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“Dear Radioactive Ladies and Gentlemen,

... I have hit upon a desperate remedy to save the "exchange theorem" of statistics and the law
of conservation of energy. Namely, the possibility that in the nuclei there could exist electrically
neutral particles, which I will call "neutrons", that have spin 1/2 and obey the exclusion principle
and that further differ from light quanta in that they do not travel with the velocity of light.......

The continuous beta spectrum would then make sense with the assumption that in beta
decay, in addition to the electron, a neutron is emitted such that the sum of the energies of neutron
and electron is constant....

But so far I do not dare to publish anything about this idea, and trustfully turn first to
you, dear radioactive ones, with the question of how likely it is to find experimental evidence for
such a neutron. . .

I admit that my remedy may seem almost improbable because one probably would have
seen those neutrons, if they exist, for a long time. But nothing ventured, nothing gained. . .

Thus, dear radioactive ones, scrutinize and judge.”

Wolfgang Pauli [1],

December 4, 1930.
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Abstract

Departamento de Física Atómica, Molecular y Nuclear

Instituto de Física Corpuscular (UV – CSIC)

UNIVERSITAT DE VALÈNCIA

Search for Neutrino Non-Standard Interactions with ANTARES and KM3NeT-ORCA

by Nafis Rezwan KHAN CHOWDHURY

The ANTARES neutrino telescope and its next-generation successor, KM3NeT, located in
the abyss of the Mediterranean Sea, have been designed to study neutrinos from a variety
of sources over a wide range of energies and baselines. One of the primary goals of the
experiments is to measure the Earth-matter effects stemming from the energy and zenith
angle dependence of the atmospheric neutrinos in the multi-GeV range. The study of
atmospheric neutrinos is instrumental in addressing some of the outstanding issues in
neutrino oscillation physics, especially the fundamental question of the neutrino mass
ordering, as well as probing new physics scenarios beyond the Standard Model.

In this thesis, we exploit the data of ANTARES and explore the physics potential of
KM3NeT-ORCA (ORCA being the low energy component of KM3NeT) to measure the
sub-dominant effects in the atmospheric neutrino oscillations vis-à-vis non-standard
neutrino interactions (NSIs). The Monte Carlo simulation framework, which comprises
the simulation of neutrino interactions, particle generation and light propagation, event
selection and reconstruction, as well as the statistical treatment of data and systematic
uncertainties has been described in great detail. We present a likelihood search for NSIs
with 10 years of atmospheric muon-neutrino data recorded with ANTARES and explore
sensitivity projections for ORCA based on realistic detector simulations. Moreover, we
outline the impact of NSIs on the discovery potential of ORCA towards the neutrino
mass ordering. In addition, the sensitivity of ORCA towards the octant of θ23 has been
reported. Remarkably, the bounds obtained with ANTARES excludes hitherto allowed
regions from current experimental data, and represent the worldwide best limit in the
µ− τ sector up to date.
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1

Introduction

"Part of the blame, or the glory, they Ŋay, may

belong to the flimŊieŊt, quirkieŊt and moŊt eluŊive

elementŊ of nature: neutrinoŊ. TheŊe ghoŊtly

Ŋubatomic particleŊ Ŋtream from the Big Bang, the

Sun, exploding ŊtarŊ and other coŊmic

cataŊtropheŊ, flooding the univerŊe and Ŋlipping

through wallŊ and our bodieŊ by the billionŊ every

Ŋecond, like moonlight through a Ŋcreen door."

— DENNIS OVERBYE,
The New York Times, April 15, 2020.

This thesis details a study of the statistical significance with which ANTARES is, and
KM3NeT-ORCA (ORCA in what follows) will be, able to determine a signal from
non-standard interactions of neutrinos and discusses its phenomenological consequences
on the neutrino mass ordering measurement at ORCA. The document is organised as
follows:

Chapter 1 introduces the theoretical background behind neutrino masses, mixing and
oscillations with special emphasis on neutrino non-standard interactions (NSIs).

Chapter 2 discusses the production of atmospheric neutrinos, their relevant interactions
in sea water, detection techniques and an overview of the current detectors. The study of
time calibration of optical devices in KM3NeT is included.

Chapter 3 discusses the MC simulation chain and event reconstruction algorithms in
ANTARES and ORCA. The overall scheme of computation of events is presented.

Chapter 4 presents the results of the search for NSIs with 10 years of ANTARES data as
well as outlines the future sensitivities towards NSIs at ORCA. The impact of systematic
uncertainties and errors on oscillations parameters are investigated.

Chapter 5 explores the phenomenological implications of NSIs on the neutrino mass
ordering (NMO) resolution at ORCA. The effects of NSIs on the NMO sensitivity have
been quantified.

In Chapter 6, we fall back to the scenario of standard three-flavour neutrino oscillations
by switching off NSIs and estimate the sensitivity of ORCA towards the resolution of the
θ23 octant.

Finally, an overview of the thesis is presented in the form of a Summary.
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1 Neutrinos in the Standard Model
and Beyond

"Your theory iŊ crazy, but it’Ŋ not crazy enough to

be true."

— NIELS BOHR

Contents
1.1 Electroweak Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Neutrino Mass, Mixing and Oscillations . . . . . . . . . . . . . . . . . . 4

1.2.1 Neutrino Oscillations: n Flavours . . . . . . . . . . . . . . . . . . 6
1.2.2 Neutrino Oscillations in Vacuum . . . . . . . . . . . . . . . . . . . 9
1.2.3 Neutrino Oscillations in Matter . . . . . . . . . . . . . . . . . . . . 10
1.2.4 Oscillograms: Vacuum vs Matter . . . . . . . . . . . . . . . . . . . 12
1.2.5 Current status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Beyond Standard Oscillations . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.1 Non-Standard Interactions . . . . . . . . . . . . . . . . . . . . . . 20
1.3.2 Neutrino Flavour Transitions with NSIs . . . . . . . . . . . . . . . 22
1.3.3 NSIs at Atmospheric Neutrino Experiments . . . . . . . . . . . . 24
1.3.4 Oscillograms in presence of NSIs . . . . . . . . . . . . . . . . . . . 26
1.3.5 Current limits on NSIs . . . . . . . . . . . . . . . . . . . . . . . . . 33

This Chapter aims to give a basic overview on the phenomenon of neutrino oscillations,
which can only be explained by adding mass to neutrinos. First, we introduce the
framework of standard neutrino-matter interactions in Sec. 1.1. Then, the mathematical
formulation behind the simple idea of oscillations is presented in Sec. 1.2, extrapolated
to cases of neutrino propagation in vacuum and special cases of neutrinos passing
through matter. Furthermore, one of the exotic physics scenarios, namely, non-standard
neutrino-matter interactions (NSIs) during neutrino propagation through matter, which
forms the heart of this thesis, is introduced briefly in Sec. 1.3. The impact of standard
as well as non-standard neutrino-matter interactions on neutrino oscillation probabilities
in vacuum are estimated. Finally existing bounds on non-standard interactions model
parameters are reported.

1.1 Electroweak Interactions

The Standard Model (SM) is a Yang–Mills quantum field theory [2] based on the
non-Abelian gauge symmetry group SU(3)C ⊗ SU(2)L ⊗ U(1)Y. The group SU(3)C
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describes the strong interaction mediated by eight gluons (gi
µ , i ∈ {1, ..., 8}) and the

corresponding quantum charges are called colours. The symmetry group SU(2)L⊗U(1)Y
describes the electroweak interaction, mediated by four bosons (W i

µ , i ∈ {1, 2, 3} and Bµ),
whose corresponding quantum charges are called weak isospins (~I ) and weak hypercharge
(Y). The electroweak group is broken spontaneously [3, 4, 5] by the Brout-Englert-Higgs
mechanism [6, 7]. The remaining symmetry, the Abelian U(1)EM, describes the
electromagnetic interaction, whose charge, Q, is given by the Gell–Mann–Nishijima
relation [8, 9]:

Q = I3 +
Y
2

, (1.1)

where I3 is the third component of the weak isospin and Y, the weak hypercharge.

After spontaneous symmetry breaking, four gauge bosons (three massive, W+, W− and
Z0, and one massless, γ) appear as a combination of the original W i

µ and Bµ, which
mediate the electroweak interactions:

W±µ =
1√
2
(W1

µ ∓ iW2
µ), (1.2)

and, [
W3

µ

Bµ

]
=

[
cos θW sin θW
− sin θW cos θW

] [
Zµ

Aµ

]
, (1.3)

where W±µ , Zµ and Aµ represent the fields of the W±, Z0 and γ bosons, and θW (=
arcsin( e

g )) is the weak or Weinberg angle with e being the electromagnetic charge and
g being the weak coupling constant.

The lepton sector of the SM comprises three generations of left-handed doublets
((lαL, ναL)

ᵀ) and right-handed singlets1 (lαR), with α = e, µ or τ. The electroweak
interactions among the particles of the leptonic sector is given by the following
Lagrangian density L:

L = eAµlαγµlα (EM interaction)

− g√
2
[W+

µ ναLγµlαL + W−µ lαLγµναL] (CC weak interaction)

− g
2 cos θW

[Zµ(ναLγµναL − lαLγµlαL − sin2θW lαγµlα)], (NC weak interaction)

(1.4)

where lα(= lαL + lαR), να are the charged lepton and neutrino fields for flavour α
respectively and γi are the Dirac matrices. CC and NC stand for charged current (CC)
and neutral current (NC) interactions, respectively (illustrated in Sec. 1.2.3).

