvious extended sources without clear contours were over-
looked often. The segmentation could certainly benefit from exploiting the local
structures in a reliable way instead of only using the global distribution, but the
global approach is the best found solution that performs well and is guaranteed
to show robust behavior.

This step can introduce a bias to the search. Cutting softly results in keep-
ing many gridpoints for the rest of the search, which prefers extended sources.
Cutting harshly on the other hand biases towards smaller sources and removes
faint but large sources completely from the remaining sample. Therefore mul-
tiple segmentations are used and evaluated independently. This introduces an
additional trial factor that has to be accounted for in chapter 8.6.2, but it also
allows the search to continue as unbiased as possible. Nevertheless, due to the
trial factor, not too many different segmentations can be kept for this analysis.

The next step applied to the segmented grid is a non-linear median filter.
This is a common approach in image processing to remove artifacts as explained
in [100]. Similar to the linear two dimensional filters already introduced in
chapter 8.3.3, the median filter also operates on the current gridpoint and its
direct neighbors. But instead of writing a weighted linear combination of the
considered values to the central gridpoint, it writes the median of the nine
values. The effect of this filtering is shown in Figure 52.

The gridpoints of the resulting segmented spherical grid are then checked
for connectedness. A connected group of gridpoints is called a segment in the
general context of segmentation and in this work it is also called a cluster. All
gridpoints are checked in the order from highest to lowest value and each time
the considered gridpoint is directly connected to an already found cluster, it is
added to this cluster. Connected here means that one of its eight neighbors is
already part of the cluster. If it is not connected to any cluster, a new cluster
is started. Once all gridpoints are assigned to clusters, all found clusters which
have directly neighboring points are fused together.

After this is done all remaining gridpoints are contained in clusters. They
have the same extensions as the segments in Figure 52.
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(a) α = 0.25 (b) α = 0.15

(c) α = 0.05 (d) α = −0.1

(e) α = −0.4 (f) α = −0.9

Figure 51: The effect of different α values on the segmentation result.
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(a) α = 0.25 (b) α = 0.25 and median filter

(c) α = 0.05 (d) α = 0.05 and median filter

(e) α = −0.1 (f) α = −0.1 and median filter

Figure 52: The effect of the median filter on the segmented grids.
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8.6 From clusters to significances

At this stage the information is condensed to clusters. Each cluster is composed
of a vector of the gridpoints that are part of it. The next step is to distinguish
the potentially significant sources from random accumulations. To do this one
needs to know the probability how likely a cluster could have been generated
by random events. This probability could in theory be easily determined by
pseudo-experiments using scrambled data. The problem with this approach
is, that requiring exactly the same cluster at the same position with the same
gridpoints and the same values for each gridpoint is certainly not going to
happen in a bearable amount of time. And to compute a probability we would
need many occurrences of exactly this cluster. So this is not an option.

8.6.1 Relevance of a cluster

We can however describe the clusters using various evaluation metrics. For
instance one could compute the probability for a cluster of the same size or
larger, with size measured by the number of gridpoints. With a fair amount of
pseudo-experiments there will likely be a sufficient amount of smaller and larger
clusters to estimate the probability for the size of an observed cluster. To make
sure that this probability is not confused with the significance of a cluster, we
call the value computed in such a way “relevance”. It can be interpreted as an
estimation of the pre-trial significance, but it uses approximations and implicitly
already contains some trial factors for the search in multiple scales and locations.
The purpose of the relevance metrics is to provide a measure with which the
clusters can be compared with all other clusters from all segmentations.

Only considering size to measure the relevance neglects smaller or even
point-like sources. A good metric to find these could be the maximal value of
any gridpoint of the cluster. But also many other metrics can be defined to
identify outstanding clusters, each with a certain, sometimes not obvious bias.
An incomplete list of the tested metrics can be found in appendix E.

Apart from basic, directly computed relevance metrics one can also use
meta-metrics that rely on other relevance metrics. This can be done for in-
stance by direct linear combination of basic metrics. The idea behind these
combinations is that a dominant source could stand out in multiple certain
metrics. Taking this idea one step further leads to even more general meta-
metrics, but at some point these computations become so variable that sources
without a clear common trait can become hard to distinguish from random
clusters.

If all relevance metrics were to be used for the evaluation of the found
clusters, the potential to achieve a high significance would drop considerably,
because for the metric that might actually identify a source with a high signif-
icance there is a large number of other metrics and each metric has a chance
to overfluctuate for a random accumulation. But on the other hand if we chose
too few metrics we might introduce a large bias and maybe miss a source in
the data. Since the intention of this search had been not to optimize for a spe-
cific source model, the selection had to be done heuristically, loosely optimizing
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for all sources that have been included in the pseudo-experiments during the
development.

While a combination of two metrics, metrics 0 and 1 in appendix E, was
found to be performing very well for all kinds of sources as shown in chapter 8.7,
only metric 0, the size of the cluster in gridpoints, has been used for the data
analysis of ANTARES data to reduce the resulting trial factor. By this choice
the search becomes biased towards larger extended sources13, but this has been
a deliberate choice, justified by the fact that ANTARES has already conducted
sophisticated searches for small and pointlike sources, see for instance [91]. It
is relevant to note that the choice of suited metrics is influenced by the choice
of segmentation thresholds from chapter 8.3.5 and vice versa. Together with
this explicit bias towards larger clusters and the resulting choice for this metric,
the segmentation thresholds α have been fixed to -0.11 and +0.25. A list of
the tested setups that have been used to derive these choices is contained in
Appendix G.

For this selection of metric and segmentations several thousand pseudo-
experiments with scrambled data are conducted. Each pseudo-experiment com-
putes the whole process as described in chapter 8 up to this point. Since one
pseudo-experiment typically contains many clusters, this results in tens to hun-
dreds of thousands of comparison values for each metric. But only the maximum
value for any cluster in any metric is considered in each pseudo-experiment, so
that in the final analysis a cluster will be compared to the distribution of the
achieved maxima instead of the distribution of all values. This proved to be
more reliable than comparing against the whole distribution, because there
are different systematics for the highest relevance value of a cluster in each
pseudo-experiment than for the second or third highest, since their possible
relevance values can be influenced by the highest scoring cluster in this pseudo-
experiment. The comparison with the distribution of the maximal values leads
to a correct estimation for the most relevant cluster in each pseudo-experiment,
but to an underestimation for clusters with lower relevance values in the same
pseudo-experiment. This solution is used because the aim of this search is the
most significant structure in the sky. The found clusters can now be compared
in each metric with a distribution of values from pseudo-experiments.

In this context a few definitions are useful. The p-value denotes the prob-
ability how likely something occurs. At this stage for example a p-value of
0.2 for a cluster is interpreted that in 20% of the pseudo-experiments a cluster
with the same or a higher relevance value has been found in the same metric.
Significances are given in σ, which is derived from the standard deviation of a
Gaussian distribution. Therefore ≈ 68.27% of all observed values are expected
within a 1.0σ interval around the mean value for a Gaussian distribution, about
95.45% within a 2.0σ interval and in general a fraction of erf( N√

2
) within Nσ.

erf is the (Gauss) error function here. In the two-sided interpretation it is
irrelevant whether a value is higher or lower than the mean value. Since this

13The search would still be able to detect unexpectedly strong small sources, but with a
considerably reduced sensitivity. The evaluation of multiple scales results in an extended
cluster area around the actual small location (see Figures 49d and 52b) for strong sources.
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search is aiming for overfluctuations only, the significances are interpreted in
a one-sided way, meaning that low values are ignored and only high relevance
values result in high significances. Hence 1.0σ instead means that in 68.27% of
the pseudo-experiments no relevance value as high as the observed one has been
found. For example 2.52σ corresponds to a p-value of 0.0117, approximately
one in 85, 2.14σ to 0.0324 or about one in 31.

Directly comparing a cluster to the exact obtained distribution of relevance
values to compute the p-value only allows certain, discrete p-values to occur.
This means that two clusters with different relevance values may be mapped
to the same p-value if no value is between them in the distribution used for
comparison, making their relevances indistinguishable. The possible minimal
p-value would also be limited by the number of pseudo-experiments.

Therefore the tail of the distribution of relevance values is substituted by a
fit, following an exponential decay in the form of a · ebx, which is the tail of a
Poisson distribution. The result can be seen in Figure 53. The fit is computed
based on the part of the tail of the distribution where the green fit is also shown
in this plot, but it is only used for high values where the actual statistic is not
sufficient anymore, indicated by the threshold value in black. Up to this value
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Figure 53: An example for the distribution of relevance values and the fit to this
distribution. The fit is computed based on the whole tail of the distribution,
but it is only used for values greater than the threshold marked in black.

the actual distribution is used to evaluate the significance. The threshold in
black, from where on the fit instead of the plain histogram is used, is calculated
as 0.8·beginning of the tail+0.2·value where third to last zero gap occured.
If there are less than three gaps in the histogram with a zero value, the beginning
of the first present gap is used instead. This heuristic is used to make sure that
a range of the distribution with stable statistics is used to fit the tail, regardless
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of binning effects and poor statistics.

After the comparison of the relevance values with these distributions each
cluster has one p-value for every metric, expressing how likely it could have
been produced by chance according to this metric. The overall p-value for a
cluster is the minimum of the p-values from all metrics. From that p-value a
renormalized relevance (similar to a significance) is computed using the inverse
error function14.

8.6.2 Significance of a cluster

At this stage we have clusters on the search sphere, each cluster with a value
called renormalized relevance which states how likely it could have been pro-
duced by a random neutrino distribution. The relevance would equal the sig-
nificance if we had used only one relevance metric and only one segmentation.
But there is a trial factor for the additional possibilities that the observed
renormalized relevance value can be produced in any segmentation (and by any
metric if more than one is used). The corresponding trial factor could simply
be applied now, but since it is a conservative upper bound and the different
segmentations are highly correlated, we can give a more accurate estimate by
conducting pseudo-experiments. A large number of pseudo-experiments with
scrambled data would have to be conducted again. Each experiment would have
to compute the whole process described in chapter 8 up to this point again. But
almost the whole process has already been computed in chapter 8.6.1 to com-
pare the relevance values to the distributions from pseudo-experiments. The
only additional step is the computation of the renormalized relevance values for
each cluster. So the results from the previous pseudo-experiments are reused,
the few missing computations are added and we have a large distribution of
renormalized relevance values from pseudo-experiments.

Just as for the relevance values in chapter 8.6.1, in a direct comparison
with the observed distribution to compute the p-value, the number of pseudo-
experiments limits the possible maximal significance. Therefore the tail of the
distribution of relevance values is again substituted by a fit following the decay
of the tail of a Poisson distribution. The result can be seen in Figure 54. Just
like for the fit of the plain relevance values in Figure 53, the actual histogram is
used up to the threshold shown in black. The fit is only used for values above
this threshold and hence does not at all influence any of the significances quoted
in this thesis. The strong fluctuations in the left of the histogram in red aren’t
statistical fluctuations but systematic binning and combination effects. They
are caused by the combination of the, in this case two, independent distributions
from the two used segmentations, since for every entry in the histogram, the
maximum renormalized relevance value found for this pseudo-experiment is
used.

Finally, the distribution with the fitted tail from Figure 54 is used to com-
pute a p-value for a found cluster. It is a one-sided p-value, since only overfluc-
tuations are considered in this search. The same method could also search for

14 Using the boost library, see [104]. A scaling factor of
√

2 has to be applied to the results
of this function to obtain the correct results.
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Figure 54: Fit to the distribution of renormalized relevance values used for the
computation of significances.

underfluctuations if several maximum operations were substituted by minimum
operations. The obtained p-value is converted to a significance for this cluster
using the inverse error function from [104] again. The resulting significance
values correspond to the standard way of converting p-values to significances
in Astroparticle physics, assuming a Gaussian distribution and a two-tailed
evaluation.

