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Kurzzusammenfassung

Der Ursprung der hochenergetischen kosmischen Strahlung, die wir auf der Erde
beobachten kénnen, ist trotz jahrzehntelanger intensiver Forschung immer noch
nicht eindeutig bekannt. Viele Theorien, die versuchen die Entstehung dieser
Teilchen zu erklaren, sagen auch einen Fluss von hochenergetischen Neutrinos
aus dem Kosmos vorher. Zwar wurde vor kurzem die Existenz dieser Neutri-
nos bestétigt, die Quellen konnten dabei aber nicht identifiziert werden. Das
ANTARES Neutrinoteleskop wurde im Mittelmeer 40 km von Toulon in einer
Tiefe von 2475 m gebaut, um diese und andere Fragen zu klaren. Es besteht
aus 885 Photovervielfachern, die in einer dreidimensionalen Struktur angeordnet
sind, um die Tscherenkovstrahlung zu detektieren, die von Teilchen ausgesendet
wird, die bei der Interaktion von Neutrinos mit dem Meerwasser entstehen.

Die Interaktionen von Neutrinos in den ANTARES Daten zu identifizieren
und zu rekonstruieren stellt herausfordernde Aufgaben dar. Die ersten bei-
den neuen Methoden, die in dieser Arbeit vorgestellt werden, versuchen diese
Aufgaben moglichst effizient durch Mustererkennung zu 16sen. Der erste Algo-
rithmus klassifiziert die Daten in von unterhalb des Detektors kommende Neu-
trinosignale und von oberhalb kommende Teilchen, um einen Grofteil der von
oben kommenden atmosphérischen Muonen ausfiltern zu konnen. Der zweite
Algorithmus verbessert die Richtungsrekonstruktion, indem er fiir jedes Neu-
trino den jeweils genausten Rekonstruktionsalgorithmus auswéahlt.

Der Hauptfokus dieser Arbeit liegt auf einer neuen Methodik, die die
Verteilung der rekonstruierten Neutrinos auswertet. Im Gegensatz zu den meis-
ten Analysen in ANTARES versucht diese Suche nicht, ein spezifisches, theo-
riebasiertes Modell einer Neutrinoquelle zu detektieren, sondern zielt darauf
ab, die deutlichste Uberfluktuation mit beliebiger Grofe, Form und Verteilung
der Neutrinos an einer beliebigen Position im Himmel zu finden. Um dieses
Ziel zu erreichen wird die Dichte der Neutrinoereignisse in 180 voneinander
unabhangigen Skalen ausgewertet. Wenn eine Region mit unerwartet hoher
Neutrinodichte identifiziert worden ist, wird das potentielle Neutrinosignal mit
Pseudoexperimenten mit zufélligen Neutrinoverteilungen verglichen, um seine
Signifikanz zu bestimmen. Die Stérken einer derart flexiblen modellunabhéngigen
Suche liegen iiblicherweise nicht in einer hohen Sensitivitat beziiglich einer
bestimmten Quellannahme, sondern im Entdecken einer Hypothese, die dann
genauer ausgewertet werden kann.

In den Daten, die zwischen 2007 und 2012 aufgezeichnet wurden, wurde eine
sehr grofle, ausgedehnte Struktur in Richtung des Zentrums unserer Galaxie ge-
funden. Die Signifikanz betragt 2.520, was als konsistent mit zufalligen Fluktu-
ationen betrachtet werden kann. Um eine unabhéangige ﬂberprﬁfung der Ergeb-
nisse vorzunehmen wurde der IC40 Datensatz analysiert, der von der IceCube
Kollaboration verdffentlicht wurde. Bei dieser Auswertung wurde tatséchlich in
dem Bereich, an dem die Struktur aus den ANTARES Daten mit dem fiir Ice-
Cube sichtbaren Bereich iiberlappt, ebenfalls eine Uberfluktuation festgestellt.
Die so identifizierte Struktur hat eine Signifikanz von 2.14¢.

Da trotz diverser weiterer Studien anhand der vorliegenden Daten keine
eindeutige Erklarung der Ergebnisse moglich ist, wird eine weitere Analyse



empfohlen, die auf die gefundenen Ergebnisse spezialisiert sein kann und daher
deutlich eindeutigere Erkenntnisse liefern konnte.

Unabhéngig davon ist das erhaltene Ergebnis gegenwirtig die signifikan-
teste, raumlich begrenzte Hypothese fiir einen erhéhten Fluss hochenergetischer
astrophysikalischer Neutrinos.

Abstract

The origin of high energetic cosmic rays has been puzzling since their discovery.
Many theories about the sources of these cosmic rays also predict a flux of high
energetic cosmic neutrinos. Recently, the existence of such a high energetic neu-
trino flux has been confirmed, but the location and nature of its sources remains
unknown. The ANTARES neutrino telescope was built in the Mediterranean
Sea, 40 km off the French coast near Toulon in a depth of 2475 meters to help
answer this and other questions. It consists of a three dimensional array of 885
photomultiplier tubes that detect the Cherenkov light emitted by secondary
particles, which are produced in interactions between neutrinos and nuclei in
the water.

The identification and reconstruction of the observed neutrino events con-
stitute challenging tasks. Parts of this thesis deal with algorithmic approaches
to improve these tasks using pattern recognition. The first application is the
suppression of undesired background by a classification algorithm. The second
approach is the selection of the best available direction reconstruction for each
neutrino.

The main focus of this thesis lies on a new method to evaluate the spatial
distribution of the observed neutrinos. While most approaches test one specific
hypothesis for a specific source, derived from theory or other measurements,
this search refrains from optimizing for individual source hypotheses and tries
to detect the most pronounced density fluctuation in the spatial distribution,
regardless of its specific position, size, shape or internal distribution as unbiased
as possible. To achieve this, the statistical likelihood for the observed neutrino
density is evaluated in multiple scales up to distances between events of 180°. To
recognize a potential cosmic neutrino signal, regions with the most pronounced
deviations are identified and compared to the expectations from a random back-
ground hypothesis. The strength of such a flexible, model-independent search
is not the sensitivity for a specific source hypothesis, but instead to detect also
unexpected hypotheses that can then be analyzed in more detail.

In the data recorded from 2007 to 2012 this search found a very large struc-
ture close to the direction of the center of our galaxy with a post-trial signifi-
cance of 2.520. It can therefore be explained best by a statistical fluctuation.
As a simple crosscheck this method has been applied to a publicly available
data sample recorded independently by the neutrino telescope IceCube. This
evaluation also resulted in an overfluctuation at the location where the most
significant structure from ANTARES data overlaps with the field of view of
IceCube. With the devised analysis method the found structure in the I1C40
data has a significance of 2.14¢0.



While this is intriguing, ultimately, a dedicated follow-up analysis that is
optimized for the derived hypothesis is necessary to find unambiguous evidence
for its true nature.

Since, despite further studies, no unambiguous explanation could be found
for the obtained results, a follow-up analysis is recommended, that can be
adapted specifically to the results and therefore has a higher chance to provide
unambiguous insights.

Nevertheless this result constitutes the most significant spatially resolved
hypothesis for the sources of high energetic astrophysical neutrinos so far.
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Part 1
Introductions

This part of the thesis introduces various basic concepts useful for the under-
standing of the methods and results. It covers aspects of neutrinos in general,
the ANTARES experiment, the underlying physics and of the algorithms used.
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1 Motivation

The sky has always been fascinating for mankind, making us wonder about
the mechanisms behind the universe. Until the 20" century, observing the sky
was limited to the visible part of the electromagnetic spectrum. This began
to change in 1931 when Karl Guthe Jansky noticed that a part of the back-
ground noise in transatlantic radio communications originated from the Milky
Way [1]. Over the course of the following decades the sky was studied not only
in radio wavelength, but also in all other parts of the electromagnetic spec-
trum like microwaves, infrared, ultraviolet, X-ray or y-ray. An example for the
different aspects revealed by different parts of the electromagnetic spectrum is
shown in Figure 1. Another good example for a multiwavelength observation
revealing different aspects of the same object can be seen in Figure 5. With
every new analyzed energy range new phenomena were discovered, deepening
our understanding of the processes that shape our universe.
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Figure 1: Our galaxy as seen in different wavelength bands. Taken from [2].

Unfortunately for astronomy, electromagnetic waves are absorbed if dense
matter is between us and the source. This prevents a glimpse into some of the
most interesting regions, for example the center of our galaxy.

A completely different approach in astronomy is to rely on other particles
instead of photons. One candidate are so called cosmic rays. These particles
have first been described by Victor Hess in 1912 in [3]. They consist mainly out
of protons and alpha particles and their flux extends to very high energies as



13

seen in Figure 2. It shows the flux of cosmic rays versus energy, measured by a
multitude of independent experiments. For the low energy range, which is not
covered in this plot, direct measurements of cosmic rays can be performed, for
example by experiments on balloons, satellites or the International Space Sta-
tion. The shown high energy range is mainly covered by Cherenkov telescopes,
for instance the Pierre Auger Observatory [4]. But cosmic rays are charged
particles and therefore they’re influenced during their propagation by galactic
and extragalactic magnetic fields. Hence only the most energetic particles are
deflected little enough that they approximately point back to their origin.
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Figure 2: The energy spectrum of cosmic rays. From [5]. Multiple experiments
have measured different energy ranges with different techniques. The features
that can be observed in this energy distribution are the so called “knee” at
around 108GeV and the “ankle” around 10'°GeV. The distribution has dif-
ferent spectral indices between them. These features suggest that different
mechanisms could be involved.

The relatively new field of neutrino astronomy is a promising candidate to
overcome these drawbacks. Neutrinos are electrically neutral particles, so they
are not deflected by magnetic fields. They interact only by gravity and the
short ranged weak force, allowing them to travel large distances even through
matter. Because neutrinos cannot be observed directly, their detection must
rely on secondary particles, which are generated once a neutrino interacts with
matter. These secondary particles can emit Cherenkov radiation, which occurs
when charged particles travel faster than the speed of light in the medium they
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are currently traversing [6]. This radiation can then be measured for instance
by highly sensitive photomultipliers.

The “Astronomy with a Neutrino Telescope and Abyss environmental RE-
Search” project (ANTARES, described in [7]) is a Cherenkov radiation based
neutrino telescope, located in the Mediterranean Sea, 40 km off the French
coast. Other collaborations, for instance BAIKAL [8] and IceCube [9], are also
doing research in the promising field of neutrino astronomy, with ANTARES
being the largest operational telescope in the Northern Hemisphere.

For the success of every current, complex experiment sophisticated simula-
tion and data analysis software is absolutely essential. This thesis illustrates
improvements of several steps in the data evaluation chain of ANTARES. These
improvements are not limited to this experiment as only minor details are ap-
plication specific, but the ideas behind them are general and can be applied to
a multitude of scenarios.

The first improvement is an enhanced classification to separate neutrino
signals from undesired background. The second presented idea is to efficiently
combine multiple independent reconstruction algorithms using a classification
algorithm to obtain a more accurate reconstruction result. The main part of
this thesis is a new strategy to detect structures of arbitrary position, size, shape
and neutrino distribution in the observed neutrino signal which are incompat-
ible with a random background assumption. This method does not require a
theoretical model of the neutrino emission.

Chapters 2, 3 and 4 sketch an overview over neutrinos, neutrino detection
with ANTARES and pattern recognition, covering properties of neutrinos, pos-
sible scenarios for neutrino emission, the architecture of the neutrino telescope
itself, its data taking and the software used for data processing and simulations.

The new methods that have been developed for this thesis are explained in
detail in chapters 5, 6 and 8.

The results of the created data processing chain and their explanations are
presented in chapter 9, while the interpretation of these results can be found in
chapter 10.
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2 Neutrinos

The existence of neutrinos has first been postulated by Wolfgang Pauli in 1930
to explain the continuous energy distribution of electrons in beta decays, see
[10]. The first proof of their existence was found in 1956 with the Cowan-Reines
experiment, see [11], when electron-antineutrinos produced by a nuclear reac-
tor were observed by inverse beta decay. Since then many other experiments
have investigated the properties of neutrinos. They are electrically neutral and
therefore only interact via gravity and the weak force. This is also the reason
why they are so hard to detect, as they do not interact with magnetic fields,
not by strong force interactions and, similar to to photons, hardly by gravity,
see [12]. Neutrinos are fermions as they have a half-integer spin. There are
three known types of neutrinos, the so called flavors. Together with the three
leptons e, i and 7, the three neutrinos (and the respective antiparticles of each
particle) form the leptons, a group of light elementary particles. An overview
over the standard model of particle physics with leptons in green is shown in
Figure 3. Each neutrino flavor is named after the lepton the neutrino produces
in charged current interactions. Maybe the most remarkable characteristic of
neutrinos is that they oscillate between the different flavor states, alternating
between electron, muon and tau flavor. Therefore neutrinos can be expected to
have a mass greater than zero, since from theory it is known that oscillation be-
tween the neutrino flavors isn’t possible for massless neutrinos, see for instance
[13], [14], [15] and [16]. Nevertheless their exact masses are still unknown. The
mass of the electron-neutrino v, for instance is known to be below 2 eV from
measurements of the beta decay of tritium [17]. The standard model of cos-
mology together with the interpretations of different observations give upper
limits for the sum of the masses of all neutrino flavors of below 1 eV [18] or
even below 0.23 eV [19].

Since no difference between neutrinos and antineutrinos will be relevant for
any part of this thesis, antineutrinos will not be addressed separately, but are
included when referring to neutrinos from here on.

2.1 Sources

Neutrinos of different energy scales are produced by different objects and pro-
cesses. The first observed electron-(anti)neutrinos from radioactive decays in
nuclear reactors for instance had energies of a few MeV. A well established ex-
traterrestrial source of neutrinos is the sun [21], which is also emitting neutrinos
with energies up to few MeV [22]. Until now the only identification of a neutrino
source outside of our solar system has been possible during the outburst of the
supernova 1987A. It occurred on 23. February 1987 in the Large Magellanic
Cloud, a nearby galaxy. Three neutrino experiments that have been active at
that time, Kamiokande II [23], IMB [24] and Baksan [25] in total observed 25
neutrinos from the supernova, also with energies of few MeV. But there are
neutrino sources that reach orders of magnitude higher energies.

As already mentioned in chapter 1, Victor Hess discovered cosmic rays in
1912. On further investigation it was discovered that this flux of charged par-
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Figure 3: The standard model of particle physics. Taken from [20].

ticles extends to very high energies as seen in Figure 2. But even today the
sources of the highest energetic cosmic rays are still unclear. There are models
for a variety of galactic and extragalactic objects that predict the acceleration
of hadrons to highest energies, making these objects potential candidates for
sources of high energy cosmic rays. If these theories are true, the same hadronic
processes must also generate very high energy neutrinos. Once an accelerated
proton produces a hadronic shower, the resulting charged pions can produce
neutrinos as described in equation 1 (Branching ratio >99.9%) followed by
equation 2. Charged kaons which are also produced in hadronic showers can
produce neutrinos either by decaying to charged pions (28%), resulting again
in equation 1, or directly to muons (64%), resulting in equation 2.

T = u + 0, (1)

7r+—>u++yu

poo— e +u, e (2)
ph = et + o, +ve

The existence of such a high energy neutrino flux has recently been con-
firmed by the IceCube neutrino telescope, published in [26] and [27], but it has
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not been possible to identify a source of the observed neutrinos.

In our galaxy there are several candidates for sources of high energetic
neutrinos. A promising candidate would for instance be supernova remnants
(SNRs). The shock front generated by the immense release of energy during a
super nova explosion propagates into the surrounding interstellar medium. By
repeated scattering in front of and behind this shock front, particles from the
interstellar medium can be accelerated to high energies. This acceleration pro-
cess is known as Fermi-acceleration. It is explained in detail in [28]. Probably
the most famous SNR, the crab nebula, is shown in Figure 4.

Figure 4: Supernova remnants like the crab nebula could be a source of cosmic
neutrinos. Taken from [29].

Apart from SNRs, also pulsars could be possible sources of high energetic
neutrinos. Pulsars are fast rotating neutron stars which have strong magnetic
fields, allowing them to accelerate charged particles powerfully.

Another possibility for galactic neutrino sources could be the jets of so
called micro-quasars, stellar black holes of a few solar masses accreting matter
for instance from a companion star.

The Fermi Bubbles are large extended regions in our galaxy that reach 50°
above and below the Galactic Center, with a width of up to 40°. They were first
described in 2010 in [30]. As their origin is not completely clear, the detection of
a neutrino flux originating from these bubbles would help clarify their formation.
A possible scenario could for instance be a jet produced at the Galactic Center,
which could also accelerate hadrons and thus produce neutrinos.

On the other hand models of these potential galactic sources show that
these phenomena can’t produce the most energetic observed cosmic rays, as
explained for instance in [31]. Therefore even more powerful mechanisms must
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be involved. As there are no such mechanisms known within our galaxy and
the gyroradius of these particles would already be larger than the extension of
our galaxy, the highest energetic particles are believed to be of extragalactic
origin.

One of the most promising candidates would for instance be active galactic
nuclei (AGNs), see [32]. AGNs have a massive black hole in the center of the
host galaxy. When matter is accreted and consumed by the black hole, jets are
formed orthogonal to the plane of the accretion disk. These jets could be an
excellent method to accelerate particles to highest energies. An image of such
an AGN can be seen in Figure 5.