1.2 Neutrino Mass, Mixing and Oscillations

The discovery of oscillations between neutrino families2 has a long history full of
experimental and theoretical insights. We give here a brief and necessarily limited
account of how the story developed.

1The SM does not include right-handed neutrinos, ναR.
2The terms "flavours", "types", "generations" and "species" will be used interchangeably in this thesis.

4 of 299



1.2. Neutrino Mass, Mixing and Oscillations 5

The idea of neutrino oscillations was first proposed in 1957 by B. Pontecorvo [10]. He
suggested that, in a way analogous to the K0 − K0 oscillation phenomenon proposed by
Gell-Mann and Pais [11], neutrinos and antineutrinos could oscillate. In 1962, Lederman,
Schwartz and Steinberger showed experimentally that the neutrino associated with the
muon was different than the one associated with the electron [12]. At around the
same time, Maki, Nakagawa and Sakata discussed the possible "transmutation" between
νe and νµ [13]. In 1967 Pontecorvo considered the possibility of oscillations between
flavours [14] and discussed some astronomical implications, for instance that the flux at
the Earth of electron neutrinos coming from the Sun could be smaller than the theoretical
expectations.

In 1965, R. Davies started building the famous "Homestake experiment" to detect solar
neutrinos. It began to take data in 1969 and already the first results indicated a deficit
of neutrinos with respect to the theoretical calculations, deficit which was confirmed
by subsequent results. It took some time to convince the scientific community that
the experimental results and the theoretical calculations were correct within the known
uncertainties [15, 16] and that there was a discrepancy, which was then referred to as the
"solar neutrino problem". Other experiments such as GALEX/GNO [17], SAGE [18, 19],
Kamiokande [20] and Superkamiokande [21] confirmed that the flux of neutrinos was
lower than expected. All these experiments detected only electron neutrinos, which are
the only type of neutrinos produced by the solar nuclear reactions.

The "solar neutrino problem" remained unsolved during a long time and although a
variety of possible theoretical explanations were put forward (literally dozens of them).
One of the most favoured ones was that electron neutrinos changed flavour during their
flight to Earth, i.e. that oscillations among families were taking place.

During the 70s and 80s the theory underlying neutrino oscillations was further developed
and a variety of theoretical predictions and experimental projects were proposed [22,
23]. In 1977, Wolfenstein pointed out that the oscillation pattern and parameters could
change when neutrinos traversed matter [24]. Mikheyev and Smirnov then showed that
under certain circumstances oscillations could be resonantly enhanced when neutrinos
traversed matter [25, 26]. This so-called MSW effect or, in general, matter effects, have
important consequences in the case of neutrinos from the Sun.

In 1984, H. H. Chen pointed out that using deuterium as a target, electron neutrinos
could be detected in charge current interactions and the rest of families in neutral current
interactions [27]. The possibility to measure electron neutrinos on the one hand, and
all neutrino types on the other, could give invaluable information about the source of
the solar neutrino deficit and prompted the proposal to build the SNO experiment. The
results of SNO since 2001, indicated that the total flux of neutrinos of all families was in
agreement with the theoretical expectations and that the oscillation hypothesis was the
best explanation for the electron neutrino deficit [28, 29].

Before that, in 1998, the Super-Kamiokande experiment (Super-K in what follows)
reported that the ratio between muon and electron neutrinos (Nνµ /Nνe ) coming from
atmospheric showers induced by cosmic rays was smaller than predicted [30]. This had
already been observed by other experiments, such as Kamiokande [31] and IMB [32],
but Super-K not only observed the effect with higher statistics, but also showed that the
deficit depended on the neutrino’s path length and energy in a way compatible with
what was expected from neutrino oscillations.
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The 2015 Nobel prize in Physics was awarded to A. McDonald (SNO) and T. Kajita
(Super-K) "for the discovery of neutrino oscillations, which shows that neutrinos have
mass”.

The oscillation hypothesis was independently confirmed in experiments that used
neutrinos produced in accelerators, such as K2K (KEK to Kamioka) [33], MINOS
(Main Injector Neutrinos Oscillations) [34] and T2K (Tokai to Kamioka) [35]. In
these experiments the disappearance of muon neutrinos in the beam produced in the
laboratory was observed at long distances and provided better determinations of the
parameters that determine the oscillations, the mixing angles and the squared mass
differences (see next subsections).

Similarly, experiments using neutrinos from nuclear reactors served to pin down
the oscillation parameters. The Kamioka Liquid-scintillator Antineutrino Detector
experiment (KamLAND) using antineutinos from long distance reactors strongly
favoured the large solar mixing angle solution [36] and provided an excellent
determination of the solar squared mas difference [37].

In 2012, the Double Chooz nuclear reactor experiment disfavoured a null value for the
θ13 mixing angle [38] and two other reactor experiments, Daya Bay [39] and RENO [40],
reported measurements of θ13 different from zero with 5σ significance.

The oscillation parameters have been determined since then with higher precision in a
variety of experiments (for reviews see for instance [41]) and new experiments are being
proposed for further study of neutrinos properties.

Neutrino oscillations imply that at least two neutrino generations have mass, which
in turn leads to a variety of issues that hint to physics beyond the SM. The absence
of right handed neutrinos in the SM prevents to simply include Dirac mass terms
in the SM Lagrangian3. If neutrinos are Majorana fermions, the generation of mass
through the Higgs mechanism is only possible through terms that turn the model
non-renormalizable. Moreover, the smallness of the neutrino masses compared to those
of other SM fermions hints to high energy scales. All these questions exceed the scope of
this introduction (for details look into [43, 44, 45, 46]) and we will limit ourselves in the
following to discuss the phenomenology of neutrino mixing (of masses) and oscillations
(of flavours) which are relevant to our work.

1.2.1 Neutrino Oscillations: n Flavours

Neutrinos {να} (α representing the flavour family) are produced in charged current
(CC) and neutral current (NC) weak interaction processes. Each (neutrino) flavour
eigenstate να is a quantum superposition of multiple mass eigenstates {νi} with masses
mi. Oscillations are generated due to interference between different massive neutrinos

3Attempts to accommodate non-zero neutrino masses in an extended SM have been made by placing
a Dirac mass term "by hand" with a right-handed neutrino field (ναR), which has no gauge interactions.
However, this leads to the problem of large mass difference (eV – GeV) and huge disparities in the values
of the Yukawa coupling (10−12 − 10−2) for lepton masses within each generation (e, µ, τ). To get around
this problem, one can introduce a Majorana mass term (mR[

1
2 νC

αRναR + 1
2 ναRνC

αR] where νC
α = Cνᵀα ), where

ναR is singlet under SU(2) with weak hypercharge 0. Majorana mass term is invariant under SM gauge
transformation. The introduction of a new Dirac-Majorana mass term gives the leverage to choose one heavy
neutrino, predominantly ναR with mass mR at a scale O(1015 GeV) high above the electroweak scale O(102

GeV), thereby producing a light neutrino, predominantly ναL with mass m2
D

mR
. This scheme of suppression of

mass scale (thus providing a natural description for the lightness of the left-handed neutrinos) is known as
type I Seesaw mechanism [42].
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1.2. Neutrino Mass, Mixing and Oscillations 7

{νi}, which are produced and detected coherently as {να} with small mass differences.
This implies that when a neutrino of a certain flavour (say να) is produced in a
weak interaction process and propagates through space (or medium), each of the mass
eigenstates {νi} travel with different speed leading to a phase lag between them. After
a certain distance, the composition of the mass eigenstates is different from the initial
state. The final composition of mass eigenstates might constitute a neutrino of completely
different flavour {νβ : β 6= α}. This process of transmutation of flavour from a να into a
νβ is called neutrino oscillation. It is basically analogous to the quantum mechanics of
mixed states, which itself is equivalent to the classical theory of coupled oscillators. Let
us discuss the theory of neutrino oscillations in a quantitative way in the following.

In the standard theory of neutrino oscillations4 with n5 number of light neutrino
generations, a neutrino flavour eigenstate can be expressed as a linear superposition of n
mass eigenstates (or the other way round):

|να〉 =
n

∑
i=1

U∗αi|νi〉, (or |νi〉 = ∑
α

Uαi|να〉, ) (1.5)

where Uαi is the mixing matrix, which relates the mass basis {νi} (eigenstates of the
Hamiltonian) to the flavour basis {να} (eigenstates of the gauge group). Uαi satisfies
the following conditions:

U†U = In×n, ∑
i

UαiU∗βi = δαβ, ∑
α

UαiU∗αj = δij. (1.6)

The Latin indices i, j = 1, 2, 3... correspond to the mass eigenstates, while the Greek
indices α, β = e, µ, τ.... correspond to the flavour eigenstates.