8.7 Sensitivity

In this chapter the sensitivity of this method is illustrated for various source
scenarios. Of course by design not all possible source morphologies that can
be detected by the method can be covered, but instead several basic setups
are shown to give an idea of the performance. Two relevance metrics, the size
of the cluster N (Metric 0) and the average of the highest

√
N values in the

cluster (Metric 1), are used for these plots. The sensitivities are calculated
for pseudo-experiments with 13000 random background events with the quoted
number of source neutrinos artificially added. Each of the spherical grids in
this chapter is rotated such that it presents a reasonable view on the current
source(s). The sensitivity curves are smoothed, since only 20 repetitions per
data point could be conducted due to time constraints. The visualizations of
the setups are shown with the maximum number of events per source tested
in the corresponding sensitivity plots. To clarify explicitly, in this chapter the
given sizes of the benchmarked sources are their radius, not their diameter.
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8.7.1 Small and pointlike sources

Since dedicated, model optimized searches didn’t find clear indications for point-
like sources, it is not to be expected for this search either. Figure 55 shows a
setup with one almost pointlike source with a radius of 0.5◦ at a declination of
-70◦. The corresponding sensitivity curve in Figure 56 shows, how likely it is to
detect the point source with a significance of 3σ, depending on the number of
events randomly distributed within the source. This means that a point source
of this size and location needs 12 events to have a chance of 50% to be detected
with a significance of at least 3σ. Figures 57 and 58 show the corresponding
information for a source with a radius of 1.0◦.
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Figure 55: Point source smaller 0.5◦ at a declination of -70◦.
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Figure 56: Sensitivity for a point source smaller 0.5◦ at a declination of -70◦.
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Figure 57: Point source smaller 1◦ at a declination of -29◦.
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Figure 58: Sensitivity for a point source smaller 1◦ at a declination of -29◦.
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8.7.2 Extended sources

The extended sources here are added using random positions for the events
within the source. These tests show the performance for scenarios with extended
sources like the Fermi Bubbles or the hotspot as seen by IceCube in [105]. The
declination of the Galactic Center is at -29◦, the hotspot at the time this is
written is believed to be centered at -23◦ with a possible extension between
8◦ and 20◦. Similar extended setups are shown in Figures 59 and 61. Analog
to the point sources, the probability for a 3σ effect depending on the number
of events within the source for these setups is shown in Figures 60 and 62.
To give an impression how the result of the developed analysis looks like for
extended sources, Figure 63 shows the result of the method for this scenario.
This plot can be compared to Figure 50, which shows the same stage of the
computation for the example with two point sources. Figure 64 shows the
effect of a segmentation with α = -0.11 on Figure 63. The corresponding plot
for the two pointlike sources is Figure 52f. Every connected region here is one
cluster. One can see that filaments are extending the cluster. This happens
at locations where random accumulations of background events are close to
the actual structure. The individual significance of each cluster is evaluated
according to the chosen metrics. The cluster containing the artificial source
events is detected with more than 5σ here. All other clusters on this sphere do
not reach significances above 0.5σ.
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Figure 59: Extended source smaller 5◦ at a declination of +10◦.
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Figure 60: Sensitivity for an extended source smaller 5◦ at a declination of
+10◦.
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Figure 61: Extended source smaller 10◦ at a declination of -29◦.
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Figure 62: Sensitivity for an extended source smaller 10◦ at a declination of
-29◦.
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Figure 63: Result for a setup like in Figure 61. This is after the summation of
all search scales described in chapter 8.4, but before any segmentation cut is
applied as described in chapter 8.5. The color scale can be considered arbitrary
units, red means higher event density.

Figure 64: The effect of a segmentation with α = -0.11 on the result shown in
Figure 61.
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Figure 65: The effect of a segmentation with α = +0.25 on the result shown in
Figure 61.
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8.7.3 Unexpected shapes

A common idea of a source is a structure with an approximately spherical shape.
This search does not require such a shape to find a source. The artificial setup
of a straight line in Figure 66 is used to demonstrate that arbitrary shapes
can be found. The sensitivity for this scenario is shown in Figure 67. In the
scenario shown in Figure 68, the even more arbitrary shape of a line with a
gap is shown. Whether this shape is reconstructed as one connected or two
separate lines depends strongly on the number of events in the line and random
fluctuations in the gap. The sensitivity for this setup, independent of whether a
connected or two separate sources are identified, is shown in Figure 69. Figure
70 shows the detailed result obtained for this scenario before segmentation.
One has to keep in mind, that this is for a scenario with unrealistically many
events within the source. This result after the segmentation with α = -0.11 is
shown in Figure 71. The two parts have been detected as one long line in this
example. Just like for the results for the extended sources, these results can
be compared to the corresponding ones shown for the scenario with two point
sources in Figure 50 and Figure 52f.

To demonstrate that the ability to identify arbitrary shapes is not limited to
spherical and straight shapes, the setup shown in Figure 72 contains a curved
line. The corresponding sensitivity can be seen in Figure 73. The results are
shown in Figure 74 without segmentation and in Figure 74 after the segmen-
tation using α = -0.11. The general shape follows the desired directions, but
there are considerable filaments extending beyond the region where the artifi-
cial events have been added. These are caused by random fluctuations near the
actual source region, but there is no way to distinguish them from ”real source
events” in a real application.
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Figure 66: Diagonal line, 20◦ length, at a declination of -70◦.
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Figure 67: Sensitivity for a diagonal line, 20◦ length, at a declination of -70◦.
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Figure 68: Diagonal line with interruption, 20◦ length, at a declination of -29◦.
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Figure 69: Sensitivity for a diagonal line with interruption, 20◦ length, at a
declination of -29◦.
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Figure 70: Result for the setup in Figure 68. This is after the summation of
all search scales described in chapter 8.4, but before any segmentation cut is
applied as described in chapter 8.5. The color scale can be considered arbitrary
units, red means higher event density.

Figure 71: The effect of a segmentation with α = -0.11 on the result shown in
Figure 68. The two parts of the line are connected in this example, but this is
not the case for all pseudo-experiments of this setup, especially with less events.
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Figure 72: Curved line, 20◦ length, at a declination of -29◦.
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Figure 73: Sensitivity for a curved line, 20◦ length, at a declination of -29◦.
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Figure 74: Result for the setup in Figure 72. This is after the summation of
all search scales described in chapter 8.4, but before any segmentation cut is
applied as described in chapter 8.5. The color scale can be considered arbitrary
units, red means higher event density.

Figure 75: The effect of a segmentation with α = -0.11 on the result shown in
Figure 72. The filaments in this example are caused by random background
fluctuations near the source.
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8.7.4 Neighboring sources

If other sources are located close to a source, the probability to detect the
presence of the whole structure is higher than the sum of the probabilities to
detect the sources independently. This is demonstrated by the setup as seen in
Figure 76. The sensitivity for this scenario is shown in Figure 77. The numbers
of events are per source here. What can be seen is that the number of events
required for each point source to obtain a 3σ effect with a certain probability
is lower than for one source of the same extension and location alone. For
comparison: The sensitivity for a single source of the same size and location
has been presented in Figure 58.

8.7.5 Diffuse flux

This search is not at all sensitive to a completely diffuse flux. It adapts to
the data in the beginning of the search in such a way that the overall excess is
automatically compensated, making it completely impossible to detect anything
that doesn’t have a spatial structure.
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Figure 76: Three point sources smaller 1◦ at declinations of -25◦, -29◦ and -34◦.
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Figure 77: Sensitivity for three point sources smaller 1◦ at declinations of -25◦,
-29◦ and -34◦.
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8.8 Modifications for IceCube data

8.8.1 Necessary modifications

Although no explicit assumption has been made derived from properties of the
ANTARES neutrino telescope for this search, this happened implicitly at some
points when the algorithm was optimized with the specific application in mind.
If the same algorithm is to be applied to the public IC40 dataset [106], released
by the IceCube collaboration, some details should be reconsidered. What was
realized to be the relevant difference between the application to ANTARES and
IceCube data is the approximation of the expectation of the number of neutrinos
for a certain declination as described in chapter 8.3.3. While the probability to
detect a neutrino changes slowly with the declination for ANTARES, see Figure
41, there is a leap for IceCube at a declination of about 0◦ as seen in Figure
78. The consequence of this discrepancy is that the estimated expectation
derived from scrambled data cannot be smoothed as much for IceCube as for
ANTARES, because otherwise the estimated expectation would strongly smear
the observed jump. The number of applied lowpass filter operations is therefore
reduced from 60 to 15 to better preserve this leap. The result of the acceptance
estimation for the IC40 data can be seen in blue in Figure 78 for up to 0.5◦ and
in Figure 79 for 10◦.
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Figure 78: Approximation of the acceptance of the IceCube detector and the
reconstruction chain for a search distance up to 0.5◦, based on the IC40 data
sample.

Apart from this adaption, no part of the algorithm needs to be modified to
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Figure 79: Approximation of the acceptance of the IceCube detector and the
reconstruction chain for a search distance between 10.0◦ and 10.5◦, based on
the IC40 data sample.

apply it to the public IC40 dataset.

8.8.2 Optional modifications

Since the ANTARES and IceCube datasets are completely independent from
each other but both should contain the same physical observation of the neu-
trino sky, one can be used to check a hypothesis derived from the other in the
region where both datasets overlap without a trial factor.

A simple way to achieve this with this search method would be to analyze
the IceCube data with the hypothesis generated by the ANTARES data and
compare the results by eye. Since the outcome is not trivial to interpret, this ap-
proach could easily be misleading. To perform this check on a more solid basis,
the idea is to predefine some requirements for the comparison of the hypothesis
from ANTARES data and potential clusters in the IceCube data. First of all,
the same segmentation threshold is used to evaluate the IC40 data as was used
to find the most significant structure in the ANTARES data. Furthermore, a
cluster has to overlap with the template of the ANTARES structure. Since
large structures, which barely overlap with the template by only one pixel, cer-
tainly are not the aim of such a search, a minimum overlap is required for a
cluster to be taken into account. This overlap requirement is set to 51% of the
size of the new cluster to require it to be more related to the template than
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to other regions. Since requiring an overlap with a template implicitly means
searching in a confined region, the metric to evaluate the significance cannot
be size, as it would prefer clusters which exactly have a fraction of 51% of their
size inside and 49% outside of the template. Therefore the metric is changed
to metric number 1, topSqrt, as described in Appendix E. This metric uses the
mean value of the

√
N highest pixel-values in the cluster, with N being the size

of the cluster. Judging from pseudo-experiments, this is the second best tested
metric.
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Part III

Results and discussion

This part of the thesis presents the results obtained using the described methods
and gives an interpretation of these results.
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9 Results

Only after the development of the methods is finished and the analysis proce-
dure and all cuts are fixed, the ANTARES data are processed for the first time,
the so called “unblinding”. This mandatory blinding policy prevents that a bias
can influence the development of the methods or analyses. After filtering the
recorded data as described in chapter 7, the unblinding for this analysis resulted
in 13283 neutrino event candidates. The spatial distribution of these events has
been analyzed using the techniques described in chapter 8. The result of this
analysis are clusters, each with an independent significance. As explained in
chapter 8.6.1, only the size of the clusters is used as relevance metric to assess
their significance. Since two different segmentation thresholds have been used,
there are two different resulting skymaps. The trial factors for all evaluations
have been incorporated into the post-trial significance of each individual cluster.

9.1 Found clusters

The segmentation with a threshold of α = -0.11, see chapter 8.5, is the harder of
the two applied segmentation cuts. It detects multiple extended clusters which
are close together. These clusters are not significant on their own. The result
as computed on the search sphere can be seen in Figure 80. Figure 81 shows
the same results as a skymap in equatorial coordinates, Figure 82 as skymap in
galactic coordinates. All skymaps are presented in Hammer-Aitoff projection.
The highest significance of 0.81σ is found for the cluster at the bottom, colored
in red on the sphere and in white in the skymaps.

(a) (b)

Figure 80: Result of the unblinding with a segmentation threshold of α = -
0.11 on the search sphere. Multiple extended clusters have been found, but no
structure is significant on its own. a) View centered on the clusters. b) View
of the opposite side.

The threshold of α = +0.25 is the less strict segmentation cut. Its intention
is to find very large structures or to allow neighboring structures to merge. The
clusters found using α = -0.11 fuse in this segmentation, resulting in one large
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Figure 81: Result of the unblinding with a segmentation threshold of α = -0.11
in equatorial coordinates. The colorcode is the significance in σ.

cluster with a post-trial significance of 2.85σ. Due to the compensation of a
systematic effect investigated in chapter 9.7, this significance gets reduced to
2.52σ. The significance of the clusters observed for α = -0.11 changes are only
slightly reduced by this effect to 0.79σ. The very large structure can be seen
on the search sphere in Figure 83. Figure 84 shows the result as skymap in
equatorial coordinates, Figure 85 in galactic coordinates. This cluster encloses
the Galactic Center, but it is larger than the largest extended structures that
are currently suspected to emit neutrinos, for instance the Fermi Bubbles [94].

Since the obtained results aren’t trivial to interpret, several further studies
are presented in the following chapters.
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Figure 82: Result of the unblinding with a segmentation threshold of α = -0.11
in galactic coordinates.

(a) (b)

Figure 83: Result of the unblinding with a segmentation threshold of α = +0.25.
A very large structure with a post-trial significance of 2.85σ is found. a) View
centered on the cluster region. b) View of the opposite side.
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Figure 84: Result of the unblinding with a segmentation threshold of α = +0.25
in equatorial coordinates. The colorcode is the significance in σ.

Figure 85: Result of the unblinding with a segmentation threshold of α = +0.25
in galactic coordinates.
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9.2 Result before segmentation

Figures 86, 87 and 88 show the structures that have been found by the multiscale
search after summation of the individual scales as described in chapter 8.4, but
before the segmentations are applied as described in chapter 8.5. What can
be seen is that the clusters are located where the highest overfluctations on all
scales are observed, so this relation works as expected also for the final data
analysis. Figures 89, 90 and 91 show the same plots, but this time with the
position of the neutrino events as overlay. They allow to validate that these
overfluctuation regions actually correspond to regions where many events are
contained.

It has to be noted that the plotted variable is not directly the flux at that
point, but it is influenced by all scales up to 90◦ around this point. One of the
most relevant differences to a flux map is that the same cluster of events near
other overfluctuations might stand out with a high value, while surrounded by
underfluctuations, the same cluster can have a much lower, unremarkable value.

(a) (b)

Figure 86: Result before the segmentation. a) View centered on the cluster
region. b) View of the opposite side.
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Figure 87: Skymap before the segmentation in equatorial coordinates.