Optical

Radiocontinuum X ray + Optical + Submillimetre + Radio Composition

Figure 5: The AGN Centaurus A as overlay of multiple wavelength measure-
ments. Taken from [33].

Another interesting possible source could be gamma-ray bursts (GRBs).
They are short but very intense outbursts of highly energetic y-radiation. As
they are distributed isotropically over the sky, it was realized quickly that they
must be of extragalactic origin, see for instance [34]. The typical timescale
of GRBs is rather short, with two different timescales being observed. Short
GRBs have a lifetime of below 2 seconds, whereas typical long GRBs last up
to minutes. After both types a longer afterglow can be observed. Possible
explanations for GRBs include for instance the collapse of a massive star to a
neutron star or a black hole. More insight on GRBs can be found for instance
in [35] or [36].

There are several other extragalactic objects which might contribute to the
production of high energetic neutrinos. A more complete list is given for in-
stance in [31]. But besides the already suspected candidates, of course there is
also the possibility that the involved mechanisms are still unknown or not fully
understood yet.
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2.2 Propagation

Once a neutrino is generated at its source, it is hardly influenced during its
propagation through space. As they are electrically neutral, they cannot be
deflected for instance by galactic or extragalactic magnetic fields along their
path. As explained in [12], they are not influenced by gravitational effects
significantly more than photons due to their small mass and high velocity. This
makes them ideal candidates for astronomy, since, unlike photons, they can
traverse dense matter. Cosmic rays on the other hand are charged particles
and therefore, except for extremely energetic ones, are deflected by magnetic
fields along their way, obscuring their origin.

Since neutrinos oscillate between the three flavor states and the typical
traveling distance is far longer than the distances required for oscillation to
occur at the considered energies, the expected flavor ratio of cosmic neutrinos
on earth is 1:1:1, regardless of the original flavor(s) that have been produced at
the source, see for instance [37].

2.3 Detection

The biggest advantage of neutrinos for astronomy, their low probability to inter-
act between the source and the Earth, becomes the most relevant disadvantage
when trying to detect them with a neutrino telescope. A direct detection of
neutrinos is beyond the capabilities of todays technology. Therefore the detec-
tion of neutrinos has to rely on the secondary particles created when a neutrino
interacts via the weak force with a nucleus of the matter it traverses. The
deviation between the direction of the neutrino and of the produced secondary
particle is small at the energies relevant for this thesis as shown in [38], page 43.
For example the median angular difference betweeen the direction of a muon-
neutrino with an energy of 1 TeV and the muon resulting from a CC interaction
is below 1°.

There are two possibilities for interactions between neutrinos and matter.
The interaction can occur as a neutral current (NC) interaction with a Zy boson
as a mediator, shown in Figure 6, or as a charged current (CC) interaction, with
a W or W~ as mediator and the charged lepton corresponding to the flavor
of the neutrino as resulting secondary particle, shown in Figure 7.

Viet

Figure 6: Feynman graph for the deep inelastic neutral current neutrino inter-
actions of all flavors. From [39].
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Figure 7: Feynman graphs for the deep inelastic charged current neutrino in-
teractions. From [39].

If the interaction occurs in a dielectric medium and the produced charged
secondary particles move faster than the speed of light in this medium the so
called Cherenkov radiation, described for instance in [6] and [40], is emitted at
a characteristic angle O .

1
O = arccos i (3)
Equation 3 shows the dependence of © on the refractive index of the medium
n and the velocity v of the traversing particle with 8 = v/c. ¢ denotes the speed
of light in vacuum. For the considered energies and seawater this angle is about
42°. A schematic of the emission of Cherenkov light is shown in Figure 8. This
light can be measured to detect the neutrino and to reconstruct its properties.
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Figure 8: Schematic of the emission of Cherenkov radiation along the track of a
particle. S’ marks the starting point where the interaction took place, S is the
current position of the particle. Due to the movement of the particle, which is
faster than the speed of the light in the medium, a cone shaped light front is
formed. Image taken from [39].
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3 ANTARES

As explained in chapter 2.3, secondary particles produced by neutrino interac-
tions emit Cherenkov radiation, which can be detected. Photomultiplier tubes
(PMTs) can be used to measure these photons. Since the probability that a
neutrino interacts close to a PMT is low, a large volume covered by a high
number of PMTs is favorable. Of course this volume has to be filled with an
optically transparent medium to allow the photons to propagate to the PMTs.
Since a neutrino interaction only produces few photons compared to a visible
light source, as few other light sources as possible should be interfering with
the measurement, making the deep sea or deep in the antarctic ice favorable
options for the location of a neutrino telescope. From the position, time and
amplitude information measured by the PMTs, the direction of the secondary
particle and therefore of the neutrino can be reconstructed and its energy can
be estimated . All modern neutrino telescopes follow this general scheme. At
the time this thesis is written, ANTARES (“Astronomy with a Neutrino Tele-
scope and Abyss environmental RESearch”) is the largest operating neutrino
telescope in the Northern Hemisphere. It is located in the Mediterranean Sea!,
40 km from the French coast near Toulon at a depth of 2475 meters to partly
shield it against muons produced in the atmosphere. It uses the water of the
deep sea as optical medium for neutrino detection.

The international ANTARES collaboration consists of 32 institutes from
France, Italy, the Netherlands, Germany, Spain, Russia and Morocco.

3.1 Detector layout

The PMTs measuring the Cherenkov radiation in ANTARES have a diameter
of 25.4 cm. They are enclosed in glass spheres together with some necessary
electronics. These spheres are called optical modules (OMs). Three OMs and
some additional electronics are grouped together in so called “storeys”. The
OMs of each storey have a spacing of 120° between them to optimally cover the
whole surrounding. The structure of a storey can be seen in Figure 9. Each OM
is oriented downwards by 45° because about 10% times more muons generated by
cosmic ray interactions in the atmosphere than from neutrino interactions reach
the telescope from above, resulting in a large background. On the other hand,
only neutrinos reach the telescope from below, as they are able to traverse
the earth. Therefore ANTARES has been optimized for upgoing muons. A
schematic visualizing the possible paths of muons that can reach ANTARES is
shown in Figure 10.

Twenty-five storeys? are attached to each line with a distance of 14.5 m
between the storeys. The layout of ANTARES contains 12 of these lines that
are anchored at the sea bottom, each held upright by the buoyancy forces of a
buoy attached at the top of the line and of the OMs along the line. The lines
have a mean distance of about 70 meters between them. The footprint of these
lines can be seen in Figure 11. All together this setup results in an extension of

'42°48'N, 6°10'E
20One line has only 20 instead of 25 storeys
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Figure 9: An ANTARES storey with the three OMs. Taken from [41].

about 210 by 210 by 350 meters and an instrumented volume of about 0.01km?.
An artists impression of the overall structure can be seen in Figure 12.

Since the whole setup is exposed to sea currents, the lines are not always
aligned exactly vertically. This effect is compensated by a calibration of the
telescope geometry. The measurement of the current geometry is performed
every two minutes using acoustic emitters and hydrophones located at every
fifth storey. With the help of other techniques, these measurements allow po-
sition calibrations by triangulation with a precision of < 10 c¢m, see [44]. The
obtainable time resolution, also achieved by sophisticated calibrations, is at a
level of 1 ns.

Many more details about the components, structure, calibration and oper-
ation of ANTARES can be found for instance in [7].

3.2 Event processing

ANTARES follows the “all data to shore” concept, meaning that all measure-
ments above a certain low threshold are sent to a computer farm at a shore
station via optical cables. The measurements are then called a “hit”. Every hit
has a timestamp assigned by the electronics. Therefore the hits generated by
the same physical event at similar times can be grouped together by the data
processing chain to be recognized as one "event”, sometimes also referenced as
a “frame”.
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Figure 10: Sources of muons in ANTARES. Atmospheric muons from cosmic
ray interactions in the atmosphere reach the detector from above, but only
from interactions of muon-neutrinos can muons reach it from below. Image
taken from [42].

To filter out events that contain only noise, caused for instance by biolumi-
nescence, algorithms analyze the incoming data before they are stored. There
are many ideas about how these so called triggering algorithms or “triggers” can
search for potentially interesting events. In ANTARES they rely on a preselec-
tion of the measured hits, where only hits above a threshold or in coincidence
with other hits on the same storey are analyzed further. The trigger algorithms
then analyze these preselected, so called L1 hits. If any of the simultaneously
active trigger algorithms identifies an event as potentially interesting, it is writ-
ten to disk together with the hits contained in a time window of + 2200 ns
before and after the first and last triggered L1 hit. In this thesis two trigger
algorithms are used for data selection.

e 3N trigger:
It searches for L1 hits that fulfill equation 4:

Al

Cmedium

|AL] < (4)
with At being the time difference between two hits, Az the distance
between the position of these two hits and ¢pegium the speed of light in
seawater.

If a cluster of at least five connected hits that fulfill this criterion is found,
the hits are checked if they are compatible with a muon trajectory. If this
is the case, the event is triggered by the 3N trigger.
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Figure 11: Footprint of the lines in the ANTARES telescope. Taken from [42].

o T3 trigger:
At least two of the L1 hits are detected on neighboring storeys within 100
ns, or on next to neighboring storeys within 200 ns. If an event contains
two of these coincidences, the T3 trigger keeps the event.

More information on the trigger algorithms can be found for instance in
[45], [46] and [47].

The data taking in ANTARES is organized in so called “runs”. A run
typically lasts several hours and is intended to be a data taking period of similar
conditions. The runs are identified using a runnumber, which is a six digit
number. Until today for every run the first digit of the runnumber is zero. This
leading zero will be omitted when listing runnumbers in this thesis.

Since one storey doesn’t provide enough information to reconstruct an event
decently, but low-energetic events often do not produce enough light to be
observed by multiple storeys, a neutrino telescope has a lower limit for the
energy of reconstructable events depending on the geometry, the data taking
conditions and the applied reconstructions. For ANTARES this lower limit lies
somewhere around 10 GeV, depending on the exact evaluation methods.
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Figure 12: Overview over the ANTARES neutrino telescope. Based on a de-
piction from [43].

3.3 Event signatures

With the achievable resolution of ANTARES one cannot distinguish all possi-
ble types of neutrino interactions from each other. With three neutrino flavors,
two possible interactions per flavor and one antiparticle per particle, in prin-
ciple there are twelve different interactions. Since there is no way to measure
the charge of the generated particles, the interactions of particles and antipar-
ticles look alike. From the remaining six interactions all neural current (NC)
interactions produce indistinguishable hadronic cascades, also called hadronic
showers. This is indicated in the overview in Figure 13, with only four differ-
ent signatures remaining. For energies relevant in ANTARES the signature of
all particle cascades is almost pointlike. This can be seen in Figure 14, where
the traveling distances for showerlike events are short, keeping in mind that
the distance between two lines is about 70 meters in ANTARES. To resolve
those structures a much denser detector is necessary, like for instance Super-
Kamiokande, see [48], but these detectors do not yet cover such large volumes.
With the dense instrumentation of future projects like ORCA, described in [49],
it will be possible to resolve such small structures even for large volumes.

The charged current (CC) interactions of neutrinos produce the lepton corre-
sponding to the flavor of the neutrino, accompanied by a hadronic shower. The
electron created by v, CC interactions produces an electromagnetic cascade with
a pointlike signature that is so similar to the ones generated by hadronic cas-
cades that these cannot be distinguished with ANTARES for individual events.
Therefore the interactions c¢) and d) in Figure 13 can be considered to have the
same signature.
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Figure 13: Possible event signatures for a neutrino telescope. Taken from [50].

In contrast to that, muons created by v, CC interactions travel considerable
distances depending on their energy as seen in Figure 14. With a typical energy
loss, the track length of muons between 100 GeV and 1 TeV can already surpass
the instrumented volume of ANTARES.

Since they emit light along their path, their signature is elongated and
tracklike. Therefore muon-neutrinos can be distinguished from the showerlike
event signatures. The signature of v, is highly energy dependent. For ener-
gies below 100 TeV these events look pointlike since the 7 has a lifetime of
(290.3 +0.5) - 1071 s (see [17]) and therefore decays quickly, producing a sec-
ond cascade within or next to the first hadronic one, making it similar to the
V. signature. The expected traveling distance increases rapidly with energy at
about 50 m/PeV, theoretically resulting in a tracklike event signature for high-
est energies. In between these two cases, a so called “double bang” signature
is expected. Due to the size of ANTARES, it is unlikely that both cascades
can be observed within the detector volume and can be distinguished from an
ordinary track event with an additional energy loss due to a shower along the
track. Furthermore, a nu, can also result in a track if the produced 7 decays
to a p, which occurs in about 17.4% of all events, see [17].

This leaves us with two distinguishable signature types, the pointlike shower
events and the elongated tracklike events as seen in Figure 15.

Due to its elongation the tracklike signature contains more information
about the direction and therefore also allows a more precise direction recon-
struction. The small size and the symmetrical shape of pointlike cascades
render a direction reconstruction especially tricky. Although there has been
substantial progress on this topic in recent years, see for instance [39], no com-
petitive level is reached yet. Therefore this analysis uses tracklike signatures
only.

3.4 Backgrounds

The desired signals are highly relativistic upgoing muons generated by cosmic
muon-neutrinos. Besides a background level of about 3 kHz per PMT by elec-
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Figure 14: Travelling distance for different events in water as a function of
energy. Taken from [50].

tronics [42], an omnipresent background for this measurement in ANTARES
are photons emitted by the radioactive decay of legK. This isotope is contained
in natural sea water and, by the decays explained in equations 5 to 7, produces
electrons with energies above the threshold for Cherenkov radiation.

DK OCate +7  (89%) (5)
‘ng—ke_ — LllgAI"f‘Ve (11%) (6)
DK > DAr+et 4o, (0.001%) (7)

This decay produces rates of about 37 kHz per PMT. As it can only be detected
in the direct vicinity of OMs, this process generates uncorrelated background
patterns and is therefore suppressed by the requirement of correlations on more
than one storey.

Another omnipresent source of background is bioluminescence caused by
multiple species of microorganisms as well as larger animals in the deep sea.
An example for one of the larger culprits can be seen on the left in Figure 16.
While the amount of light produced by the decay of ‘lng is very steady, the
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Figure 15: Actually distinguishable event signatures for a ANTARES. Modified
from [50].

amount of bioluminescence is highly variable and influenced by different factors
for instance the sea current, as shown in Figure 17. In some cases the light
pattern caused by bioluminescence range over multiple storeys, but the pattern
and the timing is clearly different from what is expected for tracklike event
signatures. More information on the involved bioluminescence phenomena can
be found in [51].

Figure 16: Examples for bioluminescence in macroscopic animals, here a comb
jelly (left, from [52]) and an arctic comb jelly (right, from [53]).

Muons from interactions of cosmic rays in the atmosphere produce the
largest amount of triggered events, as they are orders of magnitude more fre-
quent than muons from neutrino events, see Figure 18. This problem may seem
like it can be solved entirely by only considering upgoing muon tracks with a
zenith angle® © 7 > 90° (or cos(0z) < 0 in Figure 18).

Unfortunately there is a small chance that the hit pattern produced by
downgoing muons looks similar to an upgoing muon-neutrino event and there-

3Chapter 3.7 gives a brief introduction of the coordinate systems.
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Figure 17: Environment measurements from the deep sea and background rates
in ANTARES. There is a correlation observed between the optical rate in blue
and the sea current in black. Taken from [51].

fore they happen to be misreconstructed by the reconstruction algorithms. Al-
though the probability for this is tiny, the shear number of those events makes
misreconstructed downgoing muons one of the main backgrounds for data anal-
ysis. Two of the approaches that are explained later, especially in chapter 5,
deal with this problem. Depending on the accuracy of the filtering, the remain-
ing sample contains mostly upgoing muon-neutrino events.

This selection is dominated by upgoing neutrinos from interactions of cosmic
rays in the atmosphere on the other side of the Earth, which constitute an
irreducible background for the search of cosmic neutrinos. As a first order
approximation, these remaining background events are distributed isotropically
in each direction. While deviations from this isotropy are known, overall these
are too small to be relevant in this thesis. Furthermore, in the evaluation
method described in chapter 8, the numbers are derived from recorded data
and hence, to a certain extent, can take potential anisotropies into account as
explained in chapter 9.7. An analytical model for the flux of neutrinos can be
found for instance in [55] and [56].

Since the number of events expected from interactions in the atmosphere
is considerably larger than the number expected from any cosmic source, an
evaluation is required that recognizes the cosmic origin of neutrinos, for example
based on features like their energy or spatial distribution. This task is the main
focus of this thesis and will be addressed from chapter 8 onwards.

3.5 Software

The official software framework of ANTARES is called Seatray, described e.g.
n [57] and [58]. It is derived from the software framework Icetray, which is
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Figure 18: Angular distribution of the flux of muons above 1 TeV at the
ANTARES location and depth. Atmospheric muons dominate the downwards
direction almost up to the horizon. Taken from [54].

used by the IceCube collaboration. The framework is composed of several core
components which provide the necessary basic functionality and multiple so
called modules. These modules can be developed completely independent from
each other by different users, each for an own analysis or other purpose. Since
all modules are required to implement the interface defined by the Seatray core,
they can be shared and combined at will. The core is written in C++4, while
users are free to write their modules either in C++ or in Python.

The feature extraction and classification used in this thesis is contained in a
module called antares-rdfclassify. The functionality which is behind this module
is also available as a stand-alone version called SGClassify. The multiscale
source search is contained in a module called signal-first, which has been the
name of this search during development. These modules can be found in the
svn version control system of Seatray.