The amplitude of |να〉 → |νβ〉 transition as a function of time is given by

Aνα→νβ
(t) = 〈να|νβ〉t = ∑

i
U∗αiUβie−iEit. (1.7)

The transition probability then reads

Pνα→νβ
(t) = |A|να〉→|νβ〉(t)|2 = ∑

i,j
U∗αiUβiUαjU∗βje

−(Ei−Ej)t. (1.8)

For ultra relativistic neutrinos (Ei ' Pi +
m2

i
2E in the limit m2

i � Pi), assuming same
momentum for all massive neutrino components (Pi = P ∀ i) and using light-ray
approximation (t ' L (c = 1)), the transition probability can be approximated by [47,
49]

Pνα→νβ
(L) = δαβ − 4 ∑

i>j
Re[U∗αiUβiUαjU∗βj] sin2 φij

± 2 ∑
i>j

Im[U∗αiUβiUαjU∗βj] sin 2φij,
(1.9)

4For a concrete derivation, see [47].
5Precision measurement of the decay width of Z at LEP [48] indicate that there are three generation of

neutrinos, (accompanying their charged lepton partners) which take part in weak interactions.
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8 Chapter 1. Neutrinos in the Standard Model and Beyond

where

φij = ∆m2
ij

L
4Eν
' 1.267∆m2

ij
L
Eν

[eV2][km]

[GeV]
. (1.10)

The coefficients of the massive neutrino components of flavour antineutrinos are simply
related to the corresponding coefficients of massive neutrino components of flavour
neutrinos by complex conjugation Uαi → U∗αi. Hence, the antineutrino oscillation
probabilities differ from the corresponding neutrino oscillation probabilities only in the
sign of the terms depending on the imaginary parts of the quartic products of the mixing
matrix elements. The imaginary part in Eq. 27 depends on whether neutrinos (+) or
antineutrinos (−) are considered.

Salient features regarding the expression of oscillation probabilities (Eq. 27) are summed
below.

• Non-zero oscillation probabilities not only necessitate unequal neutrino masses
(mi 6= mj ∀ i 6= j), but also non-trivial mixing (i.e. non-zero off-diagonal mixing
elements).

• The oscillation probabilities depend on the quartic product of mixing matrix
elements Uαi, which determines the amplitude of oscillations and mass-squared
differences ∆m2

ij, which decides the phase (both set by Nature). The oscillation
probabilities also depend on the distance between source and detector L and on the
neutrino energy E (both set by experiments).

• At L� 2E
∆m2

ij
, the oscillatory term is averaged out leading to a constant conversion.

• The mass-squared difference sits inside an even function sin2(φij) in the real term,
thereby making it insensitive to its sign, whereas the imaginary part contains a
component sin(2φij) which is sensitive to the sign of the mass-squared difference.

• Eq. 24 translates to conservation of total probability:
a) The sum of the transition probability from a flavour να to all other flavours νβ

(including β = α) is equal to unity:

∑
β

Pνα→νβ
= 1. (1.11)

b) The sum of the transition probability from any flavour να (including α = β) to a
flavour νβ is equal to unity:

∑
α

Pνα→νβ
= 1. (1.12)

In an n-flavour neutrino scenario, there are n(n− 1)/2 mixing angles, (n− 1)(n− 2)/2
Dirac phases, additional n− 1 Majorana phases (if neutrinos are Majorana-type particles)
and n − 1 mass squared differences. However, oscillation probabilities are invariant
regardless of whether neutrinos are Dirac- or Majorana-type particles.

The oscillation probabilities with α 6= β are called transition probabilities (referring to
appearance channels) and the oscillation probabilities with α = β are called survival
probabilities (referring to disappearance channels).
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1.2. Neutrino Mass, Mixing and Oscillations 9

1.2.2 Neutrino Oscillations in Vacuum

In the standard oscillation framework involving three active light neutrino species {να}
with α = e, µ, τ, the 3× 3 unitary matrix takes the form:νe

νµ

ντ

 =

Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3


ν1

ν2
ν3

 (1.13)

The unitary conditions in Eq. 24 translate into normalisations of three row and three
column elements:

|Uα1|2 + |Uα2|2 + |Uα3|2 = 1; (α = e, µ, τ), (1.14)

|Uei|2 + |Uµi|2 + |Uτi|2 = 1; (i = 1, 2, 3), (1.15)

and six angle closures:

|Uα1U∗β1 + Uα2U∗β2 + Uα3U∗β3|2 = 0; (α, β) = ((e, µ), (e, τ), (µ, τ), (1.16)

|UeiU∗ej + UµiU∗µj + UτiU∗τ j|2 = 0; (i, j) = (1, 2), (1, 3), (2, 3). (1.17)

For three generations, the PMNS mixing matrix can be conveniently parameterised by 3
mixing angles (θ12, θ13, θ23), one Dirac CP phase (δCP) and 2 Majorana phases (γ1, γ2) as

UPMNS = O(θ23)O(θ23, δ13)O(θ12)OM(γ1, γ2)

=

1 0 0
0 c23 s23
0 −s23 c23


 c13 o s13e−iδCP

0 1 0
−s13e−iδCP 0 c13


 c12 s12 0
−s12 c12 0

0 0 1


eiγ1 0 0

0 eiγ2 0
0 0 1


=

 c12c13 s12c13 s13e−ıδCP

−s12c23 − c12s23s13eıδCP c12c23 − s12s23s13eıδCP s23c13
s12s23 − c12c23s13eıδCP −c12s23 − s12c23s13eıδCP c23c13

 diag(eiγ1 , eiγ2 , 1),

(1.18)
where sij ≡ sinθij, cij ≡ cosθij. Majorana phases are inaccessible to oscillations, so we
drop them.

The oscillation probabilities for three generations can be obtained from Eq. 27, taking into
account that the Latin indices run from 1 to 3:

Pνα→νβ
(L) = δαβ − 4

3

∑
i>j=1

Re[U∗αiUβiUαjU∗βj] sin2(∆m2
ij

L
4E

)

± 2
3

∑
i>j=1

Im[U∗αiUβiUαjU∗βj] sin(∆m2
ij

L
2E

).

(1.19)

For three neutrino states, ν1, ν2, ν3 with masses m1, m2, m3, there are two unique
mass-squared differences ∆m2

21 and ∆m2
31 (∆m2

21 + ∆m2
32 + ∆m2

13 = 0). The sign of ∆m2
21

is known to be positive from solar neutrino experiments [29]. Depending on the sign of
the mass-squared splitting ∆m2

31, the relative mass spectrum of neutrinos can have two
possible scenarios: Normal Ordering (NO) with (m3 > m2 > m1) or Inverted Ordering
(IO) with (m2 > m1 > m3). The two scenarios are nicely represented in Fig. 1.1.
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10 Chapter 1. Neutrinos in the Standard Model and Beyond

Figure 1.1: The two possible orderings of neutrino masses: Normal (left) and Inverted (right). The
color codes illustrate the mixing between flavour eigenstates να and neutrino mass
eigenstate νi, quantified by the norm |Uαi|2 with α = e, µ, τ.

The expression for the oscillation probability in the electron appearance channel can be
written in the approximation of the mass splitting ∆m2

21 and the angle θ13 being small and
negligible beyond two orders of magnitude:

Pνµ→νe = α2 sin2 2θ12c2
23(

λL
2
)2 + 4s2

13s2
23sin2(

λL
2
)

+ 2αs13 sin 2θ12 sin 2θ23(
λL
2
) sin(

λL
2
) cos(δCP +

λL
2
),

(1.20)

where α =
∆m2

21
∆m2

31
and λ =

∆m2
31

2Eν
. The probability expressions for other channels can be

found in [50].

The oscillation probability for two flavour neutrino scheme in much simpler since there
is only one mixing angle θ and one mass-squared difference ∆m2. The oscillation
probability in the appearance channel is given by

Pνµ→νe
T
= Pνe→νµ

CP
= Pνe→νµ

T
= Pνµ→νe

= sin2 2θ × sin2(1.27× ∆m2 L
4Eν

[eV2][km]

[GeV]
).

(1.21)

Charge and Parity (CP) transformation (Pνe→νµ ⇐⇒ Pνe→νµ ) changes να to να, and Time
(T) transformation (Pνµ→νe ⇐⇒ Pνe→νµ ) changes α 
 β. CPT transformation being the
symmetry of any local quantum field theory.

1.2.3 Neutrino Oscillations in Matter

Neutrinos (and antineutrinos) of all flavours, νe, νµ, ντ, propagating through matter are
subjected to coherent forward scattering (Fig. 1.2) with fermions (electrons, protons and
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1.2. Neutrino Mass, Mixing and Oscillations 11

neutrons) in the medium via neutral current (NC) weak interactions mediated by Z0

bosons, while electron neutrinos and antineutrinos interact with electrons via charged
current (CC) weak interactions mediated by W± exchange. These SM CC and NC
interactions are encoded in the Lagrangian in the form:

LCC
mat = −2

√
2GF[νeγρLe][eγρLνe] + h.c. = −2

√
2GF[νeγρLνe][eγρLe] + h.c. (1.22)

LNC
mat = −2

√
2GF ∑

α, f
[ναγρLνα][ f γρ(g f

V − g f
A)γ

5 f ], (1.23)

where GF is the Fermi constant, L = (1− γ5/2) denotes the left chiral operator and g f
V

and g f
A are the vector and axial coupling constants of the Standard Model respectively.

e
−

ν̄e

W
−

e
−

ν̄e

e
− νe

νe e
−

W
−

e−, p, n e−, p, n

νl(ν̄l) νl(ν̄l)

Z

Figure 1.2: Feynman diagrams representing CC and NC (most right) neutrino interaction
processes through W± and Z0 exchange.