Figure 88: Skymap before the segmentation in galactic coordinates.
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(a) (b)

Figure 89: Result before the segmentation with events in white. a) View cen-
tered on the cluster region. b) View of the opposite side.

Figure 90: Skymap before the segmentation in equatorial coordinates with the
events in black.
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Figure 91: Skymap before the segmentation in galactic coordinates with the
events in black.
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9.3 Comparison with results for scrambled data

To be able to compare the obtained results to skymaps without any sources,
pseudo-experiments with randomly scrambled data have been conducted. As
examples three randomly selected skymaps are presented here in Figures 92, 93
and 94 using exactly the same color code that has already been used for the
results of the actual data analysis, for instance in Figure 87. They show that
the individual overfluctuations observed in the recorded data are common, but
their distribution across the sky is not.

Figure 92: Result for scrambled data set I in equatorial coordinates.
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Figure 93: Result for scrambled data set II in equatorial coordinates.

Figure 94: Result for scrambled data set III in equatorial coordinates.
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9.4 Subsampling

To check if the method requires exactly the 13283 selected events to give the
observed result, tests with randomly subsampled datasets have been conducted.
They were done with 11000 randomly chosen events out of the 13283, but
also with a relatively small subsample of 5516 events to evaluate the potential
behavior of this method on an event sample of the same size which has been used
for the most recent ANTARES point source search, see [91]. This procedure has
not been repeated more often due to time constraints (generating reasonable
statistics for the pseudo-experiments takes most of the time) and also since the
stability of the method has been analyzed in a different setup in chapter 9.5.

9.4.1 11000 events, random subsample I

A random subsampling of 11000 out of 13283 events is expected to find similar
structures. Due to the nonlinearity of the used metric ”Size” to assess the
relevance of a cluster, the significance can be expected to vary considerably.
The presented plots show the results in galactic coordinates.

The detailed structure resulting from this evaluation can be seen in Figure
95. The most significant cluster, found with a segmentation cut of +0.25,
reaches 2.94σ and is shown in Figure 97. So in this case the random subselection
even surpasses the significance of the full dataset. For the evaluation using a
segmentation cut of -0.11, shown in Figure 96, the most significant cluster has
1.87σ, which also is higher than what was observed for the full dataset.

Figure 95: Result of random subsampling I of 11000 events before segmentation
in galactic coordinates.
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Figure 96: Result of random subsampling I of 11000 events with a segmentation
threshold of α = -0.11 in galactic coordinates.

Figure 97: Result of random subsampling I of 11000 events with a segmentation
threshold of α = 0.25 in galactic coordinates.
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9.4.2 11000 events, random subsample II

A second random subselection of 11000 events shows a different picture. Al-
though the skymap containing the detailed structure in Figure 98 looks similar
to Figure 95, Figure 100 shows that not all overfluctuation regions merged for
a segmentation threshold of α = 0.25. The most significant cluster for this
segmentation cut only reached 0.53σ. The most significant cluster in the eval-
uation using a segmentation cut of -0.11 shown in Figure 99 has 1.11σ, again
more than what has been observed for this segmentation with the full dataset.

Figure 98: Result of random subsampling II of 11000 events before segmentation
in galactic coordinates.
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Figure 99: Result of random subsampling II of 11000 events with a segmentation
threshold of α = -0.11 in galactic coordinates.

Figure 100: Result of random subsampling II of 11000 events with a segmenta-
tion threshold of α = 0.25 in galactic coordinates.
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9.4.3 5516 events, random subsample I

Random subsamples of 5516 out of 13283 events can be expected to differ
considerably more from the full data sample than samples with 11000 events.
Also the significance of found clusters can be expected to vary even more. The
motivation for the exact number of 5516 events is that this is the number of
neutrino candidates used in the most recent ANTARES point source search.

The resulting detailed skymap is shown in Figure 101. The obtained signif-
icances are 0.81σ for α = 0.25 and 0.60σ with α = -0.11.

Figure 101: Result of random subsampling I of 5516 events before segmentation
in galactic coordinates.

9.4.4 5516 events, random subsample II

A second random subsample with 5516 event has been processed. The resulting
detailed skymap is shown in Figure 102. The obtained significances in this case
were 0.10σ for α = 0.25 and 0.07σ with α = 0.11.

9.4.5 Result of random subsampling

Since most comparisons with subsampled datasets show a trend to obtain con-
siderably less significant results with less events, the question arises if this is the
normal effect of more statistics allowing a more precise measurement. Theoreti-
cally speaking, it could be the case that this is not due to statistical fluctuations,
but that the method itself is not stable. If this were to be true, the outcome
wouldn’t stabilize even for a clearer source with more events.
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Figure 102: Result of random subsampling II of 5516 events before segmentation
in galactic coordinates.

9.5 Recreating the cluster in pseudo-experiments

This chapter shows the results of pseudo-experiments conducted to test if the
outcome of the method stabilizes for strong sources. This helps to distinguish
whether the method itself might be unstable for a structure like the observed
cluster, or if the method stabilizes for strong sources and the observed behavior
is best explained by the assumption that the structure is just at the edge of the
detectable strength.

Pseudo-experiments have been simulated with a varying number of events
M placed artificially within the template of the cluster. The location of the
artificial events within the template is random, but according to the visibility
of ANTARES. A random background of 13283−M randomly scrambled events
is added for each experiment to in total obtain the same number of events as in
the actual data sample. This allows to generate a coarse curve of the obtained
significance for varying number of events in the cluster, shown in Figure 103.
For each of the data points 30 repetitions have been conducted.

Due to the strong nonlinearity of the method, the error bars are huge before
the method stabilizes for clear signals. Unfortunately these large fluctuation in
the transition region prevent an answer to where the observation might be
located on that function. It has to be noted that the generated curve is not
exact, since the events have been randomly distributed within the cluster. If
they were to be distributed with an internal structure, less events would be
needed to achieve the significances. But modeling these fluctuations can hardly
be done without further speculative assumptions about the composition of the



9.6 Distributions 129

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  100  200  300  400  500

S
ig

n
ifi

ca
n
ce

Number of artificial events

Figure 103: Detected significance against the number of artificial events in the
structure. The values are median values, the error bars represent 1σ ranges.

observed structures. Anyways it would only shift the stabilization to different
numbers of events, not reduce the fluctuations themselves. Therefore the result
of this check, that the method does give stable results for this cluster if it is
strong enough, wouldn’t change.

Another result of these tests is that the the cluster can be explained best
by an excess between 200 and 300 events. Of course this test alone is no
reliable estimate due to the large spread of the results around 200 added events.
Another idea how to obtain the number of excess events in the cluster has been
to estimate the number of events expected within the shape of the cluster.
Pseudo-experiments yield a mean expected number of 1279 events, while in the
measured data 1533 events are contained within the cluster shape. This would
result in 254 excess events. Since these pseudo experiments do not account
for the systematic effect presented in chapter 9.7, the actual number should
be slightly lower. Based on all available information the best estimate for the
number of excess events in the cluster shape is about 220 to 230.

9.6 Distributions

The intention of the checks of various distributions in this chapter is to either
detect uncompensated systematic effects, which could have artificially created
or fostered the observed cluster, or to notice potentially interesting deviations
between the cluster region and the background.
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The first presented check of a distribution is the composition of the track
reconstruction algorithms as selected by Selectfit seen in Figure 104. It shows
how frequent each algorithm was selected for the events located within the
cluster in red compared the events in the rest of the sky outside of the cluster
in blue. A discrepancy between the two regions in this check could either reveal
instabilities of Selectfit or show deviations in the properties of the events in
and outside of the cluster. This could occur because the algorithms behave
differently e.g. for events with different energies. Since not many of the events
inside the cluster can be signal events even if there were to be very strong
sources within the cluster, no deviation is to be expected.
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Figure 104: Normalized fractions of the reconstruction algorithms selected by
Selectfit in and outside of the cluster. 1=Aafit, 2=Bbfit, 3=Bbfit with M-
Estimator, 4=Gridfit. No significant deviation between the regions is observed.

The next check in Figure 105 shows a comparison of the number of events in
each month, accumulated over the years. What meets the eye is that the data
taking efficiency drops considerably during spring and summer. This is mainly
caused by increased bioluminescence reducing the number of clearly recogniz-
able events. This effect is well known within the ANTARES collaboration and
is not caused by any methods specific to this analysis. What can also be seen
is that the trend is the same for the events within the cluster and outside of it,
hence no additional systematic becomes obvious here.

Figure 106 shows a time resolved comparison too, but this time the number
of events is plotted against the hour in local time at the ANTARES location
(UTC+1, neglecting swapping between summer and winter time). While the
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Figure 105: Comparison of the normalized fraction of events recorded in and
outside of the cluster against the time of the year. There is a large seasonal
variation observed in the ANTARES data taking, mainly due to different bi-
oluminescence rates. No systematic deviations are obvious here between the
cluster and the rest of the skymap.

number of events in the rest of the sky seems rather continuous, there are
considerable deviations visible between the number of events detected within
the cluster during day and night. There are multiple effects that can plausibly
explain this behavior. First of all, obviously a different region of the sky is
visible during the day than during the following night, simply due to the ≈
180◦ rotation of the Earth during the 12 hour period. If the data were taken
during one single day and night only, the cluster with its maximal extension of
up to 160◦ in right ascension (the core structure is about 40◦ wide) would be
expected to be fully visible only for about 10.67 hours (2.67 hours for the core).
These periods would be extended by a smooth transition of partial visibility
for those times where parts of the cluster are not visible straight through the
Earth, but with a different efficiency under a zenith angle between 180◦ (straight
upgoing) and 90◦ (exactly horizontal).

Over the course of a year one would assume this visibility effect to be com-
pensated by the rotation of the Earth around the Sun, because objects which
are best visible during the daytime in summer are best visible during nighttime
in winter. If one takes the observed effect of seasonal variations as seen in Fig-
ure 105 into account, it becomes clear that one expects a variation like the one
seen in Figure 106 for a region of the sky which is best visible at night in the
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Figure 106: Comparison of the normalized distribution of events in and outside
of the cluster against the daytime the events were recorded in local time.

winter and at day in the summer.

As a matter of fact, the cluster is close to the region best visible during
winter nights. The exact date and time with direct orientation on the cluster
may not be perfectly clear from the Figures alone, but based on Figure 105,
beginning of January seems like a reasonable guess, and based on Figure 106,
the center of the overfluctuations could be around 1 am. On January 1st, at 1
am, above the opposite side of the Earth, the direct visibility of ANTARES is
centered approximately at a right ascension of 287◦ and a declination of -19◦.
This is relatively close to the approximated center of the cluster region with a
right ascension of 255◦ and declination of -15◦, especially when the extensions
of the cluster are considered.

A completely different effect, which could lead to a drop during daytime, is
the operation of the telescope by humans. Reboots of unresponsive hardware
are performed, experimental configuration setups are tested and calibrations
of the detector are conducted, all during working hours, all introducing short
periods of time where no useful data for a physics analysis can be taken. This
explanation is also very plausible since the drop is observed between 8 am and
9 am, about the designated starting time of shift duties in ANTARES. It also
ends between 17 pm and 18 pm, the reasonable estimate for the end of most
shifts. If this effect is actually dominant, the drop should also be clearly visible
in the distribution for all events against the local time, not just for the cluster.
This comparison is shown as a zoom to the relevant range of the y-axis in Figure
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109. Indeed, the drop is clearly visible, although not as pronounced as for the
cluster.

Why is the drop not visible for the rest of the sky in Figure 106 then?
From the first plausible explanation, the combination of efficiency variations
throughout the year and differences in visibility, one would expect a weak over-
fluctuation for the rest during daytime. It cannot be as pronounced as the un-
derfluctuation for the cluster, since the rest of the sky is bigger than the cluster
region and therefore the variations in visibility must be less pronounced, but
there should still be an overfluctuation there. Depending on the exact strength
of the effect of human shifter interaction pulling in the opposite direction, any-
thing between a slight overfluctuation (only the visibility effect contributes) and
the same underfluctuation as observed for the cluster region (only the shifter
interaction contributes) is compatible. The zoom to the relevant range of the
y-axis for distribution of the rest of the sky alone in Figure 107 reveals, that in
fact there is a small underfluctuation. Therefore the interaction of the shifters
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Figure 107: Zoom to the normalized distribution of events outside of the cluster
against the hour the events were recorded in local time.

seems to be the dominant effect.
It should be noted that other effects could possibly contribute to these

variations, too. For instance a seasonal variation can be induced by the change
of the effective temperature of the atmosphere on the other side of the Earth
as described in [107]. It could possibly be noticed in a plot of the zenith angle
of the events against the month. A seasonal effect on the number of neutrinos
resulting from interactions in the atmosphere on the other side of the Earth
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can be expected to move in zenith with the seasons. If on the other hand it is
caused by seasonal variations at the ANTARES site, likely these wouldn’t show
a variation in zenith distribution. Unfortunately there is not enough statistics
to answer this without a doubt.

To investigate a completely different topic, the number of events for each
hour of data taking is presented in Figure 108. This is meant to check if a large
number of events are recorded almost at the same time, for instance due to an
unknown malfunction of the detector or a extremely unlucky configuration of
bioluminescent macroorganisms or other unprecedented phenomena. If many
events are recorded during such a short time period with approximately the
same hit pattern, in theory they might be reconstructed as many neutrino
events from similar directions. As one can see, there is no such accumulation
in time.