3.6 Simulations

To be able to evaluate the performance of data analysis algorithms in detail one
would need a large sample of events for which all relevant information (Particle
type, interaction position, energy, direction, for some evaluations even the pro-
duced secondary particles, ...) has to be known. Since it is virtually impossible
to obtain this without any errors for recorded events, precise simulations have
to be conducted, generating events where this information is available. This is
achieved by stepwise Monte Carlo simulation (MC) of all involved processes.
More detailed information on this topic than what is presented here can be
found in [42].
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1. Event generation

A tool called GENHEN is used to generate neutrino events according
to the expected flux. Documentation on the internals of GENHEN can
be found in [59] and [60]. The outcome contains the trajectory of the
primary particle (the neutrino) as well as long lived secondary particles
(e.g. muons). The energy distribution of the events is expected to fol-
low a power law with a spectral index of approximately -2.0 for cosmic
neutrinos. As the simulation of these energy distributions would result
in little available statistics for events with high energies, a harder energy
spectrum is simulated and the events are assigned a numerical weight to
be able to reweight each event according to any desired flux afterwards.
The details of this weighting process are described for instance in [61] or
[42].

The background of atmospheric muons with a spectral index of -3.7 is
simulated using a tool called MUPAGE, see for instance [62]. The prop-
agation of the particles to the telescope is simulated by a code called
MUSIC [63].

2. Photon emission and propagation
The Cherenkov light emitted by all particles generated by the previous
step is calculated by a program called KM3. As the tracking of each
generated photon would be too intense computationally, a lookup table is
used to model the generation, propagation and scattering of the photons
between the track of the particle and the PMTs detecting them. This
lookup table is based on fullscale simulations conducted with GEANT.

In addition to that, there is light produced by particle showers which
occur along the tracks of the high energetic particles. To simulate these
particle showers a tool called GEASIM is used. Internally it relies on
GEANT for the simulation of the generated light, too.

3. The detector response

The outcome of the previous step are all photons that arrive at the de-
tector. The next step is to simulate the behavior of ANTARES. The tool
used for this task is called TriggerEfficiency. Information about the in-
ternals of this tool can be found in [64]. It simulates the response of the
PMTs to the incoming photons and the effect of the currently active cali-
bration on the electronics. The detected simulated hits are then processed
the same way as measured hits as described in chapter 3.2.

To obtain simulations that better reflect the actual data taking and de-
tector conditions, the simulation chain has been adapted to include the ex-
act, calibrations of the ANTARES neutrino telescope which were actually used
during the simulated data taking periods. This also includes the duration of
individual runs, conditions like e.g. the bioluminescence rate and the soft-
ware setups. These individualized simulations are called run-by-run simulations
(RbRs). There are two different versions of these simulations used in this thesis.
The difference between RbR 2.2 and RbR 3.0 are the included versions of the
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used simulation tools. This thesis is written during the transition phase from
version 2.2 to version 3.0. While in principle RbR 3.0 offers the best available
simulation, RbR 2.2 are still used whenever there were not enough RbR 3.0
simulations available to guarantee a reliable evaluation.

3.7 Coordinate systems

Three different coordinate systems are especially useful for the understanding
of the argumentations and results presented in this thesis.

First of all, there is the local coordinate system of ANTARES. It is defined
by two angles, zenith © and azimuth ®. The zenith angle ranges from 0 to
180 degrees. A zenith angle of 0° denotes a downgoing direction, directly from
above ANTARES. A zenith of 90° is a horizontal direction and a zenith angle
of 180° corresponds to a straight upgoing direction from below the telescope.
The azimuth ranges from 0° up to 360° and specifies the rotation around the
z-axis. An azimuth of 0° denotes the easting direction, 90° northing. Event
reconstructions for example give their results in this coordinate system. Figure
19 shows the final event sample, obtained as explained in chapter 7, in local
coordinates.

90°
60°

30°

Figure 19: Distribution of the selection of neutrinos described in chapter 7 in
local coordinates of ANTARES.

The second relevant coordinate system in this thesis is the equatorial co-
ordinate system. In contrast to the local coordinate system, which revolves
with the Earth, a fixed point in the sky, for instance a distant star, has fixed,
unique coordinates in the equatorial coordinate system. The two angles that
identify a point in this system are called declination § (from -90° to +90°) and
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right ascension « (from 0° to +360°). Equatorial coordinates are constructed
such that all points on a projection of the equator of the Earth on the sky
have a declination of 0°. The direction straight above the north pole has a
declination of +90°, straight ”"below” the south pole is -90°. Analogous to the
azimuth in local coordinates, the right ascension defines the rotation around
the z-axis. Using equatorial coordinates to map the sky has the useful property
that the visibility of ANTARES is approximately constant for all regions that
have the same declination, making it the coordinate system of choice for most
of the evaluations in this thesis. The distribution of the final event sample in
equatorial coordinates is shown in Figure 20. Instead of the right ascension in
degrees, this degree of freedom is often given as the so called hour angle, in
hours, minutes and seconds, ranging from 0 to 24 hours. The exact coordinates
of an object slightly vary over time due to the nutation and precession of the ro-
tation of the Earth, and over larger time scales also due to the movement of the
objects themselves. Considering the resolution of current neutrino telescopes,
these tiny changes aren’t relevant for neutrino astronomy (yet).
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Figure 20: Distribution of the selection of neutrinos described in chapter 7 in
equatorial coordinates.

The third important coordinate system is the galactic coordinate system.
Similar to equatorial coordinates, a fixed object in the sky has unique fixed
galactic coordinates, too. The two angles are called galactic latitude b (-90°
to +90°) and longitude ! (-180° to 4+180°). Instead of being oriented at the
equatorial plane of the Earth like equatorial coordinates, galactic coordinates
are based on the galactic plane, which is the plane the galactic disk revolves in.
An object with a galactic latitude of 0° is located exactly in this plane, so many
galactic objects have a latitude close to 0°. A positive latitude defines objects
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”above” the galactic plane ("above” corresponding to north on earth), negative
latitudes are below the galactic plane. A galactic longitude of 0° corresponds
to the direction of the galactic center, + 180° defines the rotation to the left
and to the right. A schematic of the construction of galactic coordinates can be
seen in Figure 21. Figure 22 shows the night sky in galactic coordinates. One
can see nicely the benefit of this coordinate system for galactic astronomy, as
the plane of our galaxy separates the upper and the lower part of the skymap.
The distribution of the final sample of events in galactic coordinates is shown
in Figure 23. A reference for the location of some nearby galaxies in both
coordinate systems can be seen in Figure 24.

North Galactic Pole
90° lat

180° long

1-80° fat
South Galactic Pole

Figure 21: Concept of galactic coordinates. Modified from [65].
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Figure 22: The location of the galactic plane in galactic coordinates. Modified
from [66].

Figure 23: Distribution of the selection of neutrinos described in chapter 7 in
galactic coordinates.
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Figure 24: Locations of some nearby galaxies. a) in equatorial and b) in galactic

coordinates.
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4 Pattern recognition

Pattern recognition in a nutshell is the science of finding interesting structures
in data. One of the simplest approaches to perform such a recognition is to
apply a threshold to a variable, where events are considered signal above the
threshold and background below. Of course in many applications, especially
with complex data or more differentiated goals, one can improve considerably
if a more sophisticated approach is used. This chapter introduces the basics
of pattern recognition which are helpful for the understanding of the solutions
presented in chapters 5 and 6.

4.1 Pattern recognition overview

Classical pattern recognition usually involves the individual steps as depicted
in Figure 25:

I Scene I | Image | | Image | | Object I I Features | | Results |

SN Feature BN
extraction

Learning J
Data reduction Complexity

Figure 25: The pattern recognition pipeline (here for images). These are the
steps commonly involved in a pattern recognition solution. Taken from [67],
original from [68]. Image credit: Thomas Wittenberg

Image- NN
acquisition

» Classification

Preprocessing Segmentation

1. Data acquisition
The first step in data analysis is the acquisition of the data. For a digital
processing the data has to be sampled and quantized. Every day examples
for this step are digital cameras or cell phones for images and speech. In
the context of this work the PMTs and the electronics of the ANTARES
neutrino telescope perform this task.

2. Preprocessing
Measurements usually contain noise or artifacts. Often these can be re-
duced at least partially, for instance by the application of filters to the
data. Common examples include Gaussian and median filters, normaliza-
tions or edge detections.
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3. Segmentation

Segmentation means identifying the possibly interesting parts of the data
for further analysis. While this may seem like a simple task, in many
applications it turns out to be surprisingly difficult, yet also essential.
The variety of methods ranges from simple thresholds in black and white
images to complex algorithms, for instance the Color-Structure-Code [69].
For ANTARES multiple steps can be seen to fulfill parts of this duty, for
instance hit selections or the triggers.

4. Feature extraction
Features are numbers describing the measured data in a way which is
comparable between multiple recorded events. For images this could for
instance be the size of an object found by segmentation. In many cases
transformations can also be used to describe the data, for instance Fourier
or Wavelet transformation. A typical example for a feature for ANTARES
data would be the outcome of a reconstruction algorithm.

5. Feature selection

It is important to use meaningful features, since numbers which are un-
correlated to the current task don’t benefit the classification and can even
decrease the achieved performance. A tricky aspect is that sometimes fea-
tures are hardly meaningful on their own, but allow to exploit valuable
correlations in combination with other features. If the number of features
permits an exhaustive search this would be a favorable option as it is
guaranteed to find the global optimum. In cases where this is not fea-
sible other approaches can be used, for instance feature transformations
like the Principle Component Analysis (PCA) or the Linear Discriminant
Analysis (LDA). In cases where a clear and broad global optimum exists
without other pronounced (local) optima, even a simple greedy search
approach can lead to the desired result. A more robust approach than
greedy feature selection, that is also applicable to high dimensional feature
spaces, is described in this thesis in chapter 5.4.

6. Training

Labeled data is data for which the desired outcome of the task is known.
For all supervised learning algorithms it is required to train a model that
maps the observed feature input to the desired output. The outputs
are so called classes, integer numbers that represent one group of events
that share a common property. A simple example that is used in this
thesis is the separation in upgoing or downgoing events, considered signal
and background. But also more complex assignments are possible like
an estimation which is the best reconstruction algorithm for an event.
Examples for such algorithms are artificial neural nets, decision trees or
support vector machines.

Regression is an approach similar to classification, but the outcome is not
an integer class number but a continuous value. This is especially useful
for applications which try to estimate missing variables, but it is not used
in this thesis.
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A different branch of methods would be unsupervised learning. These
methods use similarities in the data to automatically identify classes. A
widely known example is nearest neighbor clustering. Due to the require-
ment to identify certain, a-priori defined event signatures, only supervised
learning strategies are considered in this thesis.

7. Classification
The trained model is applied to new data to estimate the outcome. A
classification of labeled data which have not been used for the training
can be used to evaluate the quality of the model and therefore to estimate
the accuracy of the outcome on unlabeled data.

The preprocessing and feature computation are application specific for the
different tasks in this thesis, but the classification algorithm is the same for all
tasks and therefore its concept is briefly introduced here.

Much more information about various aspects of pattern recognition and
the mentioned methods and concepts can be found for instance in [70], [71] and
[72].

4.2 Random Decision Forests

There is a vast variety of classification algorithms available today, each with
specific advantages and disadvantages. The selection of the classification algo-
rithm for this thesis has been done based on a comparison of several algorithms
as described already in [67]. The best performing method at that time has
been the Random Decision Forest (RDF). Due to its favorable properties like
a high classification accuracy, robust behavior, tolerance for correlated features
and relatively fast execution times, the RDF algorithm has been used for all
classification purposes in this thesis.

The concept of a RDF was first introduced in [73]. It is based on the decision
tree model. A decision tree consists of so called “nodes”. In the simplest and
also most common case one node performs one decision on one feature. For
instance it can test the value of feature number seven to be greater than 1.0.
Depending on the outcome of this decision, a different linked node is traversed
next. These linked follow-up nodes are called children nodes. Trees which are
limited to two children per node are called binary trees. The first node in a tree
is called root. Nodes without children are called leaves. These leaves can either
simply contain one clearly assigned output (the class the event belongs to) or
probabilities for different outputs. This structure allows to assign one output
to one set of input variables. A simplistic example for a decision tree with two
features F1 and F2 and two classes C1 and C2 is shown in Figure 26.

While this concept on its own is working well, many attempts to improve
its performance have been made. The RDF tries to make use of the internal
variation included in the data used for training the model. This is achieved by
training an ensemble of multiple decision trees. But instead of using exactly
the same data for each training, which would result in the same tree again
and again, only a random subset of the training data and a random subset of
the features is used for each tree. This produces decision trees that are able
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Figure 26: A very simple example for a decision tree with two features F1 and
F2 and two classes C1 and C2. The evaluation starts at the top. Each node
represents one decision on one feature. The outcome of this decision determines
which node to visit next. The rectangular final nodes, so called leaves, contain
the result.

to generalize the contained information better than one single tree. The final
decision which class is chosen for an event is obtained by a majority vote of
the trees. The percentage how many trees agree on the class output can to a
certain extent be used as a quality parameter. The implementation has been
forked from the 2011 open source version of the alglib library, see [74]. If not
stated otherwise, the parameters used for the training of the RDFs are set to
101 trees and for each individual tree a random subset of 60% of the events and
of 2-/n features is used for the training, with n being the number of available
features here. For the case of 804 features which is explained in chapter 5, this
results in 57 features for each training. These values have first been optimized
in a parameter study in [67] and since then some have been fine tuned further
by observations on new datasets.

There are many algorithms for the training of a decision tree. Famous ones
include for instance CART [75] or ID3 [76]. In general the optimization task is to
determine which variable to use for the next split and where to set the threshold
for this split. Since a globally optimal solution is very hard to compute (np-
complex, see for instance [77]), most algorithms aim to generate ”sufficiently
optimal” trees by an iterative greedy selection. The training algorithm used
in the implementation also follows this greedy selection scheme. To determine
the next optimal split several metrics are commonly used, for instance the Gini
impurity or the information gain. Further information on the properties and
details of various training algorithms in general can be found in [75] and [76].

The RDF algorithm has some favorable properties for an application in this
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thesis. For instance the highly popular class of boosted, tree-based algorithms
also trains multiple trees, but increases the weights of events based on the
classification result of previous trees. While this often achieves an even more
accurate classification result in cases where the available labeled data represent
the data in the application sufficiently well, it’s performance is less stable if
there are systematic deviations between the datasets. These can potentially
occur when a classifier trained on simulations is applied to recorded ANTARES
data. Compared to properly trained artificial neural networks (ANNs) the
performance can be expected to be similar, but most tree based algorithms are
less sensitive to imperfectly selected features. Strong correlations between the
features or features without useful information for the current classification task
can in the worst case prevent the training of an ANN from reaching a stable
optimum (in a reasonable amount of time). Based on the achieved performance
in many other applications?, the recent development of deep neural networks is
considered a promising candidate to further enhance the solutions in this thesis
involving classification.

4.3 Evaluation

When it comes to the evaluation of the performance of a classification one simple
rule is to be followed at all times: Never evaluate on the same data that has
been used for training. Otherwise the obtained numbers will be unrealistically
good, but they do not at all represent the performance of the classification in
a realistic application on unseen data. This can be avoided by a separation
of the available data into a disjunct training and test set. The drawback of
this method is, that events which are in the test set are never used for training
and events in the training set are not evaluated. This can easily be solved
by performing a second training and evaluation with interchanged datasets.
These results already give a first impression of systematic effects influencing
the model, but only with a “statistic” of two numbers. Additionally most
algorithms benefit from more data used for training, so a model trained on
the full dataset is likely to show a better performance than one trained only
on half of the dataset. These considerations lead to the default evaluation
method, cross-validation. It is the standard way to evaluate the performance of
a classifier introduced in almost any book on classification, for example also in
[71]. N-fold cross-validation splits the available dataset into n random, disjunct
subsets. Then the first n — 1 parts are used for training and the nth part is
evaluated. The process is repeated n times, each time with one different subset
used for evaluation and all remaining subsets combined as the training set. This
guarantees, that every event has been considered in the evaluation, while a large
fraction of the available dataset can be used for the training of the model each
time. The ideal, extreme case would be leave-one-out cross-validation, where
in each fold only one single event is evaluated. But this also means, that for
a dataset with m entries also m repetitions of the training process have to
be performed. While this constitutes the optimal case for smaller datasets, it

“See for instance comparisons at [78]
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usually is neither computationally feasible nor required for large datasets. In
this case a number of folds n < m is chosen such that the evaluation fits the
requirements.

To assess the performance of the presented classifications some specific terms
are useful. In this thesis the term efficiency of class X denotes the fraction of
events that actually belong to class X and are correctly classified to be class X.
If this efficiency is 1.0, all events of this class have been correctly identified. 0.0
means that no event of this class has been classified correctly. Purity of class
X denotes the fraction how many of the events that are believed to be of class
X actually are from this class. A purity of 1.0 means that no events from other
classes were classified to be class X. 0.0 means that only events that actually
are from other classes have been classified to be class X and none that actually
belonged to this class.

In the case of only two classes, signal and background, purity and efficiency
by default refer to the purity and efficiency of the signal class if not explicitly
stated otherwise.
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Part 11
Methods

This part presents the relevant aspects of the algorithms that have been devel-
oped for this thesis®.