The effective Hamiltonian governing the evolution of neutrino flavour states in matter
takes the form:

Hm =
1

2Eν
Uik

m2
1 0 0

0 m2
2 0

0 0 m2
3

U†
kj +

VCC + VNC 0 0
0 VNC 0
0 0 VNC

 (1.24)

where,
VCC =

√
2GF Ne(x), and VNC = −

√
2GFNn(x)/2, (1.25)

with Ne(x) and Nn(x) being the electron and neutron densities in matter. VNC is common
to all flavours and hence does not modify the evolution equations. We can always
subtract a phase from each diagonal term of Hm, such that Hm = Hm −VNC.

After diagonalising the Hamiltonian by orthogonal transformations, we obtain the new
effective mixing angle and mass-squared differences in matter (in terms of their vacuum
counterparts) as:

sin2(2θm
13) =

sin2(2θ13)

(cos 2θ13 − ACC/∆m2
31)

2 + sin2(2θ13)
(1.26)

∆m2
31m = ∆m2

31[(cos 2θ13 − ACC/∆m2
31)

2 + sin2(2θ13)], (1.27)

where, ACC = 2EνVCC. For antineutrinos the particle number is negative and hence
the effective potential ACC flips its sign. A close inspection of the above expressions
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12 Chapter 1. Neutrinos in the Standard Model and Beyond

will reveal that if the mass-squared difference ∆m2
31 is positive, a resonance condition is

satisfied and the transition probability hits a maximum for a definite incident neutrino
energy Eν and specific potential VCC. This is called Mikheyev-Smirnov-Wolfenstein (MSW)
effect [51, 26]. The effective mixing angle θm

13 takes the value π
4 (irrespective of θ13 in

vacuum) at the resonance point defined by:

ACC = ∆m2
31 cos 2θ13. (1.28)

Moreover, there is no resonance for antineutrinos (ACC → −ACC). On the other hand for
negative ∆m2

31, the situation is exactly reversed. The expression of electron appearance
probability in the One Mass Scale Dominance (OMSD) approximation is given by:

Pm
νµ→νe

= sin2 θ23 sin2 2θm
13 sin2(∆m2

31m
L

4Eν
). (1.29)

Further expressions for other oscillation channels and discussions on matter effects can
be found in [50].

1.2.4 Oscillograms: Vacuum vs Matter

Atmospheric neutrino experiments consist of a copious source of electron and muon
neutrinos (and antineutrinos) produced in the upper atmosphere. Their energies span
across a few GeV to hundreds of GeV, down-pouring almost iso-tropically on the detector.
For a given set of oscillation parameter values and assumed mass ordering (normal or
inverted), the oscillation probabilities depend on two physical variables (observables) that
we measure at experiments: the neutrino energy Eν, and the cosine of the zenith angle
of the incident neutrino cosθz. A value cosθz = −1 corresponds to vertically up-going
neutrinos traversing across the Earth core passing through all the density layers of the
Earth matter, whereas cosθz = 0 corresponds to horizontally moving neutrinos passing
through the Earth atmosphere.

The term oscillogram refers to a 2D heat map of oscillation probabilities in the (Eν, cosθz)
plane. Oscillograms are very helpful to gauge the physics potential of atmospheric
neutrino experiments benefiting from its access to a wide range of neutrino energies and
baselines. Typically, they help us to fine tune our detector or analysis in regions of the (Eν,
cosθz) plane, where larger effects are expected. In this section, we will use oscillograms of
neutrinos propagating through Earth to observe the effects of standard neutrino-matter
interactions on various oscillation channels at atmospheric neutrino experiments.

For the calculation of oscillation probabilities, the neutrino evolution equation in the full
three-flavour neutrino scheme (Eq. 1.24) is solved numerically (without ignoring ∆m2

21,
θ12, θ13) with the OscProb [52] package taking into account the Earth matter density
profile, consisting of 44 layers, as it is assumed in the Preliminary Reference Earth Model
(PREM) [53]. This model parameterises the Earth’s density into concentric spheres of
uniform density as shown in Fig. 1.3.
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1.2. Neutrino Mass, Mixing and Oscillations 13

Figure 1.3: Left: Density profile of the PREM model [53] consisting of 44 radial layers; right:
Visualisation of the neutrino path (as a function of path fraction = x

D with x, D being the
path length and the diameter of Earth respectively) corresponding to different zenith
angles of an incoming neutrino. cosθz = 0 (−1) corresponds to horizontal (vertically
up-going) neutrinos.

νe → νx oscillation channels

Fig. 1.4 depicts oscillograms for electron neutrinos for the vacuum case (left) and in
presence of standard neutrino-matter interactions (right). The upper, middle and bottom
panels correspond to electron disappearance, muon appearance and tau appearance
channels respectively. The sum of the three channels in each column add up to unity.
Hence, a νe deficit is accompanied by νµ and ντ excesses with respect to the unitarity
condition in Eq. 24. MSW effects [24] are more prominent for mantle-core crossing
(cosθz ≤ −0.8) neutrinos, since they experience large matter effects while traversing
across the Earth before reaching the detector. In these examples MSW resonance happens
for neutrinos since normal ordering (NO) is assumed.
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14 Chapter 1. Neutrinos in the Standard Model and Beyond

Figure 1.4: Pνe→νx (x = e, µ, τ) for vacuum assumption (left) and in presence of matter (right) as
a function of neutrino energy Eν and cosine of the zenith angle cosθz. The top, middle
and bottom panels correspond to electron disappearance, muon appearance and tau
appearance channels, respectively. Normal Ordering is assumed.
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1.2. Neutrino Mass, Mixing and Oscillations 15

νe → νx oscillation channels

Fig. 1.5 depicts oscillograms for electron antineutrinos for the vacuum case (left) and in
presence of standard neutrino-matter interactions (right). In NO, even in the presence
of matter, electron antineutrinos follow almost vacuum oscillations, in which they hardly
mix with other flavours. The situation is exactly reversed for neutrinos and antineutrinos
in IO assumption for δCP = 0.

Figure 1.5: Pνe→νx (x = e, µ, τ) for vacuum assumption (left) and in presence of matter (right) as
a function of neutrino energy Eν and cosine of the zenith angle cosθz. The top, middle
and bottom panels correspond to electron disappearance, muon appearance and tau
appearance channels, respectively. Normal Ordering is assumed.
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16 Chapter 1. Neutrinos in the Standard Model and Beyond

νµ → νx oscillation channels

Fig. 1.6 depicts oscillograms for muon neutrinos for the vacuum case (left) and in
presence of standard neutrino-matter interactions (right). The upper, middle and bottom
panels correspond to electron appearance, muon disappearance and tau appearance
channels.

Figure 1.6: Pνµ→νx (x = e, µ, τ) for vacuum assumption (left) and in presence of matter (right) as
a function of neutrino energy Eν and cosine of the zenith angle cosθz. The top, middle
and bottom panels correspond to electron appearance, muon disappearance and tau
appearance channels, respectively. Normal Ordering is assumed.
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1.2. Neutrino Mass, Mixing and Oscillations 17

νµ → νx oscillation channels

Fig. 1.7 depicts oscillograms for muon antineutrinos for the vacuum case (left) and in
presence of standard neutrino-matter interactions (right). In NO, even in the presence of
matter, muon antineutrinos follow almost vacuum oscillations, in which they hardly mix
with other flavours. The situation is exactly reversed for neutrinos and antineutrinos in
IO assumption for δCP = 0.

Figure 1.7: Pνµ→νx (x = e, µ, τ) for vacuum assumption (left) and in presence of matter (right) as
a function of neutrino energy Eν and cosine of the zenith angle cosθz. The top, middle
and bottom panels correspond to electron appearance, muon disappearance and tau
appearance channels, respectively. Normal Ordering is assumed.
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18 Chapter 1. Neutrinos in the Standard Model and Beyond

1.2.5 Current status

As mentioned in Sec. 1.2.2, the standard framework of neutrino oscillations with three
generations is governed by three mixing angles, θ12, θ13, θ23, one Dirac CP phase, δCP,
and two mass-squared differences, ∆m2

21, ∆m2
31. The current experimental knowledge of

these parameters is summarised below.

• The analysis of solar data collected by KamLAND [54, 36], Super-K [55] as
well as global analyses of oscillation data [56] have determined the solar mixing
parameters θ12 and ∆m2

21 with great precision.

• The short baseline reactor experiments, namely, Daya Bay [57], RENO [58], Double
Chooz [59] have recently measured the non zero value of θ13.

• The atmospheric neutrino experiments, namely, ANTARES [60], Super-K [61],
IceCube-DeepCore [62] as well as long baseline experiments, namely, MINOS [63],
T2K [64], NOνA [65] have measured the atmospheric mixing parameters θ23
and |∆m2

31|. However the precise values of θ23 and ∆m2
31 (along with its sign)

are expected to be probed by ongoing and upcoming experiments, namely,
KM3NeT-ORCA [66], IceCube-PINGU [67], Hyper-Kamiokande [68].