Figure 108: Number of events inside the cluster against the hour the events
were recorded. The aim of this plot is to detect spikes which could for instance
indicate problems with the data taking at a certain time. No significant spike
is observed.

Several further checks that showed no unexpected deviations beyond what
can be presented here have been conducted. Some other checks, for instance a
detailed evaluation of the energy spectrum, would be interesting at this point.
But studies of plain physical properties would introduce a bias and therefore a
trial factor for follow-up analyses, which should include these physical properties
in a detailed evaluation to maximize their discovery potential. Since such a trial
factor reduces their potential for a significant result, no properties which are
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likely to contribute to the significance of such an analysis are evaluated here
prematurely.

9.7 Systematic effect of variable data taking efficiency

The combination of the variations observed in the data taking efficiency over the
course of a day as seen in Figures 106 and 109, and of a year, seen in Figures 105
and 110, can potentially introduce an asymmetry in the data taking efficiency
even in equatorial coordinates.
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Figure 109: The distribution of all observed events against the hour of the day.

Pseudo-experiments have been conducted which include unrealistically strong
variations for these distributions, resulting in an increased data taking efficiency
near the location of the observed cluster. The deviations used have been 100%
reduced efficiency during April, May and June and ≈ 50% reduced efficiency
during day time. The effect in equatorial coordinates is shown in Figure 111.
The center of the created overfluctuation is located precisely at the estimated
maximum of this effect as given already in the explanation of Figure 106 in
chapter 9.6. Without the systematic effect the distribution of events would be
expected to be similar to Figure 117.

As a next step, pseudo-experiments have been designed to model the re-
alistic, actually observed variations in data taking efficiency. The resulting
distributions for 30 combined pseudo-experiments, shown in Figures 112 and
113, match the actual variations nicely.

The resulting skymaps of the 30 pseudo-experiments can be seen in Figures
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Figure 110: The distribution of all observed events against 1
12th of the year

(Time periods of fixed length give a more stable impression than months).

114 and 115. They show only a weak trend to create or foster an extended
structure near the observed cluster. The most significant result of the 30,
shown in Figure 116, even shows a result uncorrelated to the result observed
for the ANTARES data.

To compare the realistic effect on the number of events, a combination of
100 pseudo-experiments resulted in the distribution of events as shown in Figure
117. In contrast to the unrealistically strong variations from Figure 111, the
effect is not visible anymore.

To quantitatively study the dipole-like impact of the systematic effect on the
number of events, a projection of the events to one dimension, right ascension, is
performed. As seen in Figure 118, the effect of the systematic on the normalized
number of events is on the order of ±1%, while the statistical fluctuations for
each individual pseudo-experiment with 13283 ± 115 events are on the order of
±10%.

Nevertheless there is a systematic effect increasing the probability to observe
a cluster at the location found in the ANTARES data. A solution to compen-
sate for it is to randomly redistribute the exact event times when scrambling the
data instead of generating new random times anywhere within the data taking
period as performed in chapter 8.3.3. This preserves the variations observed
throughout the year and the day in the pseudo-experiments, hence they include
the systematic effect. With this change for the pseudo-experiments, the sig-
nificance of the observed cluster described in chapter 9.1 drops to 2.52σ (from
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Figure 111: The effect of unrealistically strong variations of the efficiency of
the data taking over time on the expected number of events in equatorial coor-
dinates. In this color code, red indicates most, blue least events expected at a
location. Image credit: Dr. Thomas Eberl, ECAP, FAU Erlangen.

2.85σ). This way of producing pseudo-experiments slightly underestimates the
significance, since pairs and groups of exactly the same events are more likely
to reoccur due to the limited number of possible times to assign. This underes-
timation is well below 0.1σ, since using pseudo-experiments with a scrambling
of the exact times, but with a randomized minute value, does not suffer from
such a degeneracy and yields 2.61σ.

There is another aspect that could theoretically influence the probability to
observe the measured cluster in the pseudo-experiments. When the scrambling
of exact event times is considered to be exact, one silently assumes that the
probability to measure an event at a time t1 with properties p1 (zenith, azimuth,
energy, noise level, ...) is exactly the same as to measure an event with p1 at a
different time t2. If for example the zenith distribution were to be very different
for day and night, the random scrambling would have to take that into account
as well, for instance by scrambling only between time periods with similar
distributions. The method described in chapter 8 evaluates only declination
and right ascension. Hence only the parameters time, zenith and azimuth,
from which the equatorial coordinates are derived, can potentially influence the
result.

Earlier in chapter 9.7 studies have shown the variabilities in the time dis-
tributions, which on their own are compensated by the scrambling of exact
event times. Neglecting even higher order effects, a systematic discrepancy
between day and night would be expected to be necessary in one of the remain-
ing relevant properties, zenith or azimuth, to foster an artificial cluster beyond
the already discussed effects. Figure 119 shows the zenith distribution of the
events separated into one day (all events between 8 - 20) and one night (20 -
8) dataset. A comparison of the azimuth distributions of these datasets can be
seen in Figure 120.

Since both distributions do not show systematic deviations, it is assumed
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Figure 112: The distribution of the number of simulated events against the
hour of the day.

here, that no additional systematic effect relevant for this analysis is introduced
by variations of the probabilities to measure event properties.
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Figure 113: The distribution of the number of simulated events against 1
12th of

the year.
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Figure 114: First 16 resulting skymaps from 30 pseudo-experiments with real-
istic data taking efficiency variations. (Zoomable)
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n)

Figure 115: Remaining 14 resulting skymaps from 30 pseudo-experiments with
realistic data taking efficiency variations. (Zoomable)

(a) (b)

Figure 116: Most significant cluster (2.96σ) of 30 pseudo-experiments with
realistic data taking efficiency variations. It isn’t notably similar to the results
obtained for the ANTARES data.
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Figure 117: The effect of realistic time variations in data taking efficiency on
the expected number of events in equatorial coordinates. In this color code,
red indicates most, blue least events expected at a location. Image credit: Dr.
Thomas Eberl, ECAP, FAU Erlangen.
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Figure 118: Variation in the normalized number of events projected to right
ascension for pseudo-experiments with realistic time variations. a) b) and c)
The distribution for one pseudo-experiment each. The statistical fluctuations
dominate. a) Shows the distribution for the most significant pseudo-experiment
as shown in Figure 116. d) The distribution for 100 times the statistic of
one pseudo-experiment. The statistical fluctuations are reduced, the smaller
systematic effect becomes visible. Image credit: Dr. Thomas Eberl, ECAP,
FAU Erlangen.
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Figure 119: The normalized distribution of events for different zenith bins and
separated into day and night datasets.
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Figure 120: The normalized distribution of events for different azimuth bins
and separated day and night datasets.



146 9 RESULTS

9.8 Results for public IceCube data

A crosscheck with the publicly available IC40 dataset [106], published by the
IceCube collaboration, is performed to see if the cluster found in the ANTARES
data is also present in an independent dataset. To use the found cluster as a
signal hypothesis, the search had to be modified slightly as described in chapter
8.8. The template used as hypothesis in this evaluation is exactly the result as
shown in Figure 84.

The two datasets are well suited for a comparison because they contain the
same physical observable, muon-neutrinos. Also the achieved direction resolu-
tion of both datasets is not very far apart, with the reconstruction of ANTARES
being slightly more accurate (here 0.44◦ instead of 0.7◦, see [108]). Although
it is not necessary, the two datasets also happen to contain a similar number
of events (13283 versus 12877 events). The only aspect that differs in a way
that could influence the results notably is the different energy composition.
Features that are observed in lower energies should be more pronounced in
the ANTARES data, while aspects that are more dominant for higher energies
should be better visible in the IC40 data sample. Still, overall this dataset offers
an excellent way to crosscheck the ANTARES results.

The obtained resulting cluster from this evaluation can be seen in Figure
121. It has a significance of 2.14σ. Since the evaluation requires an overlap
between the template from the ANTARES data and a cluster found in the IC
40 data, only clusters at the correct location are considered in this evaluation
and are visible in the skymap. The detailed structures before any segmentation
is applied can be seen in Figure 122 in equatorial, in Figure 123 in galactic
coordinates. While some features observed in this skymap agree nicely with
the ANTARES result, see Figure 87 for comparison, others don’t. Besides the
slightly different sensitivities in energy for the two datasets, it is already well
known, e.g. from chapters 9.4, 9.5 and 9.7, that statistical fluctuations play a
relevant role for some of the features found in these small datasets. Therefore
the agreements and discrepancies between the results neither unambiguously
confirm nor reject the result from the ANTARES data set.
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Figure 121: Result of the evaluation of the IC40 data searching with a segmen-
tation threshold of α = 0.25 for a cluster that overlaps with the hypothesis from
ANTARES data as explained in chapter 8.8 in equatorial coordinates.

Figure 122: Result of the evaluation of the IC40 data before segmentation in
equatorial coordinates.
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Figure 123: Result of the evaluation of the IC40 data before segmentation in
galactic coordinates.



149

10 Interpretation of the results

The number of events obtained in this thesis is considerably larger than in
most ANTARES analyses that apply the default methods and cuts. This gain
is partially achieved by the improved event selection and reconstruction, but
also due to looser cuts. With looser cuts, there are also more misreconstructed
atmospheric muons in the obtained data set. Since misreconstructed events are
distributed throughout the sky, their moderate increase constitutes no issue for
an analysis aiming to detect spatially resolved sources.

The increased number of events is beneficial for this analysis not just by the
availability of more statistics and therefore more signal, but it also improves
the process of estimating the various expectations. Since in this search all
expectations are derived from data, their estimation becomes more accurate
with more data too.

The structures found with the segmentation cut of α = -0.11 as seen in
Figure 81 are not particularly uncommon, as they are neither significant by their
size, nor does the detailed structure at their particular locations, seen in Figure
87, look special in any way, e.g. like unexpectedly strong overfluctuations.
On the other hand the obvious fact that the clusters themselves are spatially
clustered is special and is also the reason why the very large structure forms in
the evaluation using α = +0.25 as seen in Figure 84.

The details of these results are not completely trivial to interpret correctly.
The statement that can be made for the large cluster based on the significance
of 2.52σ is “An anisotropy in the variable evaluated in the multiscale search
between the region exactly defined by the cluster shape and the rest of the sky
with a size as large or larger as the one observed in the ANTARES data is
generated with a probability of not more than p = 1.2% by a random distri-
bution of events that includes the data taking systematics of ANTARES.” The
corresponding statements are of course also true for the less significant clusters
found with the segmentation threshold of α = -0.11.

The multitude of checks for systematic differences between the cluster and
the rest of the sky, and also between the obtained data sample and the ex-
pectations provides additional insight into the result. The checks presented in
chapters between 9.3 and 9.6 neither show any problems with the search method
nor give clear hints on how to interpret the results. While these comparisons of
the cluster and the rest of the sky show no obvious deviations from the expected
behavior, these detailed checks led to the awareness of the relevant systematic
effect investigated in chapter 9.7, which had been unaccounted for. Although
it adds only a minor contribution to the observed result, investigations like this
still can add to the understanding of the ANTARES neutrino telescope.

As already explained in chapter 8, the goal for this search, like for most
model-independent analyses in other experiments, has been to identify the most
significant excess beyond the expectations. This has been fully achieved by this
search.

Since, on their own, all obtained results are well below 3.0σ, the common
convention for an indication in Astroparticle physics, they are best explained
by a random fluctuation of the background.
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Nevertheless a few theoretically possible speculations which involve an ac-
tual neutrino signal shall be mentioned briefly here. First of all, no single
object is likely to generate a cluster of the observed size. Although this is not
disfavored by the obtained results, a more plausible speculation than one very
large extended source region would be that multiple faint sources of unknown
positions and extensions are distributed within the cluster together with ran-
dom fluctuations. In simulations of similar scenarios the usage of a less strict
cut for the segmentation value α allows neighboring simulated sources to be
detected as one large cluster of higher significance. In this case the most likely
location for sources would be at the positions of highest local overfluctuations
in Figure 87. But even if this actually were to be true for some of these regions,
others are guaranteed to be fostered or even caused by random background
fluctuations as seen for example when comparing to the results in Figure 93.
Therefore the highest overfluctuations cannot directly be considered ”possible
source locations” based on the results of this search alone. Furthermore, in sim-
ulations with remotely realistic artificial sources and positive α values used for
segmentation, the obtained shape is usually not the exact shape of the artificial
source, seen for instance in Figures 52b or 65. Therefore it is highly unplausible
to assume that the detected shape of the large cluster should be exact. Random
fluctuations at the edge are certain to influence its extension.

Concerning objects that could be expected to have similarly large extensions
in a similar direction than the obtained result, one interesting aspect is that
the observed cluster roughly extends in the direction of the center of our own
galaxy (and beyond), but by eye its detailed structure does not coincide well
with ”usual galactic suspects” for neutrino sources like the Fermi Bubbles, see
Figures 124 or the Galactic Center itself. Figure 125 presents the magnetic

Figure 124: The Fermi Bubbles are one of the typical candidates for extended
galactic sources. This skymap is in galactic coordinates. Image Credit: NASA/-
DOE/Fermi LAT/D. Finkbeiner et al. Taken from [109].
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substructure of the Fermi Bubbles, which shows more similar structures like the
obtained ANTARES results, but it’s still no good match. Detailed searches for
enhanced neutrino emission from these extended regions have been performed
e.g. in [110] and [111] without finding a significant excess.