All comparison plots are generated by discrete cuts. Therefore only marked
data points in the Figures correspond to computed results. Lines connecting
the points in some Figures are intended for visualization purpose only. Error
bars show statistical errors if not stated otherwise.

5Chapters 6 and 8 are based on ANTARES internal notes ANTARES-PHYS-2015-001 and
ANTARES-SOFT-2015-001, which are neither published nor publicly available.
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5 Up / Down classification

5.1 Previous work

As discussed in chapter 3.4, the desired signal of upgoing muon-neutrinos is ac-
companied by a high number of background events of misreconstructed downgo-
ing atmospheric muons. Common practice to get rid of these is to only include
events with an upgoing reconstructed direction and to require a very good re-
construction accuracy. The idea explained here uses a prefiltering of events
based on a classifier that distinguishes upgoing and downgoing signatures in
the telescope. The intention of this classification is to allow a less strict cut
on the required reconstruction quality, resulting in more neutrinos for analy-
sis. The foundation for this classification has already been described in [67],
but since then several optimizations have been introduced. The status was a
classification using a RDF with two classes (up and downgoing) based on 137
features designed for this task. This achieved a mean suppression of downgoing
muons of 90.8% and a mean efficiency for upgoing muon-neutrino events of 93%.
The main problem with this result was that the number of misreconstructed
atmospheric muons is orders of magnitude higher than the number of upgoing
events. Therefore a suppression of 90.8% is not enough, especially since many
of these events would also be suppressed by other cuts which are required for
an analysis.

A modified version of this classification software has been used to investigate
the possibility of a coarse energy reconstruction in [79]. It showed that the RDF
classifier, together with the already designed and some task specific features,
can successfully be applied to other tasks in ANTARES. This property is also
observed for the classification approach described in chapter 6.

5.2 Optimizations

One of the first optimizations has been to extend the feature space. The fea-
tures described in [67] all rely on one binning of the information belonging to
an event in 100 time bins. The length of these bins varies as the duration of the
events does, reducing the accuracy with which features based on this binning
can be compared between different events. The feature computation has been
extended to include the same computations as before in multiple different, fixed
time binnings. The median time of all hits of one event is used as the center of
these time windows, with a fixed time binning of + 250 ns and + 1000 ns for the
feature computation. In addition to that, the number of hit selections used in
the feature computation has been extended. In [67] the features were calculated
twice, once on all hits and once on L1 hits only. A reminder of the meaning
of these hit selections can be found in chapter 3.2. The updated version per-
forms a third computation of all features on all triggered hits, so all hits that
contributed to the activation of one of the triggering algorithms. New features
from intermediate steps of the previous feature computations were also added
for each of the nine feature computations (three different hit selections and
three different timing windows). In total this results in 783 features (87 instead
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of 68 features per computation). Besides these, externally computed features
are also incorporated. These are the outputs of two standard ANTARES direc-
tion reconstruction algorithms, namely “Aafit”, described in [38], and “BbFit”,
described in [80]. For each reconstruction algorithm the reconstructed direc-
tion and the various quality parameters are used as features. For the up/down
classification used in this thesis the final feature vector for each event contains
804 features.

To address the fact that the number of signal and background events is vastly
unbalanced (10° times more downgoing atmospheric muons), at one point dur-
ing the optimization of this classification a cut was introduced that requires
80% of all decision trees of the RDF to identify an event as upgoing to actually
accept it as upgoing signal. Events with an agreement below 80% were consid-
ered “probably still a downgoing muon” and therefore discarded. This variable
is called “RDFSafety” in the data processing.

In total these changes improved the accuracy of the classification to reach
a muon suppression of 97% while still preserving a muon-neutrino efficiency of
80%.

5.3 RDF cascade

As further optimization, this classification is now used as a two-step process to
reach a higher muon suppression while preserving roughly the same amount of
upgoing neutrino events. The second classification step can exploit the changed
distribution of parameters due to the changed ratio of downgoing atmospheric
muons to upgoing neutrinos and the specific properties of those downgoing
muons that survived the first step. A further improvement was observed when
the RDFs are not trained with the same number of events for both classes.
In general the distribution of instances between the classes should mimic the
distribution encountered in an application. But if the deviation between the
classes, depending on the actual classification task, becomes too large®, the
training can become unstable and tends to ignore underrepresented classes. As
the number of downgoing atmospheric muons in this task is tremendously larger
than the number of upgoing neutrinos, the actual distribution was replaced.
Asymmetric distributions for downgoing versus upgoing of up to 10:1 turned
out to give stable results for the first classification step. To include a safety
margin for later application, a ratio of 3:1 has been used for the training of the
first RDF step. Therefore the first step identifies unclear events as downgoing

5 Too large in this case means that completely ignoring the class with fewer events leads
to a smaller error. For example, in a two class classification where 99.9% of all events belong
to class 0 and only 0.1% to class 1, the classification reaches 99.9% accuracy by labeling
every event to be class 0. Therefore the training algorithm will optimize in that direction
if the fraction of correctly classifiable events (0.999 - Ey + 0.001 - Ey) is lower. (E, denotes
the efficiency for class x, the probability that events from class x are recognized to be from
that class.) So Ep should be greater than 1 — 8:88& - Ey. If we optimistically assume that
both efficiencies are equal (usually the efficiency of the smaller class is lower), then E should
already be greater than 99.9%. Since the efficiencies are more or less fixed for a task with given
classes and features, there is a maximal stable deviation in the number of events between the
classes. In reality the effect is a continuous trend, not a sudden change in behavior.




5.4 Feature selection 47

muons and can be seen as a course filtering to remove most of the muons. The
training of the second step was performed with a ratio of 1:2, so with more
neutrinos than muons. The effect is that the second step is very careful not to
lose neutrino signal and is intended to only remove muons that can be identified
easily due to the shifted distributions of the classes after the first step. For the
given classification task the cascade with these distributions between the classes
outperforms cascades with homogeneous or inverted distributions. This two-
step cascade of RDFs allowed to drop the previously required cut of 80% tree
agreement, but of course this can still be applied if needed.

The final achieved accuracy of this improved classification reaches a mean
muon suppression of 99.85% + 0.1%(stat.)£0.02%(syst.) and a mean neutrino
efficiency of 81.7% £ 0.5%(stat.) £ 0.8%(syst.). The systematic errors here are
estimated based on cross-validation results. They only account for the system-
atics of the classification, not those introduced by the detector, the simulations
or the rest of the data analysis. It may not be intuitive to interpret the dif-
ference between the final RDF cascade result and the intermediate step. The
2.85% gain in muon suppression (from 97% to 99.85%) may not seem like much,
but it results in a remaining number of atmospheric muons of 0.15% instead of
3%, which in the end means 20 times less atmospheric muons.

The result of this RDF cascade is shown energy resolved in Figure 27. To
generate this plot, Run-by-Run Monte Carlo simulations version 2.2 have been
used (See chapter 3.6 for more information on the simulations). It includes
muon-neutrinos and atmospheric muons that were triggered by the triggering
algorithms described in chapter 3.2. One can see that the efficiency with which
muon-neutrinos are identified is relatively constant above an energy of 100 GeV.
The suppression of atmospheric muons is very high for lower energies. The drop
at higher energies is caused by the low statistics in the simulations for high-
energetic events.

A comparison of cascade depths (numbers of RDF steps) and quality cuts
showed that a second step is more efficient than requiring a higher RDFSafety
value, but adding a third step is less efficient for this task.

5.4 Feature selection

An issue for the up/down classification in [67] was found to be the optimal
selection of the features to use. The approach had been to use genetic algorithms
for this optimization task. See for instance [81] or [82] for more information
on their usage in optimization. Although in theory they could be flexible and
directed enough to find an optimal solution in a reasonable amount of time, this
approach turned out not to converge to any stable optimum. Since the feature
space is high dimensional and the classification method is highly nonlinear, a
greedy search that iteratively selects only the one feature that gives the highest
gain in performance did not provide a stable solution either. In this context
greedy searches starting with empty, full and partially filled feature subsets
have been tested for addition and removal of features. An exhaustive search
approach that simply tests all possible combinations of features is no option
for computing time reasons here, as the feature space is large and the possible



48 5 UP / DOWN CLASSIFICATION

1

0.95 =
o
© 0.9 _
>
g 0.85 .
©
5 08 1
©
SILE) 0.75 .
0
© 0.7 -
O

0.65 |- Neutrino efficiency ———— .

0.6 ‘ | Muop supﬁ)ressi?n I—‘—I |

0 1 2 3 4 5 6 7 8
Logig(Energy / [GeV])

Figure 27: Neutrino efficiency and muon suppression versus energy for the two
step RDF cascade on RbR 2.2. The simulated events are weighted with an F—2
spectrum.

combinations are too numerous.

Therefore a different method of optimization one might call a “greedy en-
semble” has been designed to solve this problem. The idea is to heuristically
combine some of the selection criteria from genetic algorithms with the focused
direction and short runtime of a greedy search algorithm.

The search starts with an empty solution. In the first iteration the empty
solution is extended by one single feature that yields the best performance on
its own. Since this decision must be based on a certain data sample, but might
change for a different sample, the search for the optimal feature is performed N
times, each time on a random subset of the training data. All different solutions
that are generated by this process are kept. The number of new solutions per
old solution cannot be greater than the number of tested subsamples N, and
it is at least one in cases where all evaluations agree on the same feature. The
result is an ensemble of M solutions, depending on how many features have
been found to be the best possible addition for one of the previous subsets. M
denotes the current number of solutions here. As an example the first iteration
might result in M = 2 solutions with solution S1 containing feature F5 and
solution S2 containing feature F8.

In the second iteration the same process is repeated for each of the M
solutions that were found in the first iteration. For the given example the
extension of S1 might lead to a new solution S3, which contains F5 and F8, a
solution S4, that contains F5 and F6, and a solution S5, which contains F5 and
F12. The same is done with the old solution S2, which could result e.g. in S6
with F8 and F5 and S7 with F8 and F1.
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Although equal solutions like S3 and S6 can be treated as one solution, due
to the exponential growth of the number of solutions this scheme quickly reaches
a very large number of solutions to process in each iteration. Since testing tens
of thousands of solutions in each step is not computationally feasible, a cutoff
is applied at the end of each iteration. The set of all currently found solutions
is reevaluated again on a larger fraction of the full data sample and only the
K best performing solutions are kept for the next iteration. For solutions that
have already been reevaluated multiple times, the mean of all evaluations is
used, increasing the accuracy of the estimate over time.

This pruning of the list of found solutions keeps the runtime of each iteration
almost constant also for large feature spaces. If K is set to 1, the scheme is
mostly equivalent to a greedy search algorithm. In this case this approach
inherits the main drawback of a greedy search, the tendency to get stuck at
a local optimum. With a larger but fixed number of solutions per iteration
this tendency gets reduced, but not eliminated. On the other hand, apart from
effects due to hardware limitations like cache sizes, the runtime per iteration and
therefore of the whole process scales linearly with the number of kept solutions.

This iterative scheme stops either when there are no more features to add,
after a fixed number of iterations, or, and this constitutes the common case,
until the obtained solutions did not improve the performance of the classification
during the last L iterations. One could argue that no improvement in one new
iteration should be sufficient to stop the optimization, but this would neglect
the possibility that in some cases a gain in discrimination power can be achieved
only by the correlation of multiple features.

As a further tweak the stopping of iterations is not done simultaneously
for all solutions once the performance of the best solution doesn’t improve
anymore, but individually for each solution. The benefit of this strategy is that
new solutions which are not yet as good as the current best one can still evolve
further at least L iterations on their own, while solutions which are kept due to
their good performance, but which do not improve any further can already be
excluded from the iteration scheme to save time. As a result the optimization
will continue to search for better solutions as long as any of the M solutions
still improved during the last L iterations.

This algorithm shares traits with the genetic algorithms that have been used
in [67], as it also uses generations of multiple solutions and tries to iteratively
find improved new solutions derived from the old, but it also shares the fast
and highly focused aspect of greedily searching for new features with a plain
greedy search algorithm.

In the tested application scenario of up/down classification with a high
dimensional feature space of 804 features, the described parameters by default
are set to N = 3, K = 30 and L = 6. The number of currently found solutions
M varies, but is smaller (in the beginning) or equal to K after each completed
iteration.

The best solution for the full feature set on RbR 2.2 simulations has been

obtained in a detailed study by Thomas Kittler [83]. The numbers for accu-
racy in this study do not consider the weights of the events in the simulation.
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The best solution” found in this study for a plain up/down RDF classification
reached a classification accuracy of 94.87% =+ 0.42% compared to 94.02% =+
0.42% for the full feature vector. The relatively small gain can be explained
by the observation that RDFs can handle strongly correlated features excep-
tionally well, a property they share with many other tree-based classification
algorithms.

For the actually used two step RDF cascade as described in chapter 5.3, no
solution with a statistically significant improvement of the performance could
be obtained at all. The best solution® in terms of a solution with few features
but a good accuracy reached 96.67% =+ 0.16% in comparison to 96.74% =+ 0.16%
for the full feature vector.

Therefore the RDF cascade in this thesis is used with the full feature vector
as this classification scheme gives the highest accuracy that has been achieved
by any means.

5.5 Possible improvements

An important improvement for an analysis would be to adapt the classification
to the individual data selection. While the trained RDF cascade is a powerful
tool to reduce the number of background events independent of the actual
analysis goal and of other applied cuts, it could improve considerably if other
cuts which are additionally applied to data in an analysis were also applied
before the training. The reason for this is that many of the events which are
filtered out by the classification would have also been rejected by other cuts,
reducing the observed benefit of the classification. A training with accurately
prefiltered datasets would also allow the classification to adapt to the desired
application in the best possible way, giving the best final result.

Another idea how to potentially improve this classification would be to eval-
uate a relatively new branch of pattern recognition methods, often called deep
neutral networks (DNNs). This contains for instance the so called deep belief
networks, see for instance [84] or deep convolutional neutral networks, see [85]
and various others. Comparisons’ between RDFs, several other classification
techniques and DNNs for different tasks indicate the potential for a substantial
gain in accuracy by DNNs.

"Using the features: 784,786,788,164,99,50,24,176,670,78,550,221,394,360,306,745,791,382,
686,205,748,271,101,495,111,192,320,124,424,265,91,755,737,622,290,425,52,611,609,679,510,
584,616,276,585,283,250,9,304,90,446,628,199,214

8Using the features: 784,788,786,252,581,438,494,27,12,36,50,791,342,686,78,513,360,285,75,
694,138,236,390,304

“For instance at [78]
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6 Selectfit

There are multiple direction reconstruction algorithms for tracklike muon events
in ANTARES. The most common way to make use of these track reconstructions
in a physics analysis is to evaluate the results of one favorable algorithm on all
events and to ignore all others. For some events however the selected algorithm
may not perform well or even fails, although these events would be reconstructed
well with another algorithm. In these cases adding a different reconstruction
avoids loosing these events and therefore benefits the final analysis. A first
approach to combine algorithms could be to use thresholds in the form of:

1. If reconstruction A has a better quality parameter than a certain thresh-
old, use reconstruction A.

2. If A has a poor quality parameter but B has a better quality parameter
than a certain threshold, take reconstruction B.

3. Otherwise, do not use this event.

With some parameter scanning for the thresholds this approach can already
give some benefit compared to a single algorithm. But on the other hand it
is a time consuming process to manually tune the thresholds for every new
application scenario. It also becomes increasingly complex if we want to use
more than two reconstruction algorithms and sometimes it does not use the
best reconstruction available for an event. An example for this non-optimal
performance would be an event where reconstruction A has a quality parameter
slightly above the threshold, but reconstruction B gives an outstandingly good
reconstruction. The simple threshold approach would still use A here.

The idea of Selectfit is to have an automated process that cannot only com-
bine many reconstruction algorithms, but can also choose the most accurate
available reconstruction for each event as reliably as possible. Additionally, a
new quality parameter for error estimation is introduced to allow the identifi-
cation of well reconstructed events, regardless of which specific reconstruction
was chosen.

6.1 Overview

Selectfit uses a classification to find the best reconstruction for a given event
and also to estimate the error of the chosen reconstruction. The current version
is designed to combine four reconstructions for tracklike events, namely Aafit
[38], Bbfit [80], Bbfit with MEstimator [80] and Gridfit [86]. Another version
exists which combines these four and the Dusj reconstruction, see [87] and [88],
and the Q Strategy for shower events as explained in [89]. The first scenario
is intended to enhance analyses using the muon-neutrino channel, whereas the
second version explores the potential of this approach to combine tracklike and
showerlike events in one single reconstruction. This would allow analyses to
use events of both signature types at the same time. The results shown in
this thesis are for the first, tracklike case only, because the handling of shower
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events in ANTARES is not yet at the same level of experience and precision as
for track events.

The same strategy can also be used to combine energy estimation algo-
rithms, but these ideas are pursued by other members of the ANTARES col-
laboration now and since energy information is not evaluated in this thesis,
these attempts are also not covered here.

Detailed example scripts on how to use Selectfit for direction reconstruction
can be found in Appendix A.1. Obviously, the logic behind Selectfit can also
be used with any other classification algorithm, software package and similar
application scenario.

6.2 Features for Selectfit

The current version of Selectfit uses the outputs of the algorithms it combines
and the number of pulses as an energy correlated variable as input. For each
reconstruction strategy it includes:

e The zenith value
e The azimuth value
e All available quality parameters

There are at least two quality parameters for each algorithm, but this is not nec-
essary. One would be sufficient, but the more useful information an algorithm
outputs about its result, the more accurate the selection and error estimation
can be in the end. A detailed list of features can be found in appendix B.