• A recent analysis by T2K [69] excluded large phase space area of possible δCP
values. Upcoming experiments like P2O [70], DUNE [71], T2HK [72] will have
unprecedented sensitivity to δCP, which causes CP violation in the lepton sector.

The current global best fit values of oscillation parameters are listed in Tab. 1.1 and the
3σ ranges of the matrix elements are listed in Eq. 1.30.
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NuFIT 5.0 (2020)
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Normal Ordering (best fit) Inverted Ordering (∆χ2 = 2.7)

bfp ±1σ 3σ range bfp ±1σ 3σ range

sin2 θ12 0.304+0.013
−0.012 0.269→ 0.343 0.304+0.013

−0.012 0.269→ 0.343

θ12/
◦ 33.44+0.78

−0.75 31.27→ 35.86 33.45+0.78
−0.75 31.27→ 35.87

sin2 θ23 0.570+0.018
−0.024 0.407→ 0.618 0.575+0.017

−0.021 0.411→ 0.621

θ23/
◦ 49.0+1.1

−1.4 39.6→ 51.8 49.3+1.0
−1.2 39.9→ 52.0

sin2 θ13 0.02221+0.00068
−0.00062 0.02034→ 0.02430 0.02240+0.00062

−0.00062 0.02053→ 0.02436

θ13/
◦ 8.57+0.13

−0.12 8.20→ 8.97 8.61+0.12
−0.12 8.24→ 8.98

δCP/
◦ 195+51

−25 107→ 403 286+27
−32 192→ 360

∆m2
21

10−5 eV2 7.42+0.21
−0.20 6.82→ 8.04 7.42+0.21

−0.20 6.82→ 8.04

∆m2
3`

10−3 eV2 +2.514+0.028
−0.027 +2.431→ +2.598 −2.497+0.028

−0.028 −2.583→ −2.412
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Normal Ordering (best fit) Inverted Ordering (∆χ2 = 7.1)

bfp ±1σ 3σ range bfp ±1σ 3σ range

sin2 θ12 0.304+0.012
−0.012 0.269→ 0.343 0.304+0.013

−0.012 0.269→ 0.343

θ12/
◦ 33.44+0.77

−0.74 31.27→ 35.86 33.45+0.78
−0.75 31.27→ 35.87

sin2 θ23 0.573+0.016
−0.020 0.415→ 0.616 0.575+0.016

−0.019 0.419→ 0.617

θ23/
◦ 49.2+0.9

−1.2 40.1→ 51.7 49.3+0.9
−1.1 40.3→ 51.8

sin2 θ13 0.02219+0.00062
−0.00063 0.02032→ 0.02410 0.02238+0.00063

−0.00062 0.02052→ 0.02428

θ13/
◦ 8.57+0.12

−0.12 8.20→ 8.93 8.60+0.12
−0.12 8.24→ 8.96

δCP/
◦ 197+27

−24 120→ 369 282+26
−30 193→ 352

∆m2
21

10−5 eV2 7.42+0.21
−0.20 6.82→ 8.04 7.42+0.21

−0.20 6.82→ 8.04

∆m2
3`

10−3 eV2 +2.517+0.026
−0.028 +2.435→ +2.598 −2.498+0.028

−0.028 −2.581→ −2.414

Table 1.1: Global best fit points (bfp) of oscillation parameters and their allowed ranges. The left
column refers to ∆m2

31 > 0 for NO and the right column refers to ∆m2
31 < 0 for IO.

Adapted from [73].

NuFIT 5.0 (2020)

|U |w/o SK-atm
3σ =

0.801 → 0.845 0.513 → 0.579 0.143 → 0.156

0.233 → 0.507 0.461 → 0.694 0.631 → 0.778

0.261 → 0.526 0.471 → 0.701 0.611 → 0.761



|U |with SK-atm
3σ =

0.801 → 0.845 0.513 → 0.579 0.143 → 0.155

0.234 → 0.500 0.471 → 0.689 0.637 → 0.776

0.271 → 0.525 0.477 → 0.694 0.613 → 0.756


(1.30)
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20 Chapter 1. Neutrinos in the Standard Model and Beyond

1.3 Beyond Standard Oscillations

The study of new physics at a higher energy scale can be approached in a model
independent way through effective field theories (EFTs). The new physics at some high
scale Λ can be described in a given EFT as

Le f f = LSM + ∑
n≥5

L(n)

Λn−4 = LSM + ∑
n≥5

∑
i

1
Λn−4 CiO(n)

i , (1.31)

where LSM is the Lagrangian density of the Standard Model, Oi are operators of higher
mass dimension involving the fields that are relevant at the low energy scale and Ci are
the so-called Wilson coefficients. The operators for n ≥ 5 are non-renormalizable and the
corresponding terms are suppressed by factors of Λ−n. The operators can be constructed
so as to respect the corresponding symmetries, gauge and Lorentz invariance.

In the case of neutrinos, the interactions to which the new terms give rise have been
dubbed "Generalised Neutrino Interactions" (GNIs) [74]. Historically the first type
of interactions beyond the SM studied were the so-called "Neutrino Non-Standard
Interactions" (NSIs) [75, 76]. NSIs are a subset of GNIs that include only dimension-six,
vector operators which respect the residual SU(3)C x U(1)em symmetry. The relationship
between NSIs and GNIs is studied in [74]. In this work, we limit ourselves to NSIs.

1.3.1 Non-Standard Interactions

Most models explaining mechanisms of neutrino mass generations [43] imply extra
interactions apart from the standard electroweak interactions (Sec. 1.1). Once we invoke
new physics to explain the mass of the neutrinos, it becomes very unnatural to avoid
the extra interactions rooting from neutrino mass as, for instance, in seesaw models [77].
Most Physics models that predict such non-standard neutrino-matter interactions include
radiative neutrino mass models [78], R-parity violating supersymmetric models [79] and
extensions of SM gauge group [74].

Non-Standard Interactions are interactions between neutrinos of all flavours with matter
fermions (e, u and d) that will affect the neutrino oscillation as a sub-leading mechanism
in neutrino flavour transitions. In general, NSIs can alter the oscillation signals via
charged current (CC) interactions and neutral current (NC) interactions. The CC NSIs
would affect the production and detection processes of neutrino states at a neutrino
oscillation experiment. On the other hand, the NC NSIs would affect the neutrino
propagation by coherent forward scattering of neutrinos in Earth matter.

In the low energy regime, the common ansatz to parameterise these additional
interactions of neutrinos is in terms of 6-dimensional operators appearing in an effective
four-fermion Langrangian (Eq. 1.31). The new operators are of the form [75, 76]:

LCC
NSI = −2

√
2GF ∑

P, f , f ′
ε

CC,P, f , f ′

αβ [ναγρLlβ][ f γρP f ′] + h.c., (1.32)

LNC
NSI = −2

√
2GF ∑

P, f
ε

NC,P, f
αβ [ναγρLνβ][ f γρP f ], (1.33)

where GF is the Fermi constant, P = L, R denotes the chiral operators (1 ±γ5/2)
respectively, f is first generation SM fermion (e, u or d-quarks), f ′ belongs to the same
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1.3. Beyond Standard Oscillations 21

weak doublet of f , and α and β denote the neutrino flavours: e, µ or τ. The dimensionless
coefficients ε

CC,P, f , f ′

αβ and ε
NC,P, f
αβ quantify the strength of NSIs between the neutrinos of

flavour α and β and the matter fermion f ∈ {e, u or d} (for NC NSIs) and f 6= f ′ ∈ {u,d}
(for CC NSIs). The Standard Model scenario is recovered in the limit ε→ 0.

While the former are tightly constrained and totally discernible at near detectors, we
are interested in NC NSIs that alters the propagation of neutrinos while traversing
across large path lengths before being detected. Solar, atmospheric and long baseline
experiments are expected to give better constraints on NSIs in propagation owing to large
matter effects, while non-oscillation experiments are more sensitive to NSIs in production
and/or detection.

The effect of NC interactions with fermions ( f ) affecting neutrino propagation in matter
(m) is usually referred as ε

m f
αβ . Since the potential is sensitive to the vector part of

the interaction (ε f V = ε f L + ε f R), neutrino propagation in a medium is sensitive to the
combination:

ε
f V
αβ = εeV

αβ +
Nu

Ne
εuV

αβ +
Nd

Ne
εdV

αβ . (1.34)

Most bounds from oscillation experiments are presented in terms of effective Lagrangian
coefficients ε

f V
αβ for interactions with d-quarks only. For neutral un-polarised Earth

matter, Nu ' Nd ' 3Ne. This makes the relation between components of
NSI couplings very straightforward and one can extrapolate bounds on different
components of NSI couplings by a simple normalisation factor calculated from the
ratio of their relative abundance in matter. The non-diagonal terms εαβ with α 6= β
allow for new sources of flavour violation and represent flavour-changing-neutral-current
(FCNC) interactions, while the diagonal terms εαα allow for different neutral current
(NC) interaction-amplitudes for different neutrino flavours which imply lepton
non-universality (NU). They are schematically in shown in Fig. 1.8.

e−, u, d e−, u, d

να(ν̄α) νβ(ν̄β)

Z ′ ǫαβ

Figure 1.8: Feynman diagram representing a neutral current non-standard interaction process.
A neutrino (or antineutrino) of flavour α interacts with a matter fermion (e, u or
d) mediated by a heavy (non-standard) boson Z’. The strength of the interaction is
parameterised by the NSI coupling parameter εαβ.
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22 Chapter 1. Neutrinos in the Standard Model and Beyond

We are going to consider NC NSI with interactions between neutrinos and d-quarks (e
and u-quark couplings set to 0) parameterised simply as εαβ (εαβ = ε

e f f
αβ = Nd

Ne
εdV

αβ ) for
brevity.