Figure 125: The magnetic substructure of the inner Galaxy in galactic coordi-
nates. Shown is an overlay of the 33 GHz and 23 GHz total polarized intensity
from 5 years data of WMAP. Blue and red are the shapes of the Northern and
Southern Fermi Bubbles, yellow and green are the so called “Northern arcs”.
Taken from [112].

Another structure that comes to mind for these extensions is the Galactic
Halo, described for instance in [113]. This diffuse, approximately spherical cloud
of gas and stars around our galactic disk could house a structure with the ob-
served extensions. In this context it can be noticed that in the detailed structure
of the results in Figure 88 there is also an overfluctuation visible roughly in the
direction of the Small and Large Magellanic Cloud, some of the closest smaller
galaxies, see Figure 24, but not in the direction of the Andromeda Galaxy, the
nearest galaxy with similar extensions than the Milky Way. Apart from a di-
rect correlation with matter in galaxies (e.g. many faint galactic sources), dark
matter could also be a candidate for a neutrino production mechanism in such
a scenario, see for example [114]. Various other structures with similarly large
extensions and approximately in the same direction in the sky are known, see
for instance [115]. But just as for the other already mentioned objects, by the
results alone there is no clear evidence to support any of these speculations,
which even emphasizes the need for a dedicated follow-up analysis.

An overlay of the ANTARES skymap with the events found in the high
energy starting events analysis by IceCube, described in [26], with four years of
data, see [116], is show in Figure 127. This overlay is meant as an illustration
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Figure 126: The anisotropy in the neutrino flux from dark matter self-
annihilation is expected to follow the line-of-sight integral of the Navarro-Frenk-
White halo profile. The profile is shown here (dimensionless) for the Northern
hemisphere in equatorial coordinates, but with a different way of plotting right
ascension. Image taken from [114].

only, no correlation analysis between the two results has been performed. The
energies of the neutrinos differ, as the IceCube sample contains neutrinos with
much higher energies than the ANTARES analysis. The crosses mark shower
events, the x-es mark the position of tracks. It is important to note that the
error on the position of the shower events is large, typically above 10◦, see [27].
While the locations of some accumulations seem to agree by eye, e.g. left of
the Galactic Center or at the top right end of the cluster, others do not agree.
Therefore no unambiguous lesson can be learned from this comparison either.

It is noteworthy that the evaluation of the completely independent IC40
dataset found a cluster at the location predicted by the hypothesis derived from
ANTARES data. Since the observed cluster at this position is not extraordi-
narily pronounced, it still does not provide an unambiguous confirmation of
the hypothesis. It would be a mistake to straightforwardly combine the two
obtained significances, since the they do not have exactly the same shape. But
the evaluation cannot require them to have exactly the same shape, since the
contribution of random fluctuations to the result is too large. Looking at the
detailed structure of the result in Figure 122, the adaption of the search strategy
to the visibility of IceCube as described in chapter 8.8 seems to slightly overes-
timate fluctuations at the edge of the visibility near the horizon. Nevertheless
this does not invalidate the obtained results in any way, as the exact same ef-
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Figure 127: Overlay of preliminary 4 year IceCube HESE events with the
skymap derived from ANTARES data.

fect is also contained in every pseudo-experiment, from which the significance
is derived in the end. What contributes to the ambiguity of the results is that
not all features in the two skymaps in Figures 87 and 122 agree well. While this
is not a flaw in the method, but simply the influence of random fluctuations on
small samples, it demonstrates that both of these results obtained from small
statistics are not accurate enough to trust every detail.

A dedicated follow-up analysis based on the obtained results would be of
great value to improve the discrimination between a statistical fluctuation and
a potential indication of a faint signal. The main advantage of such an anal-
ysis would be that the location, size and shape of the source hypothesis are
known instead of having to search for all possible locations and sizes at once.
This decisively reduces the trial factors, which have been incorporated into this
analysis implicitly by the free search in the pseudo-experiments. Using a large,
independent dataset would be ideal to confirm or exclude the presence of an
increased flux of neutrinos within the identified region.

Putting it all in a nutshell, the conducted analysis has fully fullfilled the given
task, to identify the region with the most significant excess of recorded neutri-
nos, and the presented observations are worth further investigation.
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11 Summary

This thesis describes three new methods designed for the data analysis of the
ANTARES neutrino telescope, but versatile enough for many other applica-
tions. The first algorithm is a highly optimized scheme to deal with the signal
selection required to identify the desired neutrino signal within a vast amount of
data. It uses adapted cascades of Random Decision Forest classifiers to achieve
this goal. This approach has been incorporated into the data selection to benefit
the data analysis performed in this thesis. The second algorithm is an efficient
combination of multiple independent, already available algorithms for the direc-
tion reconstruction of the observed muon-neutrinos. Internally this selection is
again based on a Random Decision Forest classification. It clearly outperforms
any individual reconstruction algorithm and the method in general is flexible
enough to be used for different reconstruction tasks or even to combine differ-
ent types of signal in one analysis. This approach has also been employed to
enhance the data selection. The third explained algorithm constitutes the main
focus of this work. It analyzes the spatial distribution of recorded neutrinos
to detect anisotropies of arbitrary extension, shape and internal distribution at
any position in the sky. Since the evaluation is based entirely on observed data,
no assumptions derived from theories or Monte-Carlo simulations are necessary.
Therefore it is more robust against deviations from expectations and can easily
be applied to similar tasks.

The evaluation of the recorded ANTARES data using all three described
approaches results in a large structure with a post-trial significance of 2.52σ.
Multiple checks of the result neither revealed any flaws in the method, nor did
they help much to reveal the origin of the observed cluster. On the other hand
a systematic asymmetry in equatorial coordinates caused by the time variations
of the data taking efficiency of ANTARES was identified and studied. But this
systematic effect is already included in the quoted significance of the result. A
crosscheck on an independent dataset from IceCube with this method also found
a cluster at the location expected from ANTARES data. This cluster results in
a significance of 2.14σ. A more detailed comparison shows that not all features
seen in the ANTARES result match the ones in the IceCube result and vice
versa, but this certainly doesn’t invalidate them considering the influence of
random fluctuations on data samples of their size.

The goal of this search, to detect the most significant excess of neutrinos
in the obtained ANTARES data sample, has been achieved fully. To either
identify the results as statistical fluctuations or to detect them significantly
a follow-up analysis optimized to investigate the derived hypothesis is highly
recommended.
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Ganz besonders bedanken möchte ich mich bei Thomas Eberl für seine außeror-
dentlich gute Betreuung meiner Dissertation und dass er während der gesamten
Dauer immer Zeit, Motivation und einen hilfreichen Rat für mich hatte.
Vielen Dank.



156 A USAGE OF SELECTFIT

Part IV

APPENDIX

A Usage of Selectfit

The following examples are python code that demonstrates how to use Selectfit.
They do not show the full scripts, but just the additional parts for Selectfit. A
full implementation of the training examples working with ANTARES run-by-
run simulations, version 2.2, can be found in Seatray under
antares-rdfclassify/resources/scripts/SelectFit/ExampleStepX.py.

A.1 Application of existing Selectfit

Already trained RDFs are available at the computing center in Lyon at
/afs/in2p3.fr/throng/km3net/i3-tools/params/antares-rdfclassify/2014-12-11.
The files are called bestReco AA BB BBME Grid fit r14956.rdf for the selec-
tion
which algorithm to use and errorEstimate AA BB BBME Grid fit r14956.rdf
for the error estimation. Both are trained with the tracksOnly flag, meaning
that only Aafit, Bbfit, Bbfit MEstimator and Gridfit are considered.
Here is how to use Selectfit with pretrained RDFs:

# Import the c l a s s e s needed f o r S e l e c t f i t
from i c e cube . r d f c l a s s i f y import s e l e c t f i t
# Load the l i b r a r y used f o r c l a s s i f i c a t i o n
load ( ” l i b r d f c l a s s i f y ” )

# This e x t r a c t s a l l f e a t u r e s from the r e con s t r u c t i on s r e s u l t s
# So the r e s u l t s must be a l r eady in the frame at t h i s po in t
t ray . AddModule ( s e l e c t f i t . Se l e c tF i tFeatureExt rac to r , ” ext rac tFeat ” ) (

( ” trackOnly ” , Fa l se )
# True means Aaf i t , Bb f i t , BBfi t MEst and Gr i d f i t
# False a l s o adds Dusj and Q St ra t e gy
)

# Se l e c t i n g which d i r e c t i o n r e con s t ru c t i on to use
t ray . AddModule ( ” I3RDFClassi fy ” , ” s e l e c t F i t ” ) (

( ”RDFToLoad” , ” bestReco . rd f ” )
# The path and f i l ename o f an a l r eady t ra ined RDF
# The RDF must be t ra ined wi th the same number o f f e a t u r e s
# and the b e s t reco output c l a s s e s
)

# Est imat ing the error c l a s s o f the used r e con s t ru c t i on
t ray . AddModule ( ” I3RDFClassi fy ” , ” e r ro rEst imate ” ) (

( ”RDFToLoad” , ” e r rorEst imate . rd f ” )
# Same as above , but t r a ined wi th
# the error e s t imate output c l a s s e s
)

# Co l l e c t the in format ion s t o r ed by the c l a s s i f i c a t i o n s
# and wr i t e an AntaresRecoPart ic l e to the frame named ” S e l e c t F i t ” .
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# Zenith , Azimuth and QualityParam are s e t a c co rd ing l y .
t ray . AddModule ( s e l e c t f i t . Se l e c tF i tWr i t e r , ” writeSe lectFitToFrame ” )

A.2 Training anew

Again the following pieces of code are just the additional parts for Selectfit.
Have a look at antares-rdfclassify/resources/scripts/SelectFit/ExampleStep1.py
to ExampleStep5.py for a chain of scripts that perform the training.

The first step for a training is to extract features from Monte-Carlo simulations.
The class numbers are by default automatically set to the best reconstruction
algorithm by the module SelectFitFeatureExtractor:

from i c e cube . r d f c l a s s i f y import s e l e c t f i t

t ray . AddModule ( s e l e c t f i t . Se l e c tF i tFeatureExt rac to r , ” ext ractFeat1 ” ) (
( ” fileOutputName ” , ” . / f ea tu reF i l e sBes tReko / S e l e c t F i t . dat ” ) ,
# The l o c a t i o n to wr i t e the f e a t u r e f i l e s to .
# Al l f i l e s f o r the same c l a s s i f i c a t i o n
# shou ld end up in the same f o l d e r
( ” trackOnly ” , True )
# True means Aaf i t , Bb f i t , BBfi t MEst and Gr i d f i t
# False a l s o adds Dusj and Q St ra t e gy
)

The second step uses the written .dat files containing the features to train a
RDF which will then be able to select the best reconstruction result for unseen
events. Potential complaints about missing .meta files can be safely ignored for
this step.

load ( ” l i b r d f c l a s s i f y ” )

tray . AddModule ( ” I3RDFClassi fy ” , ” r d f c l a s s i f y ” ) (
( ”NumberOfTrees” , 101) ,
# The RDF w i l l c o n s i s t o f 101 i n d i v i d u a l d e c i s i on t r e e s
( ”RDFToSave” , ” bestReko . rd f ” ) ,
# The f i l ename to save the RDF to
( ” DataFolder ” , ” . / f ea tu reF i l e sBes tReko /” )
# The f o l d e r where a l l . dat f i l e s
# fo r t h i s t a s k have been s t o r ed
)

The third step is to extract the features for the error estimation. To be
able to estimate what the error of the selected reconstruction for an event is, it
must perform the selection first. Therefore this step extracts the features, uses
them and the trained bestReco.rdf to select a reconstruction, and then evaluates
the angular error of the selected reconstruction according to section 6.5. It is
very important to use different events than the ones used for the first
feature extraction! Using the same events again will result in an unrealistic,
perfect selection of the direction reconstruction and therefore change the error
estimation.

from i c e cube . r d f c l a s s i f y import s e l e c t f i t
load ( ” l i b r d f c l a s s i f y ” )
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t ray . AddModule ( s e l e c t f i t . Se l e c tF i tFeatureExt rac to r , ” ext ractFeat2 ” ) (
# No need f o r a f e a t u r e f i l e here
# the f e a t u r e s are used in the Seatray frame d i r e c t l y
( ” trackOnly ” , True )
)

t ray . AddModule ( ” I3RDFClassi fy ” , ” s e l e c t F i t ” ) (
( ”DataName” , ” S e l e c t F i t F e a t u r e s ” ) ,
# ( op t i ona l ) : The name o f the f e a t u r e s in the frame
( ”RDFToLoad” , ” bestReko . rd f ” ) ,
# The f i l ename o f the RDF tra ined in s t ep2
)

# The c l a s s number f o r the f e a t u r e s i s changed here
# from be s t r e con s t ru c t i on to angu lar error c l a s s
t ray . AddModule ( s e l e c t f i t . Se l e c tF i tEr ro rEst imator , ” r e s e t C l a s s E r r ” ) (

( ” fileOutputName ” , ” . / f e a t u r e F i l e s E r r o r E s t i m a t e / e r rEs t . dat ” )
)

The fourth step again uses the written .dat files for training. This time the
class numbers are set such, that the resulting RDF will be able to estimate the
angular error of the selected reconstruction for unseen events. Again, potential
complaints about missing .meta files can be safely ignored for this step.

load ( ” l i b r d f c l a s s i f y ” )

tray . AddModule ( ” I3RDFClassi fy ” , ” r d f c l a s s i f y ” ) (
( ”NumberOfTrees” , 101) ,
( ”RDFToSave” , ” e r rorEst imate . rd f ” ) ,
( ” DataFolder ” , ” . / f e a t u r e F i l e s E r r o r E s t i m a t e /” )
)

After these four steps the training is done. The two resulting RDFs for
selection and error estimation can be used just as explained in section A.1.