6.3 Classifier for Selectfit

The classifier used here is again the versatile Random Decision Forest as already
described in chapter 4.2. The classes in this task are not defined as upgoing and
downgoing like they have been in chapter 5, but instead as the best direction
reconstruction algorithm for each event for the first RDF and for a second RDF
as the angular error of that reconstruction that has been selected in the first
step. Selectfit consists out of these two steps.

6.4 Selecting the best reconstruction

The first and major step of Selectfit is to find the best direction reconstruc-
tion algorithm for each event. It is not necessary for all reconstructions to be
available for an event. An algorithm may not output a result for instance if
an internal optimization doesn’t converge. If one or more of the algorithm re-
sults cannot be found, the angular difference of the missing reconstructions is
internally considered to be 27, hence this algorithm is not selected. The two
predefined possibilities, four track reconstructions or four track and two shower
reconstructions can be used in the current implementation as described in ap-
pendix A. The default outcome is a number ranging from 0 to the number of
considered reconstructions:
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e Class 0 : “No fit was available at all”

e Class 1 : “Aafit is the best available fit”

e (Class 2 : “Bbfit is the best available fit”

e (Class 3 : “Bbfit with MEstimator is the best available fit”
e (Class 4 : “Gridfit is the best available fit”

e (Class 5 : “Dusj is the best available fit”

e Class 6 : “Q Strategy is the best available fit”

The zenith and azimuth of Selectfit are set to the zenith and azimuth of the
selected reconstruction.

Since the algorithm sometimes misclassifies an event, it can happen that the
selected reconstruction is not actually the best that was available for this event.
To achieve a better overall performance compared to the best single reconstruc-
tion algorithm, the error introduced by misclassification may not become larger
than the benefit for events where a different reconstruction was chosen cor-
rectly. It has been observed that the misclassifications occur mainly for those
events, where the best and the selected algorithm have a similar angular error.
Therefore the majority of misclassified events introduces only small additional
errors. Nevertheless, for the configuration with four track reconstructions, this
prevented the addition of other, similarly designed reconstructions. If a recon-
struction is too similar to an already considered algorithm or has a too poor
performance, it will in total introduce a higher error due to more misclassifica-
tion than what can be gained by the few events it reconstructs better.

An alternative to selecting one of the direction reconstruction results would
be to merge all results, for instance with weights resembling how likely each re-
construction seems to be the best. This approach has been tested and typically
produced a lot worse results than simply selecting the best. The reason for
this observed behavior is that a good reconstruction with a low angular error
will usually become worse by merging it with less accurate directions, even if
the worse direction has a small weight. The case where two algorithms give a
similar error, but lie on opposing sides of the true direction, is rare. Therefore
merging of results is not contained anymore in the current version of Selectfit.

6.5 Error Estimation

If only one track reconstruction is used for an analysis, one would typically
cut on the main quality parameters of this reconstruction in order to obtain
a sample of accurately reconstructed events. But when combining multiple
algorithms, cutting only on the quality parameter of the dominant algorithm
will remove exactly those events, where the addition of other algorithms im-
proved the result most. Combining the quality parameters by hand for each
algorithm is the same task as combining the fits themselves. Therefore the
chosen approach to solve this is again a classification. The main purpose of
a cut on a quality variable of a direction reconstruction is to cut away those
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reconstructions which have a large angular error. To mimic this behavior with
a classification, the events are put into bins (classes) of similar angular errors
during training. Some experiments on how these bins should be formed covered
examples of linear inter-class distances (0°-1°, 1°-2°, ..., 179°-180°), exponential
inter-class distances (0°-1°, 1°-2°, 2°-4°, 4°-8° ...) and some manually hard-
coded schemes. Since an ideal distribution for the training of this classification
would have an equal number of events in all classes, also a dynamic computation
of class boundaries with equal number of events was tested. The problem with
this approach is that the class boundaries change for every training, especially
if many classes are to be trained. Therefore this idea had to be discarded. For
all remaining possibilities also the width of a class bin was varied as well as the
start and end points (e.g. 0°-0.5°, 0.5°-1.5°, 1.5°-2.5° ..., 44.5°-45.5°, greater
than 45.5°). The experiments showed that an exponential distribution yields
the best results. The exponential factor has some effect on the result, but its
possible range is limited. It may not be too large because otherwise there are
only few classes, which would only allow very coarse selection of events. It
may also not be too small because then the number of classes grows quickly up
to a point where not enough events for a stable training are contained in the
less likely classes anymore. The final class distribution for the Selectfit error
estimate was fixed to:

e Class 0: 0.0° - 0.1°

e Class1: 0.1°-0.2°

e Class 2: 0.2° - 04°

e Class 3: 0.4° - 0.8°

e Class 4 : 0.8° - 1.6°

e Class 5: 1.6° - 3.2°

e Class 6 : 3.2° - 6.4°

e Class 7: 6.4° - 12.8°

e (Class 8 : 12.8° - 25.6°

e Class 9 : 25.6° - 51.2°

e (Class 10 : 51.2° - 102.4°
e Class 11 : 102.4° - 180.0°
e (Class 12 : “No reconstruction available”

The quality parameter of Selectfit is set to the error estimate class determined
by this classification. As for selecting the best fit, also for the error estimation
some events are misclassified. Figure 28 shows the misclassification during
error estimation. Ideally this would be a diagonal line. Figure 28a shows how
well the estimation can work. In this test the same number of events has
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been used during training for each of the (in this study still 16 instead of 12)
classes. The result of an optimization for the actual distributions is shown in
Figure 28b. As can be seen in both cases, misclassifications occur dominantly
between neighboring and next-to-neighboring classes. An increased probability
for misclassifications between neighboring classes is not surprising, as this is
for instance also caused by events with an actual angular error of 1.55° being
identified as class 5 (starting from 1.6°) instead of the correct class 4 (up to
1.6°).

Error estimation on homogen subsample, normalized Error estimation on neutrinos classified as up-going
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Figure 28: a) Normalized distribution for equal number of events per class
during training, 16 classes. This scenario demonstrates how well the error
estimation can be adapted in the the idealized case where each class has the
same number of events. b) Distribution for a realistic, precut sample in absolute
numbers, 12 classes, optimized to minimize errors for realistic distributions.

N

N
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One idea to improve the result of the error estimation would be to use a
regression, a similar method to estimate missing values, instead of a classifica-
tion. The investigation of this possibility is pursued by another member of the
ANTARES collaboration.

6.6 Accuracy of Selectfit

Combining the fit selection and the error estimation gives Selectfit. The results
which are achieved for charged current neutrino events on the small available
sample of RbR 3.0 simulations is shown in Figure 29. The x-axis shows the me-
dian angular error between the true simulated direction and the reconstructed
direction. The different points in the figure are the results for different quality
cuts, with stricter cuts being to left. The y-axis shows the cumulative efficiency,
stating what fraction of neutrinos survive a certain cut level. The goal for a
direction reconstruction is to reconstruct as many neutrinos as possible with an
angular error as small as possible, so the best, only theoretically achievable point
in this plot is to the top left. The red curve shows the performance for Aafit,
the best and most often used single reconstruction algorithm. To obtain the
different values of the curve a cut on A, the main quality parameter of Aafit, was
varied from -4.0 to -9.0 in steps of 0.1, which covers more than the commonly
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used range. The blue curve is the performance of Selectfit on the same data set,
with each point being a different cut on the estimated error class from 0 to 12.
One can see that regardless of the actual cutting value, Selectfit does improve
the performance of the direction reconstruction. The green curve is obtained
by the “perfect Selectfit”. For each event it chooses the best available recon-
struction and it also uses the exact angular error of the selected reconstruction
as error estimate. Therefore this is an upper limit on what could theoretically
be achieved with the Selectfit approach for muon-neutrinos in ANTARES. For
loose cut values and hence less accurate reconstruction results, the gain in the
number of neutrinos by Selectfit is around 11%. For intermediate cuts, which is
where e.g. a cut on A greater -5.2 or -5.4 would be located, the gain is between
8% and 9%. This is between the 4.th and 5.th datapoint of Selectfit from the
left in Figure 29. For the most accurate reconstructions both reconstruction
methods deteriorate quickly, but Selectfit reaches about half the angular error
of Aafit for the tiny, most precisely reconstructed neutrino samples. In total
Selectfit shows a gain of at least 8% in the number of neutrinos for the whole
range of possible quality cuts. Since the available RbR 3.0 sample has only lim-
ited statistics and has not yet been validated at the same level of detail, Figure
30 shows the same comparison for a larger sample of RbR 2.2 simulations. All
plots showing results for RbR 2.2 do not include statistical error bars as they
are indistinguishable from zero. This plot shows all events weighted according
to an assumed signal flux of 729 and also includes Aafit with a cut on a sec-
ond quality parameter 3, which was set to the default optimized cut 5 < 1°
as used in many analyses. One can also note that, even though the difference
between the reconstructions is very similar, there is a difference observable for
the absolute values of the median angular errors for both reconstructions. The
better performance is achieved for RbR 2.2, which seems plausible since overall
RbR 3.0 contains more realistic simulations, for instance scattered light from
interaction vertices. Still it is not absolutely clear that the magnitude of this
difference is fully covered by this effect, but since it can be observed similarly
for both reconstructions, it is not a feature introduced by Selectfit and it will
be investigated by future work on the simulations.

Figure 31 shows the individual causes of the improvement. It includes a
curve in purple for always using Aafit as reconstruction but with a RDF classi-
fication as quality parameter and a curve in black which uses Selectfit to choose
a reconstruction, but then again Aafit A and § as quality cuts. This clearly
shows that for high efficiencies and worse median angular errors the perfor-
mance improvement is due to the selection of different fits. On the other hand
for very accurate reconstructions, Selectfit and Aafit using an RDF error esti-
mate have approximately the same performance. This shows that the gain for
small angular errors is mainly due to the RDF error estimation.

A similar behavior can be seen in Figure 32, where the effect of changing
the selection or the error estimation from Selectfit to the respective “perfect”
step from the perfect fit is shown.

The contributions of the individual fits to the Selectfit results derived from
recorded data without any cut on the error estimation are:
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Cumulative efficiency versus median angular error
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Figure 29: Comparison of Aafit with a varying cut on A, Selectfit with varying
error estimation cut, and the perfect selection of the best available fit with

a varying cut on the exact angular error on RbR 3.0. Error bars indicate
statistical errors.

Aafit: 27.0 £ 0.02 %

Bbfit: 2.0 £ 0.006 %

Bbfit with MEstimator: 2.0 £ 0.006 %

Gridfit: 69.0 + 0.04 %

The errors for these numbers are statistical errors only.
The contributions of the individual fits to the Selectfit results in the final
data sample for this thesis as described in chapter 7 are:

e Aafit: 48.2 £ 0.6 %

e Bbfit: 0.5 + 0.07 %

e Bbfit with MEstimator: 4.7 + 0.2 %
e Gridfit: 46.5 + 0.6 %

As a further improvement for this application scenario one could also drop Bbfit
without MEstimator, as it would reduce the probability for misclassifications,
resulting in a more accurate final result.

Another idea to improve the reconstruction beyond what is shown in this
thesis would be to adapt the training of Selectfit to the analysis it is used for.
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Figure 30: Comparison of Aafit with A and S cuts, Aafit with A cut only,
Selectfit and a theoretic, perfect Selectfit on RbR 2.2

If any other cuts that can be applied before Selectfit in the data selection of
the analysis are also applied in exactly the same way to the training data,
the resulting Selectfit models can be expected to achieve better results for an
analysis using these cuts than without this adaption.

Summarizing the observations for the developed and tested version, Se-
lectfit for the direction reconstruction of tracklike events outperforms the best
available single track reconstruction algorithm for any compared accuracy and
neutrino efficiency.
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Figure 31: Improvement from the single steps of Selectfit in blue compared to
Aafit with A and § cuts in red. Using Selectfit to combine all algorithms but
using A and S to identify the most accurate reconstructions gives the black
dotted line. There is only a gain for less strict cuts. The purple dotted line
shows Aafit with a RDF to identify accurate reconstructions. A gain is present
for very accurate cut levels only.
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Figure 32: Theoretical improvement from perfectly error-free steps instead of
trained Selectfit RDF's. The actual Selectfit performance is shown in blue. Re-
placing only the RDF selection of the best algorithm with an error-free selection
gives the red dotted line. Replacing only the estimation of the angular error
with an error-free estimation yields the purple dotted curve. Replacing both
steps by the error free versions gives the green curve.
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7 Data selection

7.1 Run selection

The considered time period is from the beginning of the data taking with
ANTARES on 29.01.2007 until on 31.12.2012. To obtain a reliable and well
understood data set, several criteria were required for data taking runs to be
included in this analysis:

e The mean optical rate must be below 300 kHz. The purity and efficiency of
some reconstruction algorithms drops considerably for even higher back-
ground rates.

e The run setup must be a physics setup. This is to exclude e.g. data with
artificially emitted light, which was intended for calibration.

e The data quality category must be 1 or better. This category is derived
as a standard quality assessment in ANTARES for all runs. More infor-
mation on the exact procedure can be found in [90].

e The run may not be identified to contain so called “sparks”. These are
seldom malfunctions where light is produced by an electric discharge.

e The data file must have been processed correctly by the standard ANTARES
data production and have been accessible on the mass data storage.

Most of these requirements are de facto standard for ANTARES data anal-
ysis. A list of all included runs can be found in appendix H. In total this
corresponds to an effective lifetime of the detector of 1332.8 days.

7.2 Event selection

The data in the selected runs does not only contain upgoing muon-neutrino
events, but mostly atmospheric muons. To identify the desired signal some
filtering of the events is performed:

e Application of the up/down classification as described in chapter 5 to
get rid of a large fraction of downgoing atmospheric muon events. Only
events which are classified as upgoing (Class 1) are processed further.

e Selectfit as described in chapter 6 is applied to each event. Only events
with a reconstructed zenith angle of more than 90° (upgoing) are kept.

e The estimated angular error from Selectfit must be below 1.6° (only error
classes 0, 1, 2, 3 and 4 as defined in chapter 6.5 are kept).

Even after these cuts the resulting muon-neutrino sample is expected to
contain a contamination due to the vast number of atmospheric muons. This
chapter presents a comparison of the actual measurements with the event num-
bers and composition expected from simulations. But as explained in chapter
8, absolutely no information derived from simulations is used in this analysis.
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7.3 Comparison of simulations with data

To check whether the expectations derived from simulations are valid for recorded
data, a small sample of data runs has been analyzed together with the corre-

sponding RbR simulations. The subset of data files used for this comparison

is called “burn sample”. It is excluded from the actual evaluation to avoid a

potential bias. Some of the simulated contributions had to be scaled up to

compensate for missing or empty files. This introduces an uncertainty that is

not contained in the presented error bars.

Figure 33 shows the comparison of the small available sample of RbR 3.0
simulations with the corresponding data files. On the x-axis is the error esti-
mation class as defined in chapter 6.5. More accurate direction reconstructions
are to the left. On the y-axis is the number of events. The simulated events in
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Figure 33: Data Monte-Carlo comparison for RbR 3.0.

these plots have been weighted according to the expected atmospheric flux. The
plot is cumulative as the values shown e.g. at error class 2 contain all events of
classes 0, 1 and 2. Therefore these cumulative curves show the composition an
actual sample would show for different cuts on the estimated error class.

Ideally the red curve, representing the event numbers from data, and the
black curve, containing the sum of all simulated contributions, should match.
Obviously this is not true for very poor reconstruction qualities as seen for large
values of the error class in Figure 33.

This is not surprising since class 12 for instance means that there was no
reconstruction result available at all, while classes 10 and 11 denote events with
reconstruction errors between 51.2 and 180.0 degrees. Events that have such
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tremendous reconstruction errors are likely triggered due to pure noise without
any particle interaction, which is not included in the simulations.

Since no spatially resolved analysis could work with errors of up to 180
degrees, Figure 34 shows a zoom to the more interesting region of, depending on
the goal of an analysis, potentially acceptable reconstruction errors. What can
be seen here is that the agreement between data and Monte Carlo simulations
is rather good for ANTARES standards. What is also visible is that for the
used quality cut value of class 4 or better, this comparison suggests that there
is hardly any remaining contamination of atmospheric muons left.
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Figure 34: Data Monte-Carlo comparison for RbR 3.0. Zoom to realistic cut
values.

But as the statistical uncertainty for the RbR 3.0 sample is large, another
crosscheck with RbR 2.2 has been conducted. Figure 35 shows the same com-
parison as Figure 33 did, this time for a different sample of RbR 2.2 runs. The
observed behavior is similar to the previous comparison, but the gap for very
poor angular errors is even larger. Again following the reasoning that arbitrar-
ily large angular errors can’t be used for a spatially resolved analysis, the zoom
to realistic values in Figure 36 also shows a good agreement between MC and
data and mostly similar distributions as before on RbR 3.0. But it’s important
to note that in this comparison more atmospheric muons survive harder cuts,
resulting in an expected contamination on the order of 29.7% for the remain-
ing sample after a quality cut for error class 4. The applied Selectfit has been
trained using RbR 3.0 and can be expected to give more accurate results on
the more recent simulations. In the comparison using RbR 2.2, the remaining
muons may as well be muons that have not been simulated correctly in this
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Figure 35: Data Monte-Carlo comparison for RbR 2.2.

older version. Nevertheless, since a conservative estimate is preferred here and
because the comparison on RbR 2.2 has higher statistics, this is also considered
the contamination rate for the obtained final sample. Based on the numbers
for a cut on error class 4 in Figure 36, the unblinding of the full data sample
has been expected to yield 13078 4+ 114 events.
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Figure 36: Data Monte-Carlo comparison for RbR 2.2. Zoom to realistic cut
values.
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8 Multiscale source search

The data recorded with the ANTARES neutrino telescope allows to address
diverse physics questions. Many sophisticated analyses have been performed,
each optimized specifically for one of the different possibly detectable physical
phenomena, see for instance [91], [92], [93], [94] or [95].