1.3.2 Neutrino Flavour Transitions with NSIs

NC NSIs of neutrinos are usually modelled as perturbations in the standard MSW
potential VCC [24]. The effective Hamiltonian [75, 80] governing the evolution of neutrino
flavour states in matter in the presence of NSI takes the form:

H3 f lv
NSI =

1
2Eν

Uik

m2
1 0 0

0 m2
2 0

0 0 m2
3

U†
kj + VCC

N f (x)
Ne(x)

δe f + εee εeµ εeτ

ε∗eµ εµµ εµτ

ε∗eτ ε∗µτ εττ

 , (1.35)

where, Eν is the neutrino energy; Uik is the PMNS matrix [81], which describes
the standard neutrino mixing as rotations between the flavour and mass eigenstates
parameterised by unique mixing angles θik; and m2

ij is the mass-squared value of the
mass eigenstate i. N f (x) and Ne(x) are the fermion and electron number density along
the neutrino path, respectively, and the εαβ (= |εαβ|eiφαβ ) represent the strength of NSI
coupling. In case of antineutrinos, we should flip the sign of Ne(x) and N f (x) for the
charge current matter and neutral current NSI potential respectively. Setting all εαβ to
zero, we will fall back to the SM neutrino oscillations with MSW effects.

From the form of the Hamiltonian in Eq. 1.35, one can find some interesting features
concerning the impact of NSI couplings in neutrino propagation:

a) The diagonal elements in the NSI matrix, εαα, could be interpreted as NSI induced
mass-squared differences (mimicking the standard ∆m2

ij), which could induce extra
resonances even in the absence of neutrino mass [82, 83].

b) The off-diagonal elements, εαβ, could induce flavour transitions and could be
interpreted as mixing angles. Even in the absence of neutrino mixing, the off-diagonal
terms can mimic oscillations [82, 83].

c) The complex phases eiφαβ on the off-diagonal elements εαβ could be new sources of CP
violation [84].

Inclusion of real NSIs (φαβ = 0) implies the introduction of six additional parameters
εee, εµµ, εττ, εeµ, εeτ and εµτ (if we account for hermicity and unitary constraints [85]),
which will have further degeneracies with oscillation parameters and systematic
uncertainties [86]. In what follows in the thesis, we neglect possible sources of CP
violation from these new interactions and assume all NSI parameters to be real.

In a similar strategy to the SM matter case (Sec. 1.2.3), one can diagonalise the
Hamiltonian HNSI using a modified unitary matrix Ũik:

H3 f lv
NSI =

1
2Eν

Ũik

m̃2
1 0 0

0 m̃2
2 0

0 0 m̃2
3

 Ũ†
kj, (1.36)

where m̃2
i s are the effective neutrino mass-squared eigenvalues and Ũ is the effective

mixing matrix when MSW and NSIs are taken into consideration.
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1.3. Beyond Standard Oscillations 23

After similar algebra, the transition probability can be read off as

Pνa→νb(L, E) = δab − 4 ∑
j>i

Re[ŨaiŨ∗biŨ
∗
ajŨbj] sin2(

1.27× ∆m̃2
ijL

4E
)

+2 ∑
j>i

Im[ŨaiŨ∗biŨ
∗
ajŨbj] sin2(

1.27× ∆m̃2
ijL

2E
).

(1.37)

This expression looks very similar to the vacuum counterpart (Eq. 1.19), while replacing
the vacuum masses m2

i and the leptonic mixing matrix U with effective ones. The
effective masses m̃2

i with NSIs include the interaction terms corresponding to standard
matter effects plus NSIs, and have the following expressions [87]:

m̃2
1 ' ∆m2

31[Ṽ + αs2
12 + Ṽεee] (1.38)

m̃2
2 ' ∆m2

31[αc2
12 − Ṽs2

23(εµµ − εττ)− Ṽs23c23(εµτ + ε∗µτ) + Ṽεµµ], (1.39)

m̃2
3 ' ∆m2

31[1 + Ṽεττ + Ṽs2
23(εµµ − εττ) + Ṽs23c23(εµτ + ε∗µτ)]. (1.40)

The elements of the effective mixing matrix are given by:

Ũe2 '
αs12c12

Ṽ
+ c23εeµ − s23εeτ, (1.41)

Ũe3 '
s13e−iδ + Ṽ(s23εeµ + c23εeτ)

1− Ṽ
, (1.42)

Ũµ2 ' c23 + s2
23c23Ṽ(εττ − εµµ) + s23Ṽ(s23εµτ − c2

23ε∗µτ), (1.43)

Ũµ3 = s23 + Ṽ[c23εµτ + s23c2
23(εµµ − εττ)− s2

23c23(εµτ + ε∗µτ)]. (1.44)

Here, sij = sinθij, cij = cosθij, α ≡ ∆m21/∆m31, Ṽ ≡ VCC/∆m2
31 and δ corresponds to the

CP violating phase. The expressions for three-flavours neutrino propagation in matter
including NSIs can be quite complicated. To illustrate the effect of NSIs on the mixing
parameters and mass eigenvalues, it is easier to work in a two flavour neutrino scheme to
avoid complex calculations. An accurate discussion regarding the two flavour neutrino
scheme in presence of NSIs can be found in [88].

In a hand waving way, for a given neutrino energy Eν, and the matter density ρ, the
impact of propagation NSIs in neutrino oscillation is determined by the magnitude of
the dimensionless quantity:

ηαβ = εαβṼ ≈ 0.1× εαβ

[
Eν

GeV

][
2.4× 10−3eV2

∆m2
ij

][
ρ

g cm−3

]
. (1.45)

The larger the value of ηαβ, the larger the impact of NSI in propagation. Usually, NSI
effects are more pronounced at high energies, at which the oscillation signal is mostly
phased out. The presence of NSI will manifest at detectors as a distortion in the oscillation
signal expected with respect to SM 3-flavour oscillation predictions. The observation
of such phenomenon would be considered as an evidence for NSI and a signal of new
physics. In the next section, we will quantify the distortions in the oscillation signal
predicted in presence of NSIs.
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24 Chapter 1. Neutrinos in the Standard Model and Beyond

1.3.3 NSIs at Atmospheric Neutrino Experiments

For atmospheric neutrinos, the effect of NSIs can be estimated by studying the muon
neutrino and antineutrino survival probabilities for different zenith angles, cosθz. In
atmospheric neutrino experiments, where the atmospheric neutrino flux is dominated
by νµ in the GeV energy range, NSI in the µ− τ sector can be discerned by probing the
deficit of νµ events, which primarily transform into ντ governed by a large mixing angle
θ23 and by the NSI coupling parameter εµτ.

The analysis of atmospheric neutrinos is usually done in a two-flavour neutrino scheme,
considering lepton non-universal νµ + f → νµ + f and ντ + f → ντ + f and flavour
changing νµ + f → ντ + f processes, such that all the NSI electron couplings εeα terms are
set to zero. In such an approximation (∆m2

31 ≡ ∆m2 and θ23 ≡ θ, ∆m2
21 = θ23 = θ23 = 0),

the 2×2 Hamiltonian matrix

H2 f lv
NSI =

1
2Eν

Ũ

[
0 0
0 ∆m2

]
Ũ† + VCC

Nd

Ne

[
δed εµτ

εµτ (εττ − εµµ)

]
, (1.46)

can be diagonalised with an effective mixing angle given by [75, 76, 89]

sin22θ̃ =
1

R2 [sin2θ + 2R0sin2θsin2ζ + R2
0sin22ζ], (1.47)

where
R =

√
[1 + R2

0 + 2R0(cos2θcos2ζ + sin2θsin2ζ)]. (1.48)

The NSI couplings are contained in the auxiliary parameters:

R0 =
√

2GF N f
4E

∆m2

√
|ε|2 + ε′2

4
(1.49)

ζ =
1
2

arctan
ε

ε′
. (1.50)

The muon survival probability, assuming constant matter density and that neutrinos only
interact with d-quarks, reads

Pνµ→νµ = 1− sin22θ̃sin2

[
∆m2L

4E
ζ

]
. (1.51)

The oscillation signature in the muon disappearance channel, predicted in presence of
νµ → ντ NSIs, parameterised by non-zero εµτ (εµµ = εττ = 0), at a fixed zenith angle
corresponding to up-going neutrinos (i.e., cosθz = −1.0) is shown in Fig. 1.9.
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Figure 1.9: νµ → νµ (top) and νµ → νµ (bottom) survival probabilities for fixed baseline
cosθz = −1, corresponding to vertically up-going neutrinos. The red line shows
the global best-fit oscillations [90], while the blue line corresponds to εµτ = 0.01 NSI,
both assuming NO (solid) and IO (dashed) hypothesis.