B Feature list for Selectfit

The features are stored in files ending in “.dat“. The format of these files is one
line per event, each line starting with the class number followed by the feature
numbers. The ordering is the one presented in this list. All numbers within a
line are separated by one whitespace. All variables are taken from the Seatray
physics frame. The features for Selectfit are:

1. Number of pulses from “CalibratedPulses”

2. Zenith of Aafit from “AafitFinalFit”

3. Azimuth of Aafit from “AafitFinalFit”

4. Lambda of Aafit from “AafitLambdaFinalFit”

5. Beta of Aafit from “AafitErrorEstimateFinalFit”

6. Zenith of Bbfit from “BBFitTrack”
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7. Azimuth of Bbfit from “BBFitTrack”

8. BBFitBChi2 of Bbfit from “BBFitBChi2”

9. BBFitTChi2 of Bbfit from “BBFitTChi2”

10. Zenith of Bbfit MEstimator from “BBFitMEstTrack”

11. Azimuth of Bbfit MEstimator from “BBFitMEstTrack”

12. QualityParam of Bbfit MEstimator from “BBFitMEstTrack”

13. Chi2 of Bbfit MEstimator from “BBFitMEstTrack”

14. NumberOfHits of Bbfit MEstimator from “BBFitMEstTrack”

15. NumberOfUsedLines of Bbfit MEstimator from “BBFitMEstTrack”

16. Zenith of Gridfit from “GridFit FinalFitResult”

17. Azimuth of Gridfit from “GridFit FinalFitResult”

18. QualityParam of Gridfit from “GridFit FinalFitResult”

19. Ratio of Gridfit from “GridFit Ratio”

20. Ratio of Gridfit from “GridFit Ratio Precut”

21. XParameter of Gridfit from “GridFit X parameter”

22. Zenith of Dusj from “DusjShowerRecoFinalFit FitResult”

23. Azimuth of Dusj from “DusjShowerRecoFinalFit FitResult”

24. QualityParam of Dusj from “DusjShowerRecoFinalFit FitResult”

25. CutValue of Dusj from “DusjShowerRecoCutValues”

26. ReducedLogLikelihood of Dusj from “DusjShowerRecoFinalFitReduced-
LogLikelihood”

27. ReducedLogLikelihood of Dusj from “DusjShowerRecoVertexFitReduced-
LogLikelihood”

28. ReducedChi2 of Dusj from “ShowerIdentifierReducedChiSquare”

29. ReducedChi2 of Dusj from “FitTimeResidualChiSquare”

30. Zenith of QStrategy from “QStrategyReconstructionResult”

31. Azimuth of QStrategy from “QStrategyReconstructionResult”

32. QualityParam of QStrategy from “QStrategyReconstructionResult”

33. Chi2 of QStrategy from “QStrategyReconstructionResult”
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C Sequential execution of linear filters

Multiple application of linear filters gives the same results as the one time
application of a larger linear filter. Applying a linear filter twice that operates
on three gridpoints is analog to a filter that operates on five gridpoints.

twice [ 1 2 1 ] =

1∗ [ 1 2 1 0 0 ] +
2∗ [ 0 1 2 1 0 ] +
1∗ [ 0 0 1 2 1 ] =

[1∗1+2∗0+1∗0 1∗2+2∗1+1∗0 1∗1+2∗2+1∗1 1∗0+2∗1+1∗2 1∗0+2∗0+1∗1] =
[ 1 4 6 4 1 ]

The weights in front of the filters multiply.

D Segmentation example

Figure 128 shows that different segmentation thresholds allow to observe com-
pletely different results.

E List of relevance metrics

This is an incomplete list of the metrics tested to assess the relevance of a found
cluster 15 :

Direct metrics:

0. The size N (number of gridpoints) of the cluster

1. The mean value of the highest
√
N values in the cluster, topSqrt

2. The L2 norm of all values in the cluster

3. The maximum value maxV al of any gridpoint of the cluster

4. The average value of all values in the cluster

5. The L1 norm of all values

6. The mean value of the highest up to 9 values in the cluster, top9

7. The mean value of the highest up to 5 values in the cluster, top5

8. The number of surface gridpoints of the cluster

9. The mean value of the highest 9 values in the cluster, adding 0 for smaller
clusters

10. The mean value of the highest 5 values in the cluster, adding 0 for smaller
clusters

15The numbering presented here matches the numbering in the source code.
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11. The ratio of N to the number of surface gridpoints

12. The average distance between all gridpoints of the cluster

13. The maximum distance between two gridpoints of the cluster

14. The ratio of the maximum to the average distance

Linear combination meta-metrics:

21.
√
maxV al · top5 ·

√
L2

22. average ·
√
L2

23. topSqrt ·
√
L2

24. topSqrt ·
√
L2 ·
√
maxV al

25. average ·
√
L2 ·
√
maxV al

26. average ·
√
L2 ·
√
top5

More general meta metrics:

28. The sum of the two metrics that overfluctuated most

29. The sum of the three metrics that overfluctuated most

30. The sum of the half of the direct metrics that overfluctuated most

33. The sum of the overfluctuation of all direct metrics

34. The L2 norm of the overfluctuation of all direct metrics

F Conducting the multiscale search

This section explains how to actually perform the multiscale search. It assumes
that the required prerequisites (pretrained RDFs, various scripts, ...) have been
obtained from the svn. An example setup can be found in the file “multiscale-
ExampleScripts.tar.gz”.

F.1 Filtering the data

The first step is extract the desired events. If a list of the events in equatorial
coordinates is already available in the correct file format, this step may be
skipped. The input for this step is required to be one large .i3 (or .i3.gz)
file containing the whole data. Hint: .i3 files can be concatenated simply by
“cat file1.i3 file2.i3 ... > filesAll.i3”. This doesn’t work for .i3.gz files without
uncompressing them first.

For now we assume that all data runs to analyze are contained in a file
called “allData.i3”. The script “applyAllCuts.py“ can then be used to filter
the desired events by executing: ”./applyAllCuts.py -i allData.i3“. Depending
on the size of the input file this step may take days. The script performs the
following tasks:
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• Remove all runs that have been used as burn sample (the run numbers
are hardcoded).

• Remove known sparking runs (hardcoded run numbers).

• (For technical reasons) Remove events that occur multiple times.

• Keep only events from runs that fullfill all desired quality criteria (hard-
coded run numbers).

• Use the pretrained up/down RDFs from the folder ./RDFs/ to get rid of
events classified as downgoing.

• Use the pretrained Selectfit RDFs from the folder ./RDFs/ to apply Se-
lectfit to each remaining event.

• Keeps only events that have an upgoing direction reconstruction as result
of Selectfit.

• Keeps only events that have a Selectfit error estimate class less than 5.

The output is a file called allData processed.i3.

F.2 Obtaining expectations

The next step is to extract the events from the .i3 file to ASCII files and to
estimate the expected number of events as described in chapter 8.3.3. This is
done by executing the command: ”./doSignalFirstAnalysis.py –benchmark -1
-i allData processed.i3“. This writes the files ”candidateDump.txt“ and ”can-
didateDumpRaw.txt“, and the file
”normalizationDataStep1/normalizationResults Size165016 bins181 nr1.nres2”.
The folder “normalizationDataStep1“ is assumed to be present, it is not created
by the script. The file candidateDump.txt is a plain ASCII text file containing
all events. Each line contains one event in the file, with the information stored
in the following ordering, each entry separated by one space: Right ascension,
declination, time of the event, energy of the event (currently not implemented),
and two zero values (the same functions that read and write this information
are used for other computations where these values have a meaning). The file
candidateDumpRaw.txt contains the same events, but with azimuth and zenith
instead of right ascension and declination, so in local instead of equatorial co-
ordinates. The file normalizationResults Size165016 bins181 nr1.nres2 contains
the estimation how many events are expected at every location of the search
sphere for all search scales, derived from the event sample and then smoothed
by lowpass filters.

If an already available event sample is to be used where only equatorial co-
ordinates are available, this step is a bit different. The file candidateDump.txt
is required to be present in the same format as described above. The only rele-
vant values are right ascension and declination, all other values are not required
in the current version and can be zero values. The file candidateDumpRaw.txt
also needs to be present and must follow the described format since it is read in
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and parsed, but it may contain arbitrary information, e.g. it may be a copy of
candidateDump.txt. The command to invoke the expectation estimation in this
case is: ”./doSignalFirstAnalysis.py –benchmark -10 -i allData processed.i3“.
The scrambling in the pseudo-experiments to obtain all estimates is then not
performed with random times when converting from local to equatorial coor-
dinates, but random right ascensions are used instead. The input of a valid
.i3 file is still required because the script expects this input, not to obtain any
events. The result is stored in the file
”normalizationDataStep1/normalizationResults Size165016 bins181 nr1.nres2”
just as before. Inputs in galactic coordinates are not supported.

The difference in the number of lowpass filters required for IceCube data,
explained in chapter 8.8.1, is to be changed in the source code before this
step is executed. This adaption can be performed in the file “src/signal-
first/private/signal-first/signalFirstInternal.cpp”. To make this piece of code
easier to find, the location for this task within the file is marked with the tag
#CODETODETERMINETHENUMBEROFLOWPASS.

F.3 Conducting pseudo-experiments

To compute pseudo-experiments that are required for the determination of the
renormalized relevances and the significances of clusters, the call is ”./doSig-
nalFirstAnalysis.py –benchmark -2 -i allData processed.i3“. The option -i all-
Data processed.i3 is only used for the first step, but again the current imple-
mentation complains if no valid i3 file is specified. By default the script is
processing the whole i3 file now before doing the actual work. To save a large
fraction of this time, the line ”tray.Execute()“ near the end of the script doSig-
nalFirstAnalysis.py can now be replaced by ”tray.Execute(10)“. Of course this
is optional. If you do this, don’t forget to revert it to the original line before
step 1 is executed again.

If no local coordinates are available (or they aren’t to be used for what-
ever reason), the call changes to ”./doSignalFirstAnalysis.py –benchmark -20
-i allData processed.i3“.

Both calls by default perform 20 pseudo-experiments. They store their re-
sults in the folder normalizationDataStep2 (the output fails if it doesn’t exist).
The files are called
clusters segment(ALPHA FOR SEGMENTATION) (UNIXTIME).txt, so for ex-
ample clusters segment0.25019999999999964 1433713240.txt. Their format is
one line per cluster, each line: Number of metrics, one value for each metric,
number of gridpoints the cluster has, a list of the indices of all gridpoints of
this cluster. Each value is separated by one space.

The segmentation thresholds to use can be changed near the beginning of
file ”src/signal-first/private/signal-first/signalFirstInternal.cpp” at the location
marked with the tag #ALPHASEGMENTATIONSTOUSE. If a change of the
used metrics is desired, this is also possible in file signalFirstInternal.cpp at the
location tagged with #SETTHEMETRICSMASKHERE. Since all metrics are
evaluated for every cluster in every evaluation, a mask is used to only keep the
metrics that are desired. If the metric with index n (see list in Appendix E) is
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to be included in the evaluation, a line “metricsMask[n] = 1.0;” is to be added
there.

Computing pseudo-experiments takes some time (about 15 minutes per
pseudo-experiment with two segmentations on a Intel(R) Xeon(R) CPU X5650),
but it can be parallelized easily in independent processes. To be able to perform
various fits later on, a minimal number of pseudo-experiments is required. This
has not been investigated in detail, but 800 experiments have been sufficient
(to perform the analysis without error, not for statistical purposes).

The unixtime in the filename is used to distribute the output of many such
processes computing simultaneously to independent result files in a simple way.
With the computing power used for this thesis it only occurred in very rare
cases that two processes wrote a result for the same computation during the
same second and hence wrote uncoordinately to the same file. Such files can be
identified easily, as they produce errors in the next step. If this has occurred,
ALL file with this unixtime have to be deleted. If not ALL files with this
unixtime in their filename are deleted, the next step will fail again, since it
assumes, that the same number of pseudo-experiments are available for every
segmentation and metric.