Most searches for spatially confined sources of cosmic neutrinos rely on a
model assumption derived from theory describing one specific potential source.
These searches evaluate the distribution of reconstructed neutrinos to detect
or reject this specific hypothesis. This usually means searching for an excess
beyond the expectation by atmospheric neutrinos at a known position in the
sky with a predefined size and shape.

The idea behind the model-independent multiscale source search is to ap-
proach this task the other way around. Instead of optimizing highly for one
specific prediction, this approach is intended to reveal the most significant ex-
cess of neutrinos within the recorded data in any region in the sky. A dedicated
analysis can then be optimized for the hypothesis derived from the findings of
this search.

The main advantage of this approach is that, due to its unbiasedness and
flexibility, it could potentially also reveal neutrino sources which would not be
tested in a realistic time scale by other searches. Apart from that there is a
highly reduced risk that this search suffers from deviations between assump-
tions, simulations and the reality.

Of course there are disadvantages which come with an evaluation like this.
The main drawback is the high number of trials when evaluating for sources of
arbitrary sizes, shapes and distributions on all positions in the sky. This in-
evitably lowers the sensitivity for any single specific hypothesis. But as already
explained, the main objective of this search is to identify a promising hypothesis
which can then be tested by a dedicated follow up analysis. Another negative
aspect of such a strategy is that, compared to a search for one specific hypoth-
esis, the interpretation of the result is less straightforward. Multiple plausible
interpretations can be found, which may have to be tested in more detail. Fi-
nally, instead of identifying a source, an unspecific approach like this may also
just reveal a yet uncompensated systematic effect in the measurement. While
in terms of knowledge gain on cosmic neutrinos this could be seen as a dis-
appointing result, it would definitely be useful for other upcoming analyses in
ANTARES and maybe also similar experiments like KM3NeT [96].

Taking everything into consideration, the model-independent multiscale source
search offers a good chance to identify the most dominant sourcelike structure
in the data, while, on its own, it’s unlikely to confirm such a structure with a
high significance.

8.1 Input

Once the events are selected as described in chapter 7, their direction informa-
tion is converted from local coordinates to equatorial coordinates (see chapter
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3.7). This is done with the astro package from Seatray (see chapter 3.5), using
only the reconstructed zenith, azimuth and the time the event was recorded.
Everything that is actually required as input for the multiscale source search
are the declination and the right ascension of each event. Evaluating energy
and time too is possible in general, but not included in this search.

8.2 The search space: spherical grids

To evaluate the distribution of neutrino positions a discrete grid is used. This
grid approximates a sphere by 165016 gridpoints which have a distance of ~
0.5° to their next neighbors in declination as well as right ascension. The dis-
tribution of the gridpoints is 720 points at a declination of 0°, with a reduced
number of gridpoints in other declinations according to the cosine of the angle
between the declination and the horizon. This results in rows of gridpoints with
less points per row towards the poles. This setup could be replaced by a more
optimal scheme, which distributes the gridpoints more evenly, but the current
implementation allows to exploit the regularity of the indices of gridpoints to
speed up some lengthy computations considerably. The spacing is chosen to be
0.5° because a spacing of 0.25° drastically increases the runtime of the evalu-
ation such that pseudo-experiments cannot be done in a reasonable amount of
time any more. Furthermore this spacing corresponds nicely to the expected
median angular resolution of about 0.44° achieved with Selectfit and the chosen
quality cut. On the other hand using a wider spacing, for instance 1°, unneces-
sarily reduces the accuracy of the method. The radius of the spherical grid is
set to 1.0 to simplify the computations. Figure 37 shows a spherical grid with
gridpoints in blue and random events in white!?. The tiles at each gridpoint
have a radius of about 0.5°, hence they overlap and form a closed sphere. The
upper part without neutrinos is north (declination of +90°) in equatorial coor-
dinates. The distribution of the events follows the visibility for and acceptance
of ANTARES as described in chapter 8.3.3. There will be one of these spheres
used separately for the evaluation of each of the 180 distance scales discussed in
chapter 8.3.2. According to the sampling theorem as discussed in [100] or [71],
using a grid with a spacing of 0.5° theoretically allows to reconstruct informa-
tion of the scale of 1° or larger without error. This limit is shifted for this grid
due to the discontinuities of the gridpoint spacing to around 1.5°. This doesn’t
mean that smaller scales can’t be resolved in this search, but that they can’t
be guaranteed to be resolved without discretization errors due to the binning.

The distance of two points on the sphere is computed as the great-circle
distance, the shortest distance between two points on the surface. To minimize
numerical errors the more common equation 8 was substituted by equation 9
for computing the great-circle distance. Here ¢ denotes the declination, A the
right ascension and Acg the angle between point 1 and point 2. Since the radius

OFor the visualization of the search spheres and the events on them, the vtk file format
[97] is used. The visualization of the vtk files is done with Paraview 4.1 [98]. The skymaps in
later chapters are plotted with Gnuplot, mainly Version 4.6 patchlevel 5, see [99].
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Figure 37: A spherical grid with gridpoints in blue and random events in white.
The gridpoints are rendered with a radius of 0.5°, hence they overlap and form
a closed sphere. Since the sphere is a three dimensional model, only the front
part facing the observer is visible here.

of the spheres is set to 1, Ao is also directly the distance measure.

Ao = arccos(sin ¢ sin ¢g + cos ¢1 cos paAN) (8)

Ao =2 arcsin(\/sin2(0.5A¢) + cos ¢1 cos ¢asin?(0.5AN)) 9)

8.3 From neutrinos to search spheres

To demonstrate the steps of the multiscale search we look at a distribution of
random events with two artificial point sources at a declination of -70°. The
setup is shown in Figure 38. To illustrate the steps more clearly the sources are
unrealistically strong, one with 18 neutrinos within an area of 0.5° by 0.5°, the
other one with 12 neutrinos.
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(a) (b)

Figure 38: a) A spherical grid with 12000 random events and two point-like
sources. View from below to the south pole (declination of -90°). b) The same
setup displayed without the random events.

8.3.1 Counting neutrinos

The search starts by counting the number of neutrinos located in a ring around
each gridpoint with a radius corresponding to the current search scale. The
first distance scale is from 0.0° to 0.5°.
for each gridpoint in grid:

for each neutrino:

if 0.0 < distance < 0.5:
counter = counter + 1

For an illustration of this counting scheme see Figure 39. It shows the counting
for a search scale of 1.0° to 1.5°. The result of this evaluation is one number
for each gridpoint of the search sphere. The results for three scales from the
example with two point sources from Figure 38 can be seen in Figure 40.

8.3.2 180 spheres

The process described in chapters 8.3.1 to 8.3.6 is performed for 180 different
search scales (from 0° to 90°) in steps of 0.5°. Each iteration ¢ evaluates only
the neutrinos in a ring (not the whole circle area) between i-0.5° and (i+1)-0.5°
around each gridpoint, with index ¢ starting at 0. The result of each iteration
is computed independently (except for the smoothing between search distances
in chapter 8.3.4) and stored in an independent spherical grid.

8.3.3 Expectation from pseudo-experiments

The next step will be to compute the Poisson probability for the observed num-
ber of neutrinos at each gridpoint. To compute this probability one needs the
expected number of neutrinos. The value how many neutrinos are expected
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Figure 39: Scheme of the neutrino counting. Crosses mark the gridpoints with a
distance of 0.5° between them. Green and red dots are neutrinos. The red cross
is the gridpoint that is being evaluated. The current search scale is between the
black circles. In this example it is between 1.0° (inner circle) and 1.5° (outer
circle). Neutrinos which are found in the current search scale at the current
searchpoint are shown in red. In this example the outcome of the evaluation of
this scale at the red gridpoint is 13.

around each gridpoint is defined by the visibility of a point in equatorial coor-
dinates for ANTARES, folded with the acceptance of ANTARES for the local
coordinates that contribute to these equatorial coordinates, folded with the ef-
ficiency of the software reconstruction chain for these local coordinates. Even
a complex analytical model is only an approximation for the effects of all these
contributions. As an alternative the expectation can be approximated directly
from the measured data, which is done in this search. This automatically in-
cludes the properties of the acceptance and efficiency of the whole reconstruction
chain by design. Additionally, such a strategy doesn’t rely on simulations to be
“precise enough”, nor does it need any manual tuning if for example parts of
the reconstruction chain are exchanged.

To obtain the expectation the set of all neutrinos as described in chapter
8.1 is used again. If we were to have abundant statistics and only background
neutrinos without any neutrinos from sources, the measurement itself would
already be an approximation of the expectation. Since there are only few neu-
trinos and some of them could originate from spatially confined sources, the
data is scrambled first using random times within the data taking period when



8.3 From neutrinos to search spheres 71

(a) (b) ()

Figure 40: a) The spherical search grid with the number of events counted in a
ring between 0.0° and 0.5° around each gridpoint. b) Number of events between
3.0° and 3.5°. ¢) Number of events between 10.0° and 10.5°.

computing the equatorial from the local coordinates. Potential source struc-
tures in the right ascension are removed by that, placing all events randomly
in a declination band. Then the numbers of neutrinos are counted as described
in section 8.3.1.

The problem remains that there isn’t enough statistics to cover the whole
sky with the 165016 gridpoints with the few thousand events. To improve this
one can simply compute the mean of the counted values in one declination band.
This is justified because in theory the expected number of events in equatorial
coordinates should be the same at each point within one declination band, since
the rotation of the Earth is supposed to obliterate any possible inhomogeneities.
This assumption is by far exact enough at this point to estimate the expectation,
but, as described in chapter 9.7, it is not 100% exact. The result is shown as
the red curve in Figure 41. Still, these mean values per declination band show
a high fluctuation due to the low statistics, especially near the poles where only
few gridpoints belong to one band. To reduce the fluctuations of these values,
several filters are applied to the vector. These filters are well known for instance
from the field of digital image processing as explained in [100], [101] and [71].
The concept of filtering to reduce fluctuations from noise has been used before
its application to digital data. The effects of filters on signals of all kinds have
been studied extensively in the more general field of signal processing, explained
for example in [102] and [103]. The values of the first two bins are ignored by the
filtering algorithm in this case due to the large unphysical fluctuations around
the poles.

The first applied filter is a so called median filter, a non-linear filter that for
each value of the vector vec; at the index 7 computes the median of the values
veci—1,vec;, veciy+1 and stores it as the new value for vec;. This is a common
approach for instance in image processing to remove artifacts. The result of
this processing can be seen in the green curve in Figure 41.

The resulting expectation still contains an unreasonable amount of statisti-
cal fluctuation with a high frequency. Therefore the next step is to use a linear
low-pass filter. For linear filters the stencil notation will be used. This notation
is the common way to write down discrete linear filters, see for instance [100].
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Figure 41: Approximation of the acceptance of ANTARES and the reconstruc-
tion chain for the search distance between 0.0° and 0.5°.

For the vector of means and one dimensional data in general, a generic stencil
looks like this:

weight [w ¢ e]

Applying this stencil to a value of the vector at index 4, with ¢ being the index
of the declination band here, means computing equation 10:

value;y = weight - (w - value_yy + ¢ - value) + e - valuey)) (10)

Using such a separable linear filter multiple times equals the one-time usage
of a larger filter, for example:

twice 1/4 [1 2 1] equals 1/16 [1 4 6 4 1]

A brief explanation for this example can be found in appendix C. The benefit
is that the larger filter doesn’t have to be implemented manually.
In the two dimensional case, for instance when the points of the search
sphere are considered to be pixels of an image, a linear filter looks like this:
[nw n ne]
weight [w ¢ e |
[sw s se]

The value is computed for the gridpoint at the center of the filter, again denoted
with ¢ here. Applying the stencil to a gridpoint at index 4, j, with ¢ being the
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index of the declination band and j the index of the right ascension within the
declination band, means computing equation 11:

value; jy = weight - (nw - value(y1 1) + n - valuegyy j) + ne - valuey ji1)

i.5)
+w - value(; j_1y + ¢ - valueg; ;) + e - value(; 1)

+sw - value_y j_1) + s - value_y j) + se - value_y j11)) (11)

The filter which is used here to reduce the statistical fluctuations of the
vector of expected mean values is one of the simplest one-dimensional low-pass
filters:

1/3 [1 1 1]

This corresponds to a simple mean of the three values. All of these filters need
to treat the borders in a special way, simply because there is no value left of
index 0. Due to the spherical nature of this task the best value at the index -1
(which would be one before the first index 0) is the value of index 1, because
this is also the value corresponding to the position of the other side of the pole.
The stencil for index 0 is then

1/3 [0 1 2]

For the last index it is the other way around. Simply using this filter would effi-
ciently reduce the statistical fluctuations, but it treats all values as if they were
produced with the same statistics. To compensate for this effect an additional
tweak is used here. For indices where one of the values is 0.0 the low-pass filter
is not applied. This preserves the location of the boundary where the visibil-
ity and efficiency drop to zero and therefore prevents distortions which would
occur at the tail otherwise. This filter is applied 60 times to obtain a continu-
ous approximation of the expected mean. As explained earlier this corresponds
to a one-time application of a larger lowpass filter. The filter is also applied
once without the treatment for zero values to include the uncertainty for the
measurement for values close to zero. The result of this procedure is shown
in Figure 41 as the blue curve. To further reduce fluctuations which could be
introduced by the scrambling of the data, the whole process of obtaining an ex-
pectation value for each gridpoint is conducted 30 times and for each gridpoint
the mean of the 30 computed values is used.

Since this expectation is different for every search distance that is evaluated,
this process is performed separately for each of the 180 search distances. The
results for 10° to 10.5° are shown in Figure 42. One can clearly see that, due
to the increased statistics for larger search rings, the statistical fluctuations are
a lot smaller and the approximation is more accurate.

The obtained values of these approximated expectations are then set for
every gridpoint according to its declination, resulting in expectations for the
spherical grids as shown in Figure 43 for 0, 10 and 50 degrees. The magnitude
of the expected values differs as already seen in Figures 41 and 42, therefore
the color scale (corresponding to the y-value in the two-dimensional plots) is
readjusted here. Red are high values corresponding to an expectation of more
event, blue are low values indicating the expectation of fewer events from this
direction.
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Figure 42: Approximation of the acceptance of ANTARES and the reconstruc-
tion chain for a search distance between 10.0° and 10.5°.

(a) (b) ()

Figure 43: The distribution of the expected number of neutrinos. a) 0.0° to
0.5° around each gridpoint. b) 10.0° to 10.5°. c) 50.0° to 50.5°. The color scale
is rescaled.
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8.3.4 Poisson probabilities

The algorithm has counted the number of neutrinos n around each gridpoint as
described in chapter 8.3.1 and has an estimate for the expected mean number
A from chapter 8.3.3. With this information the Poisson probability P for n
could be computed using equation 12, where e is Eulers number.

Ale=A

P(n) o

(12)

The problem with this computation is that it is numerically unstable for
large values of n or A. This instability not only leads to slightly wrong prob-
abilities, but even to the failure of the computation. A possible solution to
this is to take care of the exponent and mantissa separately as in equation
13. Another idea is to use the datatype long double!! and the corresponding
library functions with a higher precision for the computations. But both of
these approaches only shift the range of the instability to higher values, they
don’t get rid of it entirely. Combining the two optimizations shifts the value

0.5 I \ \ \
Long double —+—
Double
0.4 Float —%—
0 Long double Stirling
0.3 | |
o
® 0.2
o)
o
[a W
0.1
0
-0.1

0O 200 400 600 800 10001200140016001800
Mean and counted number of events

Figure 44: Comparison of the implementations and approximations of equation
12 for P(n = X). A probability of -0.1 denotes a failed computation.

where the computation of P(n = \) breaks down from 27 for float and 144 for
double precision to 1547. Although this is enough in most cases of this search,

"Using g++ (SUSE Linux) 4.3.4 on the Woodcrest cluster in Erlangen long double gives
128 bit precision.
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an approximation using the so called “Stirling formula” as denoted in equation
14 is introduced for larger values.

e A"
P(n) —_ 10%10(67)2!10%10(/\”) i 1010g10(e_A)+10g10(An)+10g10("!) (13)
logyo(n!)
en(1+loglo(%))—>\
P(n) = (14)

2m(n + %)

Since the deviation of this approximation from the true values vanishes already
around P(n = XA = 20) it is used in all cases where either n or A is above
120. The behavior of the different implementations is shown in Figure 44.
The final result using long double precision for computation gives exact results
in terms of double precision and has been confirmed numerically stable until
P(n = X =107), which is definitely enough for much larger searches.