Besides the dominant νµ → νµ oscillation channel, one can also consider the νe → νµ case
in the presence of NSIs in the e → τ sector, meaning non-zero εee, εeτ and εττ. Similarly,
the oscillation signature in the muon appearance channel, predicted in presence of e→ τ
NSIs, parameterised by non-zero εeτ (εee = εττ = 0), at a fixed zenith angle corresponding
to up-going neutrinos (i.e., cosθz = −1.0) is shown in Fig. 1.10.
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Figure 1.10: νe → νµ (top) and νe → νµ (bottom) transition probabilities for fixed baseline
cosθz = −1, corresponding to vertically up-going neutrinos. The red line shows
the global best-fit oscillations [90], while the blue line corresponds to εeτ = 0.1 NSI,
both assuming NO (solid) and IO (dashed) hypothesis.

In both muon appearance and disappearance channels, the impact of NSIs can be clearly
seen from the difference between the red and the blue curves for a definite mass ordering
assumption. For δCP = 0, the behavior of neutrinos in NO (IO) is exactly degenerate with
antineutrinos in IO (NO). For an assumed mass ordering hypothesis, although the NSI
effects are anti-symmetric for neutrinos and antineutrinos, they are not exactly opposite,
thereby leading to albeit small yet appreciable signal at charge blind iso-scalar detectors
like ANTARES and KM3NeT.

1.3.4 Oscillograms in presence of NSIs

In this section, we will use oscillograms of neutrino propagating through Earth to
study the effects of presence of non-standard neutrino-matter interactions on oscillation
channels at atmospheric neutrino experiments.
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νe → νx oscillation channels

Fig. 1.11 depicts oscillograms for electron neutrinos for the SM case (left) and for
NSI (right), parameterised by εeτ = 0.5, an arbitrary value chosen within current
experimental limits (Sec. 1.3.5). Non-zero εeτ induces νe → ντ flavour transitions apart
from the standard νe → ντ oscillations (bottom left), thereby, leading to a deficit of events
in the electron disappearance channel (top right) from SM predictions. These missing
events in the electron disappearance channel shows up as flavour transmuted events
in tau appearance channel (bottom right), which will further decay to νµ (BR ' 17%)
leading to an excess of events in the muon appearance channel (middle right) from SM
estimations. The sum of the three panels in each column adds up to unity.

NSI parameters εeτ and εeµ appear in leading order in the probability expression of the νe
oscillation channels. Hence the impact of εeτ and εeµ would be more prominent compared
to εµτ appearing in sub-leading terms. The effect of NSIs is more prominent at higher
energies, since oscillation effects are phased out at those energies.
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Figure 1.11: Pνe→νx (x = e, µ, τ) for SM case (left) and when NSI is considered (right), assuming
εeτ = 0.5, as a function of neutrino energy Eν and cosine of the zenith angle cosθz.
NO is assumed.
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νe → νx oscillation channels

Fig. 1.12 depicts oscillograms for electron antineutrinos for the SM case (left) and for
NSI (right), parameterised by εeτ = 0.5. Since we are assuming NO, MSW resonance
happens for neutrinos. However, non-zero εeτ induces νe → ντ flavour transitions,
thereby, leading to a deficit of events in the electron disappearance channel (top right)
from SM predictions. These missing events in the electron disappearance channel shows
up as flavour transmuted events in tau appearance (bottom right) and muon appearance
(middle right) channels.

Figure 1.12: Pνe→νx (x = e, µ, τ) for SM case (left) and when NSI is considered (right), assuming
εeτ = 0.5, as a function of neutrino energy Eν and cosine of the zenith angle cosθz.
NO is assumed.
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νµ → νx oscillation channels

Fig. 1.13 depicts oscillograms for muon neutrinos for the SM case (left) and for NSI (right),
parameterised by εµτ = 0.05. Non-zero εµτ induces νµ → ντ flavour transitions apart
from the standard νµ → ντ oscillations (bottom left), thereby, leading to a deficit of events
in the muon disappearance channel (middle right) from SM predictions. These missing
events in the muon disappearance channel shows up as flavour transmuted events in tau
appearance channel (bottom right). The electron appearance channel (top right) follows
almost like the standard matter oscillations.

Three NSI parameters: εµτ, εµµ and εττ, appear in leading order in the probability
expression of the νµ → νµ disappearance and νµ → ντ appearance channels. However,
εeτ and εeµ play a sub-dominant role in this channel.
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Figure 1.13: Pνµ→νx (x = e, µ, τ) for SM case (left) and when NSIs are considered (right), assuming
εµτ = 0.05, as a function of neutrino energy Eν and cosine of the zenith angle cosθz.
NO is assumed.
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νµ → νx oscillation channels

Fig. 1.14 depicts oscillograms for muon antineutrinos for the SM case (left) and for NSI
(right), parameterised by εµτ = 0.05. MSW resonance does not happen since NO is
assumed. However, non-zero εµτ induces flavour transitions in νµ → ντ channel, thereby
affecting the νµ → νµ channel. The effect is opposite for neutrinos and antineutrinos. This
is because there is a degeneracy between the sign of εµτ and the ordering, which in turn
is equivalent to switching between neutrinos and antineutrinos assuming δCP = 0.

Figure 1.14: Pνµ→νx (x = e, µ, τ) for SM case (left) and when NSIs are considered (right), assuming
εµτ = 0.05, as a function of neutrino energy Eν and cosine of the zenith angle cosθz.
NO is assumed.
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1.3.5 Current limits on NSIs

Currently, almost all the neutrino oscillation data are consistent with the standard
three-flavour scheme of massive and mixed neutrinos. Thus, if NSIs exist, they will
manifest as a subdominant effect in oscillation data. NSIs in propagation has been
constrained by the oscillation data collected by solar [91], atmospheric [92, 93] and
accelerator neutrino experiments [94] or by a combination of all [95, 96, 97]. Reactor
or short baseline experiments are not relevant in constraining NSIs in propagation due
to negligible matter effects, but they can constrain detection NSIs. Here we review
the current bounds on NSIs in propagation for interaction of neutrinos with d-quarks
(notation used in this thesis) from different experiments.

The Super-K collaboration analysed their atmospheric neutrino data collected during its
first and second phase and obtained constraints on NSIs in the µ − τ sector assuming
NSIs with d-quarks. The bounds are [92]

|εµτ| < 0.011 and |εµµ − εττ| < 0.049 (at 90% C.L). (1.52)

The IceCube collaboration also analysed three years of atmospheric muon neutrino
disappearance data collected with DeepCore and placed the following limits [93]:

− 6.7× 10−3 < εµτ < 8.1× 10−3 (at 90% C.L). (1.53)

The bounds obtained by the MINOS collaboration, translated to NSIs d-quark couplings
are [94]

− 0.067 < εµτ < 0.023 (at 90% C.L). (1.54)

Bounds on NSIs obtained from the analysis of global oscillation data can be found in [97].
In Tab. 1.2, the bounds on NSIs in propagation are collected.
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NSI Couplings Bounds Reference Experiment
Flavour diagonal (FD)
εee − εµµ (−0.027, 0.474) [98] -
εττ − εµµ (−0.005, 0.095) [98] -
εττ − εµµ (−0.036, 0.031) [99] -
εττ − εµµ (−0.049, 0.049) [92] Super-K
Flavour changing (FC)
εeµ (−0.061, 0.049) [98] -
εeτ (−0.247, 0.119) [98] -
εeτ (for εee = −0.5) (−0.05, 0.05) [92] Super-K
εeτ (for εee = 0.5) (−0.019, 0.013) [92] Super-K
εµτ (−0.01, 0.01) [98] -
εµτ (−0.0061, 0.0056) [99] -
εµτ (−0.006, 0.0054) [100] -
εµτ (−0.011, 0.011) [92] Super-K
εµτ (−0.0067, 0.0081) [93] IceCube
εµτ (−0.067, 0.023) [94] MINOS

Table 1.2: Constraints on the propagation NSIs at 90% C.L. for the interaction of neutrinos with
d-quarks. Only one NSI parameter is considered at a time.

In the study presented in subsequent chapters of this thesis, we calculate new constraints
on the NSI model parameters with atmospheric muon neutrino data collected by the
ANTARES undersea neutrino telescope and estimate the sensitivity of its successor
experiment, KM3NeT-ORCA.
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2 Neutrino Telescopes

"If your experiment needŊ ŊtatiŊticŊ, you ought to

have done a better experiment."

— ERNEST RUTHERFORD
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This chapter discusses how neutrinos are produced in the atmosphere, their interactions
in sea water and finally their detection at Cherenkov neutrino telescopes. It also provides
an overview of the two operational neutrino observatories in the Northern Hemisphere,
namely, ANTARES and its sibling KM3NeT. The origin of atmospheric neutrinos is
briefed in Sec. 2.1, their interaction with matter is explained in Sec. 2.2, the basics of
their detection principle at neutrino telescopes is discussed in Sec. 2.3, followed by a
description of the detectors in Sec. 2.4.

This Chapter is completed with the description of a method to obtain time calibration
constants with atmospheric muons in KM3NeT, reported in Sec. 2.5.