F.4 Renormalizing the relevances

As described in chapter 8.6, the renormalized relevances are not derived from
even more pseudo-experiments, but instead are derived from the already avail-
able ones. This computation is done by calling “./doSignalFirstAnalysis.py
–benchmark -4 -i allData processed.i3”. There is no difference anymore be-
tween evaluations starting with local or equatorial coordinates. The resulting
output is also stored in folder “normalizationDataStep2” in files called
hist Size(ALPHA FOR SEGMENTATION) Metric(NUMBER METRIC).txt,
e.g. hist Size0.25019999999999964 Metric4.txt. They contain the histograms of
the relevance values for one segmentation and one metric. Additionally, the files
hist Size(ALPHA FOR SEGMENTATION) Metric(NUMBER METRIC)fit.txt
are stored, containing the histograms with the tail substituted by a fit. With
this information this step can also compute the distribution of renormalized rele-
vance values used later to determine the significance. This distribution is stored
in folder “normalizationDataStep3” in file “normalizationStep3 Maxima.txt”.
For every pseudo-experiment it contains the maximum of the found renormal-
ized relevance values. The folder has to exists already.

The savvy reader may have noticed that –benchmark -3 is missing. This
step is deprecated. It can be used to greatly extend the number of evaluation
metrics by the computation of various meta-metrics (Metrics based on other
metrics). Since this didn’t lead to an improvement of the final result, it has
been dropped.

F.5 Evaluating the data

When all prerequisites are computed, finally the actual evaluation of the data
sample can be performed. This is done by calling “./doSignalFirstAnalysis.py
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–benchmark -5 -i allData processed.i3”. It evaluates the events from the file
“candidatesDump.txt”, uses the estimated expectation of event numbers from
folder “normalizationDataStep1” to compute Poisson probabilities, uses the
distributions of relevance values from pseudo-experiments from folder “normal-
izationDataStep2” to renormalize the relevances of found clusters, and finally
it uses the distribution of the renormalized relevances from folder “normaliza-
tionDataStep3” to determine a significance for a found cluster. The results
are various outputs in the vtk file format for some of the intermediate steps of
the algorithm and the results of the evaluation for visualization with Paraview.
The main results are also output as skymaps in Hammer-Aitoff projection la-
beled hammerProj*.txt in equatorial and galactic coordinates. They can be
visualized e.g. by the following commands in gnuplot:

• set view map

• set palette defined

• splot “hammerProjEquatorial.txt” w p pt 7 ps 1 palette notitle

Note: If the window size of Gunplot and the point size are too small, nothing
is displayed. In that case, enlarge the window.

Most steps also output some .txt files containing debug information on var-
ious computations which can also be plotted with Gnuplot.

F.6 Additional steps for specific tasks

Other values for benchmark are possible when calling doSignalFirstAnalysis.py.
–benchmark 0 computes an evaluation for a simulated source scenario (Note:
the - in front of e.g. -5 has been to indicate a negative number). For (positive)
values from 1 up to 25, one value of a benchmark is computed as shown in
chapter 8.7. The shown scenarios in the sensitivity chapter are examples of these
25. A value of -6 performs post-processing on previously computed sensitivity
result files. The computations performed for -7, -80 and -9 assume that a file
“./stencilGrid.grid” is present, which indicates a template where to look for
a cluster. -7 reads this template and evaluates the sky normally, but sets all
clusters that do not overlap with the template by at least 51% to 0.0σ. -80
computes pseudo-experiments that also perform this check for overlap with the
template, hence incorporating the effect of the template into the results of the
pseudo-experiments. These functions were necessary for the evaluation of the
IC40 dataset. -9 allows to distribute additional events within the template.
The number has to be hard coded in the source code. This is how the checks
for Figure 103 have been done.

G Sources tested during development

The most common test setup used during the development of the multiscale
search contained three sources of 3.0◦ x 3.0◦ at a declination of -57◦ with 50◦

between them in right ascension with 6, 10 and 15 events, one extended source
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of 10◦ x 10◦ with 60 events at a declination of 0◦ and one point source, 0.5◦

x 0.5◦, containing 6 events at -29◦ with a shift of 90◦ in right ascension with
respect to the extended source.

Table 1 shows a list of the sources that have also been used to to test the
method at various times during the development and therefore influenced the
heuristic optimization that led to the choice of the metrics and segmentation
thresholds. Apart from these, several variations of these setups have been
tested, but they cannot all be listed here.

Source description Extension Declination # Events

Point source 0.5◦ x 0.5◦ -70◦ 0 - 20

Point source 0.5◦ x 0.5◦ -29◦ 0 - 20

Point source 0.5◦ x 0.5◦ +10◦ 0 - 20

Point source 1.0◦ x 1.0◦ -70◦ 0 - 20

Point source 1.0◦ x 1.0◦ -29◦ 0 - 20

Point source 1.0◦ x 1.0◦ +10◦ 0 - 20

Extended source 5◦ x 5◦ -70◦ 0 - 80

Extended source 5◦ x 5◦ -29◦ 0 - 80

Extended source 5◦ x 5◦ +10◦ 0 - 80

Extended source 10◦ x 10◦ -70◦ 0 - 150

Extended source 10◦ x 10◦ -29◦ 0 - 150

Extended source 10◦ x 10◦ +10◦ 0 - 150

Extended source 30◦ x 30◦ -29◦ 0 - 300

Extended source 50◦ x 50◦ -29◦ 0 - 500

Diagonal line 20◦ x 0.5◦ -70◦ 0 - 80

Diagonal line 20◦ x 0.5◦ -29◦ 0 - 80

Diagonal line w. interruption 20◦ x 0.5◦ -29◦ 0 - 80

Curved line 20◦ x 0.5◦ -29◦ 0 - 80

Curved line w. interruption 20◦ x 0.5◦ -29◦ 0 - 80

Three point sources 1.0◦ x 1.0◦ -25◦, -29◦, -33◦ 0 - 20

Three point sources 1.0◦ x 1.0◦ -66◦, -70◦, -74◦ 0 - 20

Three point sources 1.0◦ x 1.0◦ -60◦, -70◦, -80◦ 0 - 20

Two extended sources 5.0◦ x 5.0◦ -29◦ (20◦ apart in RA) 0 - 50

Two extended sources 5.0◦ x 5.0◦ -70◦ (20◦ apart in RA) 0 - 50

Two touching diagonal lines 20◦ x 0.5◦ -39◦ 0 - 50

Three extended sources 3◦ x 3◦ -57◦ (50◦ apart in RA) 4 - 15

Table 1: Sources tested during development
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Figure 128: Real world example of different segmentation thresholds on an
almost randomly selected region north-east of Spain and west of Italy. Different
thresholds (here: water depths) reveal different underlying structures, which are
all valid. It is therefore not absolutely defined what parts should be regarded
to be connected, multiple thresholds can be used to find the most interesting
structures. Image Credit: Google Earth, Google.
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H Used runs

Here are the run numbers of all data runs used for the analysis:

25691 25700 25705 25706 25707 25713 25714 25715 25716 25717 25720 25721 25722 25723 25724 25725 25728 25730 25731
25800 25863 25864 25872 25880 25892 25893 25895 25905 25920 25921 25922 25923 25926 25927 25928 25930 25931 25932
25933 25934 25935 25937 25947 25953 25954 25955 25958 25964 25965 25972 25986 25988 25990 25991 26010 26030 26062
26087 26110 26131 26132 26133 26134 26135 26144 26160 26161 26165 26190 26227 26228 26230 26238 26265 26267 26270
26271 26272 26273 26274 26275 26276 26277 26281 26283 26331 26333 26334 26335 26340 26345 26355 26361 26363 26364
26395 26396 26397 26398 26405 26406 26407 26462 26463 26465 26469 26470 26471 26480 26483 26484 26485 26487 26528
26534 26535 26536 26537 26538 26540 26542 26543 26544 26545 26546 26592 26593 26594 26606 26633 26637 26638 26640
26647 26660 26676 26677 26684 26702 26703 26704 26710 26713 26714 26715 26716 26718 26720 26721 26723 26726 26770
26795 26797 26800 26801 26802 26803 26804 26805 26806 26807 26808 26810 26811 26812 26813 26814 26815 26816 26817
26818 26820 26821 26824 26825 26826 26827 26828 26829 26830 26831 26832 26833 26834 26864 26865 26866 26867 26868
26870 26871 26872 26873 26874 26875 26876 26877 26878 26891 26893 26894 26895 26896 26897 26898 26902 26903 26904
26905 26917 26918 26920 26936 26937 26938 26940 26956 26957 26958 26959 26963 26964 26965 26967 26968 26970 26971
26974 26978 26982 26983 26984 26987 26994 26995 27002 27003 27008 27009 27013 27015 27080 27081 27090 27091 27092
27094 27095 27100 27130 27143 27153 27162 27163 27164 27165 27170 27172 27173 27174 27175 27176 27177 27180 27182
27185 27216 27217 27218 27226 27227 27228 27230 27231 27232 27233 27234 27235 27244 27246 27248 27270 27271 27272
27290 27291 27292 27293 27294 27296 27297 27351 27352 27353 27379 27403 27404 27405 27406 27407 27408 27413 27424
27425 27426 27427 27440 27458 27460 27461 27462 27463 27464 27465 27467 27468 27470 27471 27501 27502 27504 27505
27550 27551 27558 27565 27566 27567 27569 27571 27572 27573 27574 27575 27576 27577 27578 27580 27581 27582 27616
27617 27618 27620 27622 27623 27624 27625 27627 27632 27633 27634 27635 27638 27640 27641 27642 27644 27646 27647
27648 27657 27658 27659 27660 27667 27668 27669 27721 27722 27723 27724 27726 27727 27728 27742 27743 27744 27745
27746 27748 27750 27751 27752 27753 27754 27755 27756 27757 27758 27760 27761 27762 27763 27764 27808 27812 27813
27814 27815 27822 27824 27825 27826 27828 27830 27831 27832 27853 27871 27872 27874 27875 27887 27890 27891 27892
27893 27894 27895 27896 27897 27898 27900 27941 27946 27952 27953 27954 27963 27979 27980 27981 27982 27984 27988
27990 27991 28007 28034 28035 28037 28044 28058 28061 28062 28063 28064 28065 28066 28067 28068 28070 28071 28106
28110 28114 28131 28132 28133 28143 28148 28161 28162 28163 28182 28211 28224 28225 28226 28233 28235 28236 28237
28238 28243 28244 28246 28247 28278 28280 28281 28285 28303 28304 28305 28306 28312 28315 28316 28317 28327 28334
28335 28336 28337 28340 28341 28342 28343 28344 28345 28346 28347 28348 28350 28351 28352 28354 28386 28387 28388
28395 28401 28402 28404 28421 28422 28432 28433 28434 28441 28442 28443 28444 28445 28446 28448 28450 28451 28452
28453 28454 28455 28456 28457 28458 28459 28460 28487 28494 28495 28496 28497 28503 28507 28508 28510 28512 28542
28552 28553 28554 28563 28566 28567 28568 28570 28583 28584 28585 28586 28613 28615 28616 28617 28618 28620 28621
28622 28623 28624 28625 28628 28630 28631 28632 28642 28643 28644 28645 28647 28648 28650 28651 28652 28653 28654
28655 28681 28686 28687 28688 28702 28711 28712 28713 28714 28715 28716 28717 28718 28720 28721 28722 28723 28724
28726 28727 28728 28730 28731 28732 28733 28734 28735 28736 28737 28738 28761 28762 28764 28765 28766 28767 28768
28770 28771 28772 28774 28775 28776 28777 28780 28782 28784 28785 28786 28787 28790 28791 28792 28793 28794 28795
28796 28797 28798 28801 28802 28803 28804 28832 28833 28834 28835 28836 28839 28841 28842 28845 28846 28847 28848
28850 28851 28852 28853 28854 28856 28857 28858 28860 28861 28862 28863 28864 28866 28867 28868 28870 28871 28872
28873 28874 28913 28948 28950 28952 28954 28955 28956 28957 28958 28966 28967 28968 28970 28971 28972 28973 28974
28975 28980 28981 28982 28983 28984 28985 28986 28987 28988 28990 28991 28992 28993 28994 28995 29022 29023 29024
29025 29026 29027 29028 29035 29036 29037 29038 29040 29041 29042 29043 29044 29045 29047 29048 29050 29051 29054
29055 29056 29057 29058 29060 29061 29062 29063 29064 29065 29066 29067 29068 29091 29092 29093 29094 29096 29097
29098 29100 29101 29103 29104 29105 29106 29107 29108 29110 29111 29112 29113 29114 29115 29116 29117 29118 29120
29121 29122 29123 29124 29125 29126 29127 29128 29152 29153 29154 29155 29156 29157 29158 29160 29161 29162 29165
29172 29173 29174 29175 29176 29177 29178 29180 29182 29183 29186 29187 29188 29190 29191 29192 29193 29194 29196
29197 29213 29214 29215 29216 29217 29218 29220 29221 29222 29223 29224 29246 29247 29250 29251 29252 29253 29254
29255 29256 29257 29258 29259 29261 29262 29263 29264 29265 29266 29267 29270 29271 29272 29273 29274 29275 29276
29277 29278 29279 29280 29281 29282 29283 29284 29285 29286 29287 29288 29292 29317 29318 29320 29321 29322 29323
29324 29325 29327 29328 29330 29335 29338 29341 29343 29350 29360 29361 29362 29363 29364 29365 29366 29367 29368
29370 29411 29413 29414 29417 29420 29421 29422 29423 29424 29426 29433 29434 29435 29436 29437 29438 29440 29441
29448 29472 29473 29474 29476 29477 29478 29480 29481 29483 29484 29485 29487 29488 29490 29500 29538 29540 29541
29542 29543 29547 29551 29552 29553 29554 29557 29558 29559 29561 29562 29563 29564 29566 29567 29580 29581 29582
29594 29595 29596 29599 29600 29604 29605 29606 29623 29624 29625 29626 29643 29646 29657 29658 29664 29678 29688
29693 29695 29697 29698 29716 29722 29728 29733 29740 29751 29752 29753 29754 29755 29756 29757 29758 29760 29761
29762 29763 29764 29788 29790 29791 29802 29803 29804 29805 29806 29807 29808 29810 29812 29813 29814 29815 29816
29817 29818 29820 29821 29822 29823 29825 29826 29827 29830 29831 29832 29833 29835 29836 29837 29838 29840 29867
29871 29872 29873 29874 29877 29891 29892 29895 29903 29904 29905 29906 29907 29908 29910 29911 29912 29913 29914
29915 29916 29917 29918 29920 29921 29922 29923 29924 29925 29926 29963 29968 29971 29978 29980 29981 29982 29993
30017 30018 30020 30021 30023 30024 30025 30026 30027 30028 30030 30031 30032 30033 30034 30035 30036 30060 30061
30062 30063 30064 30065 30066 30067 30068 30070 30071 30072 30073 30074 30075 30076 30077 30078 30080 30081 30082
30083 30084 30085 30086 30087 30088 30090 30091 30092 30093 30094 30095 30096 30097 30098 30100 30101 30102 30103
30104 30105 30106 30107 30108 30109 30110 30111 30112 30113 30114 30115 30116 30117 30118 30120 30140 30141 30142
30143 30144 30145 30146 30147 30148 30149 30150 30151 30152 30153 30154 30155 30156 30157 30158 30160 30161 30162
30163 30164 30165 30166 30167 30169 30170 30171 30172 30173 30174 30175 30176 30177 30203 30205 30206 30207 30208
30210 30211 30212 30213 30215 30216 30217 30218 30220 30221 30222 30223 30224 30225 30232 30233 30234 30235 30236
30237 30238 30240 30241 30242 30243 30244 30307 30308 30310 30311 30312 30313 30314 30315 30316 30317 30318 30319
30320 30321 30322 30324 30326 30327 30328 30332 30333 30335 30336 30337 30340 30341 30343 30344 30345 30346 30370
30371 30372 30373 30374 30375 30376 30377 30378 30380 30381 30384 30385 30386 30387 30388 30390 30391 30392 30393
30394 30395 30396 30397 30398 30401 30402 30407 30408 30416 30417 30422 30423 30424 30427 30428 30430 30431 30433
30434 30437 30438 30440 30441 30442 30450 30452 30453 30454 30455 30457 30459 30460 30508 30514 30521 30526 30533
30538 30541 30545 30551 30555 30557 30561 30563 30568 30571 30575 30577 30580 30583 30586 30590 30593 30598 30599
30601 30604 30606 30610 30614 30618 30623 30624 30626 30629 30633 30642 30654 30662 30670 30678 30706 30710 30711
30712 30713 30714 30715 30716 30717 30718 30719 30720 30721 30722 30723 30724 30725 30726 30727 30728 30729 30730
30784 30785 30787 30792 30793 30795 30799 30801 30802 30804 30806 30815 30816 30818 30821 30823 30825 30826 30829
30832 30841 30842 30855 30857 30861 30863 30864 30866 30867 30870 30872 30873 30876 30880 30881 30883 30885 30887
30889 30891 30892 30894 30896 30897 30942 30944 30946 30947 30950 30952 30953 30955 30956 30959 30961 30963 30964
30967 30969 30970 30972 30974 30977 30979 30981 30983 30986 30987 30989 30992 30993 30995 30997 30998 31000 31003
31005 31006 31008 31010 31011 31013 31016 31017 31020 31022 31024 31025 31027 31029 31030 31033 31035 31036 31038
31040 31042 31044 31046 31048 31049 31051 31053 31055 31057 31061 31062 31065 31067 31069 31070 31072 31074 31075
31078 31080 31082 31083 31085 31087 31091 31094 31096 31098 31099 31101 31104 31105 31107 31109 31111 31112 31115
31117 31118 31120 31122 31123 31125 31128 31130 31132 31134 31136 31137 31139 31141 31144 31145 31147 31149 31152
31154 31160 31164 31165 31167 31169 31170 31172 31176 31207 31209 31211 31212 31219 31221 31226 31228 31230 31232
31234 31235 31237 31247 31256 31261 31263 31264 31266 31269 31270 31275 31277 31280 31282 31283 31285 31287 31294
31312 31314 31316 31318 31355 31357 31359 31360 31362 31365 31368 31374 31381 31383 31385 31387 31388 31394 31399
31401 31404 31405 31407 31409 31415 31417 31424 31426 31427 31430 31432 31434 31435 31436 31438 31440 31443 31444
31446 31448 31449 31451 31454 31478 31479 31481 31483 31485 31490 31493 31505 31508 31509 31511 31513 31515 31516
31519 31520 31522 31523 31524 31527 31528 31530 31532 31534 31536 31540 31542 31543 31550 31552 31554 31581 31584
31586 31587 31589 31591 31592 31595 31612 31614 31615 31617 31619 31644 31646 31648 31650 31651 31654 31657 31662
31664 31675 31678 31680 31682 31683 31685 31687 31690 31695 31697 31698 31700 31702 31704 31706 31708 31709 31712
31714 31716 31718 31719 31721 31723 31724 31728 31729 31731 31732 31734 31736 31783 31785 31786 31788 31794 31797
31799 31803 31807 31811 31813 31823 31834 31835 31837 31839 31841 31849 31863 31871 31873 31875 31877 31879 31888
31893 31896 31897 31899 31901 31903 31905 31907 31911 31913 31915 31916 31918 31920 31958 31962 31963 31965 31966
31968 31970 31975 31979 31987 31988 31992 31999 32008 32009 32011 32013 32015 32021 32023 32028 32029 32031 32033
32034 32039 32049 32064 32077 32078 32080 32082 32083 32086 32088 32090 32091 32093 32095 32096 32098 32100 32102
32103 32105 32107 32109 32110 32150 32160 32165 32167 32168 32170 32173 32176 32177 32179 32181 32183 32185 32187
32189 32196 32233 32239 32241 32243 32244 32246 32248 32252 32258 32260 32262 32263 32265 32267 32269 32271 32273
32275 32276 32278 32281 32283 32284 32286 32288 32290 32292 32294 32338 32340 32343 32344 32346 32348 32350 32354
32356 32359 32360 32381 32387 32397 32399 32400 32402 32404 32411 32423 32430 32436 32437 32439 32441 32442 32445
32447 32450 32452 32454 32455 32458 32460 32462 32463 32468 32470 32472 32474 32475 32478 32479 32482 32485 32486
32488 32490 32491 32525 32529 32531 32533 32535 32570 32571 32576 32578 32580 32582 32584 32588 32592 32594 32597
32599 32600 32602 32604 32606 32617 32621 32622 32624 32626 32628 32629 32632 32634 32636 32637 32639 32641 32644
32645 32647 32649 32651 32652 32655 32657 32659 32700 32704 32706 32708 32710 32712 32717 32727 32740 32742 32743
32745 32747 32749 32751 32753 32755 32757 32758 32760 32762 32767 32769 32770 32771 32772 32773 32775 32778 32781
32784 32786 32788 32815 32817 32821 32823 32826 32828 32830 32833 32835 32848 32850 32852 32855 32858 32875 32880
32889 32895 32897 32900 32901 32904 32942 32954 32958 32961 32970 32978 32984 32986 32989 32990 32993 32995 32998
33002 33003 33005 33008 33010 33036 33038 33039 33041 33046 33047 33049 33053 33056 33058 33060 33062 33064 33067
33069 33071 33075 33076 33079 33081 33083 33094 33102 33110 33111 33113 33115 33117 33126 33131 33134 33161 33172
33173 33176 33178 33186 33194 33210 33215 33217 33219 33222 33223 33225 33227 33230 33231 33234 33236 33238 33239
33241 33243 33246 33247 33249 33251 33281 33284 33285 33288 33290 33292 33296 33300 33307 33308 33310 33312 33314
33316 33320 33321 33323 33325 33327 33328 33331 33338 33341 33343 33345 33346 33349 33351 33353 33355 33357 33359
33362 33364 33365 33367 33369 33371 33373 33375 33377 33379 33380 33382 33385 33387 33389 33390 33429 33431 33433
33435 33436 33439 33444 33447 33449 33451 33452 33454 33459 33461 33463 33464 33466 33468 33471 33472 33474 33476
33478 33479 33482 33484 33486 33487 33491 33494 33496 33499 33500 33502 33505 33507 33509 33511 33513 33515 33516
33518 33521 33523 33525 33527 33529 33530 33559 33563 33565 33567 33568 33570 33573 33584 33585 33587 33588 33590
33592 33595 33596 33598 33600 33611 33613 33615 33617 33618 33621 33623 33624 33626 33628 33630 33632 33634 33636
33638 33639 33641 33644 33647 33651 33653 33654 33656 33658 33660 33668 33695 33697 33698 33700 33702 33705 33706
33709 33711 33713 33714 33716 33718 33721 33722 33724 33726 33728 33729 33738 33746 33748 33749 33751 33754 33756
33757 33758 33763 33764 33766 33768 33770 33773 33776 33785 33798 33805 33806 33809 33810 33812 33814 33815 33817
33821 33823 33824 33826 33828 33832 33834 33868 33869 33871 33875 33878 33880 33883 33885 33886 33888 33889 33891
33896 33897 33899 33902 33903 33921 33924 33926 33927 33929 33932 33934 33935 33938 33940 33941 33943 33944 33946
33948 33950 33952 33954 33956 33958 33960 33961 33964 33965 33967 33969 33970 34007 34011 34012 34014 34016 34017
34019 34021 34026 34031 34033 34041 34045 34046 34048 34075 34080 34082 34083 34085 34087 34088 34091 34092 34094
34096 34097 34099 34100 34102 34106 34108 34109 34111 34113 34117 34118 34122 34124 34125 34127 34130 34131 34133
34140 34142 34146 34149 34151 34152 34212 34217 34230 34242 34243 34245 34246 34248 34250 34252 34254 34255 34268
34270 34366 34368 34370 34371 34374 34375 34378 34383 34385 34386 34388 34389 34394 34395 34396 34397 34398 34399
34400 34401 34403 34405 34407 34414 34416 34417 34419 34420 34422 34423 34425 34426 34427 34432 34433 34439 34443
34444 34445 34448 34451 34452 34454 34455 34457 34458 34459 34462 34465 34466 34467 34469 34470 34473 34474 34481
34486 34487 34489 34490 34491 34493 34494 34496 34497 34498 34502 34521 34522 34549 34550 34551 34552 34553 34554
34560 34561 34562 34563 34564 34565 34566 34571 34572 34573 34574 34575 34576 34577 34579 34580 34583 34588 34598
34600 34601 34603 34604 34605 34608 34609 34610 34616 34621 34622 34625 34626 34628 34630 34632 34633 34635 34636
34639 34640 34642 34643 34644 34646 34647 34649 34650 34656 34658 34660 34661 34669 34670 34672 34673 34675 34678
34679 34685 34687 34688 34692 34695 34703 34708 34711 34712 34718 34719 34721 34723 34724 34726 34734 34740 34742
34744 34745 34747 34748 34754 34756 34759 34761 34771 34773 34775 34780 34781 34783 34785 34786 34789 34790 34792
34793 34796 34798 34800 34801 34806 34808 34809 34813 34819 34821 34832 34834 34835 34841 34843 34845 34846 34848
34851 34853 34856 34882 34883 34893 34896 34898 34899 34906 34907 34909 34912 34913 34915 34917 34919 34921 34927
34928 34930 34931 34933 34935 34937 34938 34941 34942 34944 34945 34947 34953 34955 34957 34959 34960 34961 34963
34964 34968 34969 34971 34974 34976 34978 34980 34981 34983 34984 34986 34988 34990 34996 34998 34999 35000 35002
35003 35006 35007 35008 35011 35016 35019 35021 35022 35026 35028 35030 35031 35033 35037 35038 35040 35041 35044
35049 35052 35053 35054 35056 35057 35058 35060 35061 35063 35064 35068 35069 35071 35073 35074 35151 35153 35155
35158 35159 35160 35161 35162 35163 35164 35166 35168 35170 35172 35173 35175 35176 35178 35179 35180 35190 35193
35195 35196 35198 35199 35200 35201 35202 35203 35236 35238 35240 35242 35243 35244 35246 35247 35248 35250 35253
35261 35264 35277 35285 35288 35289 35291 35292 35293 35294 35296 35300 35304 35306 35308 35309 35311 35312 35314
35316 35318 35319 35321 35322 35325 35327 35328 35330 35332 35333 35335 35336 35337 35339 35340 35342 35343 35346
35348 35349 35351 35353 35354 35355 35357 35359 35360 35362 35368 35370 35372 35374 35375 35377 35413 35417 35419
35420 35421 35422 35423 35424 35425 35444 35463 35465 35470 35472 35473 35475 35476 35477 35479 35480 35483 35484
35485 35488 35490 35491 35493 35495 35496 35498 35501 35503 35504 35506 35511 35512 35513 35515 35517 35519 35520
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