The algorithm then computes the probability for the observed or a greater
number of neutrinos using equation 15 at each gridpoint.

n—1
P(z>n)=1-) P(i) (15)
i=0
For historical and technical reasons the Poisson probabilities are then rescaled

as in equation 16.
1

P> ) n)) (16)
To reduce statistical (only few events) and systematical (event reconstructions
have errors) fluctuations, the R values are low-pass filtered on the whole sphere.
The assumption is that “real” sources are more likely to extend to neighboring
gridpoints, whereas for random fluctuations the probability to have another
random fluctuation at a neighboring gridpoint is low. The stencil used for this
filtering is:

R =logio(

1 1 1]
1/20 [1 12 1]
(1 1 1]

Two dimensional filters have been explained in chapter 8.3.3. This filter focuses
strongly on the central value for each gridpoint, adding only 40% of neighboring
information. This is motivated heuristically, because it preserved the signal in
various test cases. Finally a filter is applied to smooth between the different
search distances. The motivation for this is that a source which is prominent
in a search distance of for example 1.0° will likely be observed when searching
for 1.5° too, while random fluctuations are less likely to extend to neighbor-
ing search distances. For each gridpoint the neighboring values are from the
searches with a 0.5° smaller and 0.5° larger search ring. The stencil used is:

1/6 [1 4 1]
The effect of these computations on the search spheres is shown in Figure

45. Red means high values, blue means low values. The color scale is readjusted
between the different search scales.
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(e) (f)

Figure 45: a) The spherical search grid from Figure 40a.
b) The grid after the computations described in chapter 8.3.4.
c¢) and d) analog for the search radius between 3.0° and 3.5°.

e) and f) analog for the search radius between 10.0° and 10.5°.
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8.3.5 Segmentation

At this point of the analysis spheres have been computed where high R values at
a gridpoint indicate more neutrinos in a certain distance around the gridpoint.
Therefore potential source regions containing more neutrinos should be linked
to high values on the spheres. We can assume that low values are not linked
to detectable sources. In pattern recognition separating background from po-
tentially relevant information is called segmentation. A lot of information on
segmentation can be found in [100]. The chosen solution for this task in this
analysis is probably the simplest possible solution, applying a threshold to all R
values. Similar to the segmentation of a black and white image, a histogram of
the values of all gridpoints is analyzed to obtain the threshold. The distribution
as shown in red in Figure 46 has a long tail of non-zero values, which is where
potentially signal-related information is contained. If only the maximal values
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Figure 46: The histogram of the R values on the grid, the distribution of only
high R values and the smoothed distribution of high values.

are considered, the search still shows a good potential to find the most domi-
nant source, but a lot of information on the shape of the source and on other
less dominant sources is lost. To extract the tail of the distribution robustly,
the first step is to cut away the lower 50%. The result is shown in green in
Figure 46. Only very low values close to 0 are discarded by this. The next step
is a smoothing of the histogram 50 times with the stencil

1/3 [1 1 1]
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The result of this filtering is shown as the blue curve in Figure 46.

In the next step a line is calculated from the point where the smoothed
distribution of the upper 50% has its maximum value maxVal to the first point
on the right side where the y-value is below 0.5 - maxVal. The x-value where
this line intersects y=0 is used as a threshold #. This is illustrated in Figure 47.
Only values in the tail right of this threshold are kept, lower values are set to
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Figure 47: A fit from the maximum trough the half-maximum point determines
the threshold.

zero. The advantage of computing the threshold like this compared to a fixed
threshold or a fixed percentage is that the threshold adapts to the distribution.
The effect of the segmentations on the search spheres is shown in Figure 48.

An additional option, which will be used later, is to scale the distance be-
tween the previous minimum value x,,;, o1q and 6, using a factor of a. The new
threshold is then given by equation 17.

innal = (Oé * Tmin_old T (1 - Oé) : 0) (17)

For now alpha is set to 0 and therefore 6 ;4 = 0.
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(e) (f)

Figure 48: a) The spherical search grid from Figure 45b.

b) The grid after the segmentation described in chapter 8.3.5.
c¢) and d) analog for the search radius between 3.0° and 3.5°.
e) and f) analog for the search radius between 10.0° and 10.5°.
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8.3.6 Remapping

At this point the search has obtained spheres where only potentially signal
related gridpoints have values different from 0.0. The next step is to reconstruct
the location of the neutrinos that caused the detected overfluctuations. For
the search sphere with a search distance between 0.0° and 0.5° the situation
doesn’t change, since the information up to 0.5° is already located at the exact
gridpoint it originated from when counting the neutrinos. For all other spheres
with search distances d > 0.5°, the information stored at a gridpoint originated
from counting neutrinos that are d degrees away from the gridpoint. To evaluate
where the overfluctuation actually occurred, this information must be mapped
back to the origin. This is done using a copy of the current spherical grid with
all gridpoints initially set to 0.0. Then the following steps are performed'?:
for each gridpoint p;j; in the original grid:

find the set ps of all gridpoints in distance d around p( ;)

for each gridpoint p of pgs in the new grid:

valuep(j i

value, = value, + prr o

Afterwards the new grid contains the corresponding fractions of the overfluc-
tuations mapped back to their origin and this grid is used from there on. The
effect of these computations on the search spheres is shown in Figure 49. The
remapping distributes the information of an overfluctuation at one gridpoint
back to all gridpoints where the neutrinos causing the overfluctuation could
have been. The information where the neutrino distribution had a higher den-
sity is therefore automatically encoded in the pattern how the remapped circles
overlap, see for example Figure 49d. As already stated in the beginning, only
marginal differences are observed for the first grid as seen in Figure 49b. The
color scale for the remapped plots on the right is not readjusted between the
search scales. One can see that the point sources are detected most dominantly
by the contributions from smaller scales.

12The naive implementation of this step, as in the explained scheme, has an extremely long
runtime. Therefore the actual implementation differs slightly from the explained scheme to
exploit a much more cache-coherent access pattern. In other words: The optimized remapping
performs the same operations in a more efficient ordering.
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(e) (f)

Figure 49: a) The spherical search grid from Figure 48b. b) The grid after the
remapping described in chapter 8.3.6. Nothing changes up to 0.5°.

c¢) and d) analog for the search radius between 3.0° and 3.5°.

e) and f) analog for the search radius between 10.0° and 10.5°.
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8.4 180 to one search sphere

The current status of the search are 180 spheres, each representing the search
for overfluctuations in the number of neutrinos at a different scale. Each of
these searches is left with only the most relevant results for its distance.

A reasonable next step would be to search for structures in these 180 spheres,
taking into account the neighbors within a search sphere as well as the neigh-
boring search spheres. This has been implemented with two different clustering
approaches, but none could be optimized well enough to robustly and reliably
find the test sources. There were multiple issues with these approaches, for in-
stance when to optimally stop a cluster from growing in which direction (within
one sphere must be treated differently than between spheres), how to map the
three-dimensional clusters to a two dimensional skymap in the end and sev-
eral more. For all of these problems there were solutions found, but the search
didn’t reach a satisfactory performance.

The better and feasible solution turned out to be to fuse the 180 search
spheres into one. It is not a priori clear what value to assign to each gridpoint
in the resulting sphere when we have a vector of 180 values. Several methods
how to do this have been tested, for instance assigning the

e maximum value

e median value

e mean value

e sum of all values (L1 norm)

e L2 norm of all values (see equation 18)
e [.3 norm of all values

e number of connected non-zero values

e and several others.

The Ln norm for a vector v is defined as:

(18)

with N being the number of entries in the vector. Although taking the max-
imum value might seem like a reasonable idea, this is not robust as many
gridpoints were observed to have a random overfluctuation somewhere in the
180 values. What worked best in terms of robustness and source detection for
the scenarios tested during development was the simple sum and the L2 norm
of all values. The reason is that significant sources tend to be found on multiple
scales, resulting in many relatively high non-zero values in the sum. Random
fluctuations on the other hand can often be observed on a single scale only. The
ordinary sum was chosen for highest robustness and a good ability to identify
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source locations. During this optimization it was discovered that not including
the first evaluation bin (from 0.0° to 0.5°) in the sum further enhances the
stability of the overall search. Therefore it is not included.

It should be noted that the potential of this step could be exploited even
better, either by evaluating the full 180 spheres or by a more sophisticated way
of combining the 180 to one. But the devised algorithm is the best achieved
solution. The result of the summation can be seen in Figure 50.

Figure 50: The sum of the 180 spheres

8.5 From one search sphere to clusters

Now there is only one search sphere left containing the combined information
on neutrino density from all search scales. A source could now either be a very
high value on that sphere or a larger region with “higher-than-usual” values
or a combination of both. To identify these regions where “higher-than-usual”
values are present, a segmentation can be performed exactly as described in
chapter 8.3.5. This time « is varied, resulting in different numbers of remaining
gridpoints. @ = 1 means not cutting away anything at all, a lower « means
a harder cut. a = 0 is the same threshold as used for the individual spheres,
but also harder cuts with negative values are possible. One can see the effect
of different thresholds for segmentation in Figure 51. Higher positive values
introduce additional artifacts but also allow extended source structures to be
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found. Hard negative cuts only preserve the highest peaks, which works well for
the presented unrealistically strong point sources. Another illustrative example
for the effect of different segmentation thresholds can be found in appendix D.

Because all values of the whole sphere are taken into account for the seg-
mentation, this is a global approach. In contrast to that also local approaches
that focus on the change of the value next to a cluster (for example via edge
detection and heuristics) or the mean and variance of the values from within a
cluster and the surrounding neighborhood of the cluster have been tested. The
problem with these local methods was that faint random clusters in neutrino-
poor regions had an unreasonably high chance of surviving the segmentation,
whereas relatively obvious extended sources without clear contours were over-
looked often. The segmentation could certainly benefit from exploiting the local
structures in a reliable way instead of only using the global distribution, but the
global approach is the best found solution that performs well and is guaranteed
to show robust behavior.

This step can introduce a bias to the search. Cutting softly results in keep-
ing many gridpoints for the rest of the search, which prefers extended sources.
Cutting harshly on the other hand biases towards smaller sources and removes
faint but large sources completely from the remaining sample. Therefore mul-
tiple segmentations are used and evaluated independently. This introduces an
additional trial factor that has to be accounted for in chapter 8.6.2, but it also
allows the search to continue as unbiased as possible. Nevertheless, due to the
trial factor, not too many different segmentations can be kept for this analysis.

The next step applied to the segmented grid is a non-linear median filter.
This is a common approach in image processing to remove artifacts as explained
in [100]. Similar to the linear two dimensional filters already introduced in
chapter 8.3.3, the median filter also operates on the current gridpoint and its
direct neighbors. But instead of writing a weighted linear combination of the
considered values to the central gridpoint, it writes the median of the nine
values. The effect of this filtering is shown in Figure 52.

The gridpoints of the resulting segmented spherical grid are then checked
for connectedness. A connected group of gridpoints is called a segment in the
general context of segmentation and in this work it is also called a cluster. All
gridpoints are checked in the order from highest to lowest value and each time
the considered gridpoint is directly connected to an already found cluster, it is
added to this cluster. Connected here means that one of its eight neighbors is
already part of the cluster. If it is not connected to any cluster, a new cluster
is started. Once all gridpoints are assigned to clusters, all found clusters which
have directly neighboring points are fused together.

After this is done all remaining gridpoints are contained in clusters. They
have the same extensions as the segments in Figure 52.
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(a) « =0.25 (b) @ =0.15
(¢) & =0.05 (d) a=-0.1
(f) &= —0.9

Figure 51: The effect of different o values on the segmentation result.
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(a) « =0.25 a = 0.25 and median filter

(¢) & =0.05 a = 0.05 and median filter

(e) a=-0.1 = —0.1 and median filter

Figure 52: The effect of the median filter on the segmented grids.
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8.6 From clusters to significances

At this stage the information is condensed to clusters. Each cluster is composed
of a vector of the gridpoints that are part of it. The next step is to distinguish
the potentially significant sources from random accumulations. To do this one
needs to know the probability how likely a cluster could have been generated
by random events. This probability could in theory be easily determined by
pseudo-experiments using scrambled data. The problem with this approach
is, that requiring ezactly the same cluster at the same position with the same
gridpoints and the same values for each gridpoint is certainly not going to
happen in a bearable amount of time. And to compute a probability we would
need many occurrences of exactly this cluster. So this is not an option.

8.6.1 Relevance of a cluster

We can however describe the clusters using various evaluation metrics. For
instance one could compute the probability for a cluster of the same size or
larger, with size measured by the number of gridpoints. With a fair amount of
pseudo-experiments there will likely be a sufficient amount of smaller and larger
clusters to estimate the probability for the size of an observed cluster. To make
sure that this probability is not confused with the significance of a cluster, we
call the value computed in such a way “relevance”. It can be interpreted as an
estimation of the pre-trial significance, but it uses approximations and implicitly
already contains some trial factors for the search in multiple scales and locations.
The purpose of the relevance metrics is to provide a measure with which the
clusters can be compared with all other clusters from all segmentations.

Only considering size to measure the relevance neglects smaller or even
point-like sources. A good metric to find these could be the maximal value of
any gridpoint of the cluster. But also many other metrics can be defined to
identify outstanding clusters, each with a certain, sometimes not obvious bias.
An incomplete list of the tested metrics can be found in appendix E.

Apart from basic, directly computed relevance metrics one can also use
meta-metrics that rely on other relevance metrics. This can be done for in-
stance by direct linear combination of basic metrics. The idea behind these
combinations is that a dominant source could stand out in multiple certain
metrics. Taking this idea one step further leads to even more general meta-
metrics, but at some point these computations become so variable that sources
without a clear common trait can become hard to distinguish from random
clusters.

If all relevance metrics were to be used for the evaluation of the found
clusters, the potential to achieve a high significance would drop considerably,
because for the metric that might actually identify a source with a high signif-
icance there is a large number of other metrics and each metric has a chance
to overfluctuate for a random accumulation. But on the other hand if we chose
too few metrics we might introduce a large bias and maybe miss a source in
the data. Since the intention of this search had been not to optimize for a spe-
cific source model, the selection had to be done heuristically, loosely optimizing
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for all sources that have been included in the pseudo-experiments during the
development.

While a combination of two metrics, metrics 0 and 1 in appendix E, was
found to be performing very well for all kinds of sources as shown in chapter 8.7,
only metric 0, the size of the cluster in gridpoints, has been used for the data
analysis of ANTARES data to reduce the resulting trial factor. By this choice
the search becomes biased towards larger extended sources'?, but this has been
a deliberate choice, justified by the fact that ANTARES has already conducted
sophisticated searches for small and pointlike sources, see for instance [91]. It
is relevant to note that the choice of suited metrics is influenced by the choice
of segmentation thresholds from chapter 8.3.5 and vice versa. Together with
this explicit bias towards larger clusters and the resulting choice for this metric,
the segmentation thresholds « have been fixed to -0.11 and +0.25. A list of
the tested setups that have been used to derive these choices is contained in
Appendix G.

For this selection of metric and segmentations several thousand pseudo-
experiments with scrambled data are conducted. Each pseudo-experiment com-
putes the whole process as described in chapter 8 up to this point. Since one
pseudo-experiment typically contains many clusters, this results in tens to hun-
dreds of thousands of comparison values for each metric. But only the maximum
value for any cluster in any metric is considered in each pseudo-experiment, so
that in the final analysis a cluster will be compared to the distribution of the
achieved maxima instead of the distribution of all values. This proved to be
more reliable than comparing against the whole distribution, because there
are different systematics for the highest relevance value of a cluster in each
pseudo-experiment than for the second or third highest, since their possible
relevance values can be influenced by the highest scoring cluster in this pseudo-
experiment. The comparison with the distribution of the maximal values leads
to a correct estimation for the most relevant cluster in each pseudo-experiment,
but to an underestimation for clusters with lower relevance values in the same
pseudo-experiment. This solution is used because the aim of this search is the
most significant structure in the sky. The found clusters can now be compared
in each metric with a distribution of values from pseudo-experiments.

In this context a few definitions are useful. The p-value denotes the prob-
ability how likely something occurs. At this stage for example a p-value of
0.2 for a cluster is interpreted that in 20% of the pseudo-experiments a cluster
with the same or a higher relevance value has been found in the same metric.
Significances are given in ¢, which is derived from the standard deviation of a
Gaussian distribution. Therefore &~ 68.27% of all observed values are expected
within a 1.0c0 interval around the mean value for a Gaussian distribution, about
95.45% within a 2.00 interval and in general a fraction of er f (%) within No.
erf is the (Gauss) error function here. In the two-sided interpretation it is
irrelevant whether a value is higher or lower than the mean value. Since this

13The search would still be able to detect unexpectedly strong small sources, but with a
considerably reduced sensitivity. The evaluation of multiple scales results in an extended
cluster area around the actual small location (see Figures 49d and 52b) for strong sources.
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search is aiming for overfluctuations only, the significances are interpreted in
a one-sided way, meaning that low values are ignored and only high relevance
values result in high significances. Hence 1.00 instead means that in 68.27% of
the pseudo-experiments no relevance value as high as the observed one has been
found. For example 2.520 corresponds to a p-value of 0.0117, approximately
one in 85, 2.140 to 0.0324 or about one in 31.

Directly comparing a cluster to the exact obtained distribution of relevance
values to compute the p-value only allows certain, discrete p-values to occur.
This means that two clusters with different relevance values may be mapped
to the same p-value if no value is between them in the distribution used for
comparison, making their relevances indistinguishable. The possible minimal
p-value would also be limited by the number of pseudo-experiments.

Therefore the tail of the distribution of relevance values is substituted by a
fit, following an exponential decay in the form of a - €®®, which is the tail of a
Poisson distribution. The result can be seen in Figure 53. The fit is computed
based on the part of the tail of the distribution where the green fit is also shown
in this plot, but it is only used for high values where the actual statistic is not
sufficient anymore, indicated by the threshold value in black. Up to this value
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Figure 53: An example for the distribution of relevance values and the fit to this
distribution. The fit is computed based on the whole tail of the distribution,
but it is only used for values greater than the threshold marked in black.

the actual distribution is used to evaluate the significance. The threshold in
black, from where on the fit instead of the plain histogram is used, is calculated
as 0.8-beginning_of the_tail+0.2-value_where_third_to_last_zero_gap_occured.
If there are less than three gaps in the histogram with a zero value, the beginning
of the first present gap is used instead. This heuristic is used to make sure that
a range of the distribution with stable statistics is used to fit the tail, regardless
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of binning effects and poor statistics.

After the comparison of the relevance values with these distributions each
cluster has one p-value for every metric, expressing how likely it could have
been produced by chance according to this metric. The overall p-value for a
cluster is the minimum of the p-values from all metrics. From that p-value a
renormalized relevance (similar to a significance) is computed using the inverse

error function®.

8.6.2 Significance of a cluster

At this stage we have clusters on the search sphere, each cluster with a value
called renormalized relevance which states how likely it could have been pro-
duced by a random neutrino distribution. The relevance would equal the sig-
nificance if we had used only one relevance metric and only one segmentation.
But there is a trial factor for the additional possibilities that the observed
renormalized relevance value can be produced in any segmentation (and by any
metric if more than one is used). The corresponding trial factor could simply
be applied now, but since it is a conservative upper bound and the different
segmentations are highly correlated, we can give a more accurate estimate by
conducting pseudo-experiments. A large number of pseudo-experiments with
scrambled data would have to be conducted again. Each experiment would have
to compute the whole process described in chapter 8 up to this point again. But
almost the whole process has already been computed in chapter 8.6.1 to com-
pare the relevance values to the distributions from pseudo-experiments. The
only additional step is the computation of the renormalized relevance values for
each cluster. So the results from the previous pseudo-experiments are reused,
the few missing computations are added and we have a large distribution of
renormalized relevance values from pseudo-experiments.

Just as for the relevance values in chapter 8.6.1, in a direct comparison
with the observed distribution to compute the p-value, the number of pseudo-
experiments limits the possible maximal significance. Therefore the tail of the
distribution of relevance values is again substituted by a fit following the decay
of the tail of a Poisson distribution. The result can be seen in Figure 54. Just
like for the fit of the plain relevance values in Figure 53, the actual histogram is
used up to the threshold shown in black. The fit is only used for values above
this threshold and hence does not at all influence any of the significances quoted
in this thesis. The strong fluctuations in the left of the histogram in red aren’t
statistical fluctuations but systematic binning and combination effects. They
are caused by the combination of the, in this case two, independent distributions
from the two used segmentations, since for every entry in the histogram, the
maximum renormalized relevance value found for this pseudo-experiment is
used.

Finally, the distribution with the fitted tail from Figure 54 is used to com-
pute a p-value for a found cluster. It is a one-sided p-value, since only overfluc-
tuations are considered in this search. The same method could also search for

14 Using the boost library, see [104]. A scaling factor of v/2 has to be applied to the results
of this function to obtain the correct results.
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Figure 54: Fit to the distribution of renormalized relevance values used for the
computation of significances.

underfluctuations if several maximum operations were substituted by minimum
operations. The obtained p-value is converted to a significance for this cluster
using the inverse error function from [104] again. The resulting significance
values correspond to the standard way of converting p-values to significances
in Astroparticle physics, assuming a Gaussian distribution and a two-tailed
evaluation.

8.7 Sensitivity

In this chapter the sensitivity of this method is illustrated for various source
scenarios. Of course by design not all possible source morphologies that can
be detected by the method can be covered, but instead several basic setups
are shown to give an idea of the performance. Two relevance metrics, the size
of the cluster N (Metric 0) and the average of the highest v/N values in the
cluster (Metric 1), are used for these plots. The sensitivities are calculated
for pseudo-experiments with 13000 random background events with the quoted
number of source neutrinos artificially added. Each of the spherical grids in
this chapter is rotated such that it presents a reasonable view on the current
source(s). The sensitivity curves are smoothed, since only 20 repetitions per
data point could be conducted due to time constraints. The visualizations of
the setups are shown with the maximum number of events per source tested
in the corresponding sensitivity plots. To clarify explicitly, in this chapter the
given sizes of the benchmarked sources are their radius, not their diameter.
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8.7.1 Small and pointlike sources

Since dedicated, model optimized searches didn’t find clear indications for point-
like sources, it is not to be expected for this search either. Figure 55 shows a
setup with one almost pointlike source with a radius of 0.5° at a declination of
-70°. The corresponding sensitivity curve in Figure 56 shows, how likely it is to
detect the point source with a significance of 30, depending on the number of
events randomly distributed within the source. This means that a point source
of this size and location needs 12 events to have a chance of 50% to be detected
with a significance of at least 3o. Figures 57 and 58 show the corresponding
information for a source with a radius of 1.0°.
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Figure 55: Point source smaller 0.5° at a declination of -70°.
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Figure 56: Sensitivity for a point source smaller 0.5° at a declination of -70°.
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Figure 57: Point source smaller 1° at a declination of -29°.
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: Sensitivity for a point source smaller 1° at a declination of -29°.
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8.7.2 Extended sources

The extended sources here are added using random positions for the events
within the source. These tests show the performance for scenarios with extended
sources like the Fermi Bubbles or the hotspot as seen by IceCube in [105]. The
declination of the Galactic Center is at -29°, the hotspot at the time this is
written is believed to be centered at -23° with a possible extension between
8° and 20°. Similar extended setups are shown in Figures 59 and 61. Analog
to the point sources, the probability for a 3o effect depending on the number
of events within the source for these setups is shown in Figures 60 and 62.
To give an impression how the result of the developed analysis looks like for
extended sources, Figure 63 shows the result of the method for this scenario.
This plot can be compared to Figure 50, which shows the same stage of the
computation for the example with two point sources. Figure 64 shows the
effect of a segmentation with o = -0.11 on Figure 63. The corresponding plot
for the two pointlike sources is Figure 52f. Every connected region here is one
cluster. One can see that filaments are extending the cluster. This happens
at locations where random accumulations of background events are close to
the actual structure. The individual significance of each cluster is evaluated
according to the chosen metrics. The cluster containing the artificial source
events is detected with more than 50 here. All other clusters on this sphere do
not reach significances above 0.50.
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Figure 59: Extended source smaller 5° at a declination of +10°.
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Figure 60: Sensitivity for an extended source smaller 5° at a declination of
+10°.
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Figure 61: Extended source smaller 10° at a declination of -29°.
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Figure 62: Sensitivity for an extended source smaller 10° at a declination of
-29°.
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Figure 63: Result for a setup like in Figure 61. This is after the summation of
all search scales described in chapter 8.4, but before any segmentation cut is

applied as described in chapter 8.5. The color scale can be considered arbitrary
units, red means higher event density.

Figure 64: The effect of a segmentation with o = -0.11 on the result shown in
Figure 61.



100 8 MULTISCALE SOURCE SEARCH

Figure 65: The effect of a segmentation with @ = 4-0.25 on the result shown in
Figure 61.
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8.7.3 TUnexpected shapes

A common idea of a source is a structure with an approximately spherical shape.
This search does not require such a shape to find a source. The artificial setup
of a straight line in Figure 66 is used to demonstrate that arbitrary shapes
can be found. The sensitivity for this scenario is shown in Figure 67. In the
scenario shown in Figure 68, the even more arbitrary shape of a line with a
gap is shown. Whether this shape is reconstructed as one connected or two
separate lines depends strongly on the number of events in the line and random
fluctuations in the gap. The sensitivity for this setup, independent of whether a
connected or two separate sources are identified, is shown in Figure 69. Figure
70 shows the detailed result obtained for this scenario before segmentation.
One has to keep in mind, that this is for a scenario with unrealistically many
events within the source. This result after the segmentation with o = -0.11 is
shown in Figure 71. The two parts have been detected as one long line in this
example. Just like for the results for the extended sources, these results can
be compared to the corresponding ones shown for the scenario with two point
sources in Figure 50 and Figure 52f.

To demonstrate that the ability to identify arbitrary shapes is not limited to
spherical and straight shapes, the setup shown in Figure 72 contains a curved
line. The corresponding sensitivity can be seen in Figure 73. The results are
shown in Figure 74 without segmentation and in Figure 74 after the segmen-
tation using o = -0.11. The general shape follows the desired directions, but
there are considerable filaments extending beyond the region where the artifi-
cial events have been added. These are caused by random fluctuations near the
actual source region, but there is no way to distinguish them from ”real source
events” in a real application.



102 8 MULTISCALE SOURCE SEARCH

Figure 66: Diagonal line, 20° length, at a declination of -70°.
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Figure 67: Sensitivity for a diagonal line, 20° length, at a declination of -70°.
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Figure 68: Diagonal line with interruption, 20° length, at a declination of -29°.
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Figure 69: Sensitivity for a diagonal line with interruption, 20°
declination of -29°.
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Figure 70: Result for the setup in Figure 68. This is after the summation of
all search scales described in chapter 8.4, but before any segmentation cut is
applied as described in chapter 8.5. The color scale can be considered arbitrary
units, red means higher event density.

Figure 71: The effect of a segmentation with a = -0.11 on the result shown in
Figure 68. The two parts of the line are connected in this example, but this is
not the case for all pseudo-experiments of this setup, especially with less events.
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Figure 72: Curved line, 20° length, at a declination of -29°.
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Figure 73: Sensitivity for a curved line, 20° length, at a declination of -29°.
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Figure 74: Result for the setup in Figure 72. This is after the summation of
all search scales described in chapter 8.4, but before any segmentation cut is
applied as described in chapter 8.5. The color scale can be considered arbitrary
units, red means higher event density.

Figure 75: The effect of a segmentation with a = -0.11 on the result shown in

Figure 72. The filaments in this example are caused by random background
fluctuations near the source.
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8.7.4 Neighboring sources

If other sources are located close to a source, the probability to detect the
presence of the whole structure is higher than the sum of the probabilities to
detect the sources independently. This is demonstrated by the setup as seen in
Figure 76. The sensitivity for this scenario is shown in Figure 77. The numbers
of events are per source here. What can be seen is that the number of events
required for each point source to obtain a 3o effect with a certain probability
is lower than for one source of the same extension and location alone. For
comparison: The sensitivity for a single source of the same size and location
has been presented in Figure 58.

8.7.5 Diffuse flux

This search is not at all sensitive to a completely diffuse flux. It adapts to
the data in the beginning of the search in such a way that the overall excess is
automatically compensated, making it completely impossible to detect anything
that doesn’t have a spatial structure.
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Figure 76: Three point sources smaller 1° at declinations of -25°, -29° and -34°.
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Figure 77: Sensitivity for three point sources smaller 1° at declinations of -25°,
-29° and -34°.
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8.8 Modifications for IceCube data
8.8.1 Necessary modifications

Although no explicit assumption has been made derived from properties of the
ANTARES neutrino telescope for this search, this happened implicitly at some
points when the algorithm was optimized with the specific application in mind.
If the same algorithm is to be applied to the public IC40 dataset [106], released
by the IceCube collaboration, some details should be reconsidered. What was
realized to be the relevant difference between the application to ANTARES and
IceCube data is the approximation of the expectation of the number of neutrinos
for a certain declination as described in chapter 8.3.3. While the probability to
detect a neutrino changes slowly with the declination for ANTARES, see Figure
41, there is a leap for IceCube at a declination of about 0° as seen in Figure
78. The consequence of this discrepancy is that the estimated expectation
derived from scrambled data cannot be smoothed as much for IceCube as for
ANTARES, because otherwise the estimated expectation would strongly smear
the observed jump. The number of applied lowpass filter operations is therefore
reduced from 60 to 15 to better preserve this leap. The result of the acceptance
estimation for the IC40 data can be seen in blue in Figure 78 for up to 0.5° and
in Figure 79 for 10°.
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Figure 78: Approximation of the acceptance of the IceCube detector and the
reconstruction chain for a search distance up to 0.5°, based on the 1C40 data
sample.

Apart from this adaption, no part of the algorithm needs to be modified to
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Figure 79: Approximation of the acceptance of the IceCube detector and the
reconstruction chain for a search distance between 10.0° and 10.5°, based on
the IC40 data sample.

apply it to the public IC40 dataset.

8.8.2 Optional modifications

Since the ANTARES and IceCube datasets are completely independent from
each other but both should contain the same physical observation of the neu-
trino sky, one can be used to check a hypothesis derived from the other in the
region where both datasets overlap without a trial factor.

A simple way to achieve this with this search method would be to analyze
the IceCube data with the hypothesis generated by the ANTARES data and
compare the results by eye. Since the outcome is not trivial to interpret, this ap-
proach could easily be misleading. To perform this check on a more solid basis,
the idea is to predefine some requirements for the comparison of the hypothesis
from ANTARES data and potential clusters in the IceCube data. First of all,
the same segmentation threshold is used to evaluate the IC40 data as was used
to find the most significant structure in the ANTARES data. Furthermore, a
cluster has to overlap with the template of the ANTARES structure. Since
large structures, which barely overlap with the template by only one pixel, cer-
tainly are not the aim of such a search, a minimum overlap is required for a
cluster to be taken into account. This overlap requirement is set to 51% of the
size of the new cluster to require it to be more related to the template than
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to other regions. Since requiring an overlap with a template implicitly means
searching in a confined region, the metric to evaluate the significance cannot
be size, as it would prefer clusters which exactly have a fraction of 51% of their
size inside and 49% outside of the template. Therefore the metric is changed
to metric number 1, topSqrt, as described in Appendix E. This metric uses the
mean value of the v/N highest pixel-values in the cluster, with N being the size
of the cluster. Judging from pseudo-experiments, this is the second best tested
metric.
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Part 111
Results and discussion

This part of the thesis presents the results obtained using the described methods
and gives an interpretation of these results.
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9 Results

Only after the development of the methods is finished and the analysis proce-
dure and all cuts are fixed, the ANTARES data are processed for the first time,
the so called “unblinding”. This mandatory blinding policy prevents that a bias
can influence the development of the methods or analyses. After filtering the
recorded data as described in chapter 7, the unblinding for this analysis resulted
in 13283 neutrino event candidates. The spatial distribution of these events has
been analyzed using the techniques described in chapter 8. The result of this
analysis are clusters, each with an independent significance. As explained in
chapter 8.6.1, only the size of the clusters is used as relevance metric to assess
their significance. Since two different segmentation thresholds have been used,
there are two different resulting skymaps. The trial factors for all evaluations
have been incorporated into the post-trial significance of each individual cluster.

9.1 Found clusters

The segmentation with a threshold of a = -0.11, see chapter 8.5, is the harder of
the two applied segmentation cuts. It detects multiple extended clusters which
are close together. These clusters are not significant on their own. The result
as computed on the search sphere can be seen in Figure 80. Figure 81 shows
the same results as a skymap in equatorial coordinates, Figure 82 as skymap in
galactic coordinates. All skymaps are presented in Hammer-Aitoff projection.
The highest significance of 0.81¢ is found for the cluster at the bottom, colored
in red on the sphere and in white in the skymaps.

Significance Significance
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Figure 80: Result of the unblinding with a segmentation threshold of a = -
0.11 on the search sphere. Multiple extended clusters have been found, but no
structure is significant on its own. a) View centered on the clusters. b) View
of the opposite side.

The threshold of o = 40.25 is the less strict segmentation cut. Its intention
is to find very large structures or to allow neighboring structures to merge. The
clusters found using o = -0.11 fuse in this segmentation, resulting in one large
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360°

Figure 81: Result of the unblinding with a segmentation threshold of @ = -0.11
in equatorial coordinates. The colorcode is the significance in o.

cluster with a post-trial significance of 2.85¢0. Due to the compensation of a
systematic effect investigated in chapter 9.7, this significance gets reduced to
2.520. The significance of the clusters observed for o = -0.11 changes are only
slightly reduced by this effect to 0.790. The very large structure can be seen
on the search sphere in Figure 83. Figure 84 shows the result as skymap in
equatorial coordinates, Figure 85 in galactic coordinates. This cluster encloses
the Galactic Center, but it is larger than the largest extended structures that
are currently suspected to emit neutrinos, for instance the Fermi Bubbles [94].

Since the obtained results aren’t trivial to interpret, several further studies
are presented in the following chapters.
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Figure 82: Result of the unblinding with a segmentation threshold of o = -0.11
in galactic coordinates.
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Figure 83: Result of the unblinding with a segmentation threshold of o = +0.25.
A very large structure with a post-trial significance of 2.85¢ is found. a) View
centered on the cluster region. b) View of the opposite side.
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360°

Figure 84: Result of the unblinding with a segmentation threshold of a = +0.25
in equatorial coordinates. The colorcode is the significance in o.

180° -180°

Figure 85: Result of the unblinding with a segmentation threshold of @ = +0.25
in galactic coordinates.
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9.2 Result before segmentation

Figures 86, 87 and 88 show the structures that have been found by the multiscale
search after summation of the individual scales as described in chapter 8.4<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>