2.1 Atmospheric Neutrinos

The upper atmosphere of the Earth is being ubiquitously impinged by cosmic rays almost
isotropically. Primary cosmic ray particles (mostly protons, p,) collide with the nuclei (N)
in the atmosphere, the interactions of which produce charged mesons:
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p + N → X+π±, K±. (2.1)

The decay of these secondary particles to muon and muon neutrinos form a copious
source of the conventional atmospheric neutrino flux [101]:

π− → µ− + νµ → e− + νe + νµ + νµ (BR: 99.9%)
K− → µ− + νµ → e− + νe + νµ + νµ (BR: 63.6%)

→ π− + π0 (BR: 20.7%)
→ π− + π− + π+ (BR: 5.6%)

→ π0 + e− + νe (BR: 5.1%)

→ π0 + µ− + νµ (BR: 3.4%)

→ π− + π0 + π0 (BR: 1.8%)
(2.2)

The muon decays are the main sources for νe(νe) production below 1 GeV. However, with
increasing energy, the ratio of (νe + νe) to (νµ + νµ) decreases due to time dilation of high
energetic muons.

From (2.2), it can be seen that the νe : νµ fraction is roughly 1 : 2, the νµ : νµ ratio is
proportional to the µ− : µ+ ratio and the ratio of νe to νe is proportional to µ+ : µ−.
The atmospheric neutrino flux follows a power-law energy spectrum E−γ with a spectral
index (γ) close to 3 in the few GeV range. Fig. 2.1 (left) shows the direction averaged
energy spectra of atmospheric neutrino fluxes for each flavour. As expected, νµ(νµ)
have a harder energy spectra compared to νe(νe). The flux of antineutrinos is lower
than neutrinos, especially for muon antineutrinos. The atmospheric flux that reaches
the detectors are different due to oscillation effects. This makes the neutrino flux at
the detectors highly zenith dependent. Fig. 2.1 (right) shows the total νµ (and νµ) to νe
(and νe) ratio based on different neutrino energies and zenith angles. The ratios change
drastically with neutrino energy and zenith angle due to neutrino oscillations.

Figure 2.1: Left: direction-averaged energy spectra of atmospheric neutrino flux for {νe, νe, νµ, νµ}
for different models. Right: isocontour curves of flux ratio (νµ + νµ)/(νe + νe).
From [102].
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Note that no ντ(ντ) are produced in cosmic ray interactions. However, they are produced
from transitions of muon and electron flavours driven by Pνµ→ντ and Pνe→ντ , respectively.

For the work in this thesis, the atmospheric neutrino flux model developed by the HKKM
group [103] has been used. It is further illustrated in Sec. 3.3.1. The uncertainty on
the ratio of νµ to νe, the modification of the ratio ν/ν (applied on both νe and νµ), the
uncertainty on the ratio of up-going to horizontal neutrinos, and the error on the spectral
index (∆γ) are adopted from [104] and treated as systematic uncertainties in our study
(Sec. 4.3.3).

2.2 Neutrino Interactions

Neutrinos interact weakly via charged-current (CC, exchange of W±) or neutral-current
(NC, exchange of Z0) processes. While CC interactions produce a hadronic shower and a
lepton, NC interactions of all flavours induce a hadronic shower and a scattered neutrino.
Fig. 2.2 depicts the four distinct neutrino interaction channels.

Figure 2.2: Neutrino interaction channels, mediated by Z0 and W±, relevant for neutrino
telescopes. (a) NC interaction of all neutrino flavours resulting in a hadronic shower
and a scattered neutrino. (b) CC interaction of νe, which produces an electromagnetic
shower and a hadronic shower. (c) CC interaction of νµ producing a µ− and a hadronic
shower. (d) CC interaction of ντ resulting in two hadronic showers (see text). The N
particle represents any nucleon present in the detector medium. From [105].

NC interactions (Fig. 2.2 (a)) result in the neutrino scattering from a nucleon without
a flavor change. The outgoing neutrino, which is accompanied by a visible hadronic
cascade, remains unobserved in the detector. The NC interactions can be expressed as

νl(νl) + N → νl(νl) + X (l = e, µ, τ). (2.3)

In CC interactions (Fig. 2.2 (b – d)), the outgoing charged leptons will have the flavour
matching of the flavour of parent neutrinos, due to flavor conservation. Thus, a νµ (νµ)
yields a µ− (µ+), a νe (νe) yields a e− (e+) and a ντ (ντ) yields a τ− (τ+). The CC
interactions can be expressed as

νl(νl) + N → l± + X (l = e, µ, τ), (2.4)

where l denotes the initial neutrino flavor and N represents any arbitrary nucleon. This
produces a charged lepton of the associated neutrino flavor and a hadronic cascade (X)
localized at the interaction vertex.
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2.2.1 Neutrino – fermion scattering

We first discuss the scattering of neutrinos off fermions, i.e. leptons or quarks [106,
107], which depend on the spin configurations of the initial states. While the CC
interaction is maximally parity-violating choosing only left-handed1 neutrinos and
right-handed antineutinos, in case of NC interactions, a left-handed neutrino can scatter
off a right-handed fermion.

In the following, it is assumed that the four momentum transfer Q2 is small compared to
the mediating boson mass, i.e. Q2 � M2

Z0,W± , and that the centre-of-mass energy
√

s is
larger compared to the lepton mass, i.e. s� m2

f .

Neutrino – fermion CC interaction

The process in which a neutrino νl scatters off a free fermion f to produce a lepton l and
a different fermion f ′ is

νl + f → l + f ′ (l 6= f ). (2.5)

The differential and total cross-section for such a process is given by [108]:

dσCC(ν f )
dΩ

=
G2

Fs
4π2 , σCC(ν f ) =

G2
Fs

π
, (2.6)

where the GF (≈ 1.13 × 10−5 GeV−2) is the Fermi constant. The cross-section linearly
increases with s = 2m f (m f + Eν).

Antineutrino – fermion CC interaction

A similar process but with antineutrino in the initial state is

νl + f → l + f ′ (l 6= f ). (2.7)

The differential and total cross-section for such a process is given by [106]

dσCC(ν f )
dΩ

=
G2

Fs
16π2 (1− cos θ)2,

dσCC(ν f )
dy

=
G2

Fs
π

(1− y)2, σCC(ν f ) =
G2

Fs
3π

, (2.8)

where θ is the neutrino-lepton scattering angle in the centre-of-mass frame, y is the
fraction of the neutrino energy transferred to the target system, referred as inelasticity
or Bjorken-y:

y =
Eν − E f

Eν
. (2.9)

The cross-section for antineutrinos turns out to be three times lower than for neutrinos,
i.e. σCC(ν f )/σCC(ν f ) ≈ 3. This suppression stems from helicity constraints [109].

1For (Dirac) neutrinos the intrinsic spin is always opposite to the linear momentum which is referred
to as "left-handed", whereas the antineutrinos are always "right-handed". "Right-handed" neutrinos and
"left-handed" antineutrinos do not exist within the Standard Model.
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(Anti)neutrino – fermion NC interaction

The NC interaction can couple to both, left-handed and right-handed components of the
fermion f :

νl(νl) + f → νl(νl) + f ′ (l 6= f ). (2.10)

The differential and total cross-section for such a process is given by [107]

dσNC(ν f )
dy

=
G2

Fs
π

[g2
L + (1− y)2g2

R],
dσNC(ν f )

dy
=

G2
Fs

π
[g2

L(1− y)2 + g2
R], (2.11)

where gL and gR are the left-handed and right-handed couplings of the fermion, whose
values are listed in Tab. 2.1.

Z0 coupling gL gR

νe, νµ, ντ
1
2 0

e, µ, τ − 1
2 + sin2 θW sin2 θW

u, c, t 1
2 − 2

3 sin2 θW − 2
3 sin2 θW

Table 2.1: Weak neutral current couplings gL and gR. The value of the weak mixing angle θW is
≈ 29◦ [106].

The total cross-section for scattering of a muon neutrino off an electron is:

σtot(νµ + e− → νµ + e−) = σNC =
G2

Fs
π

(1
4
− sin2 θW +

4
3

sin4 θW

)
, (2.12)

while for scattering of an electron neutrino off an electron, the total cross-section is
composed of CC as well as NC contributions:

σtot(νe + e− → νe + e−) = σCC + σNC =
G2

Fs
π

(
1− 2 sin2 θW +

4
3

sin4 θW

)
. (2.13)

2.2.2 Neutrino – nucleon scattering

In the relevant energy range for ORCA, the neutrino cross-section is dominated by the
scattering of neutrinos off nucleons. For neutrino energies of O(GeV), there are three
main processes that contribute to the total cross section. The four-momentum transfer Q2

decides the type of interaction. For higher Q2, the interaction becomes more and more
inelastic.

• Elastic and quasi-elastic scattering (QE): At low Q2, the neutrino scatters off an
entire nucleon. In the case of a charged (neutral) current interaction this is called
quasi-elastic (elastic) scattering. QE scattering dominates at energies ≤ 1 GeV.

• Resonance Production (RES): For higher energies, the neutrino can also excite the
nucleon, which then decays, in a resonance production process. The resonance
productions then decay to nucleons along with single or multiple pions, kaons
and/or radiative photons. The RES production plays a dominant role in the energy
range [1− 4] GeV.

• Deep inelastic scattering (DIS): With even higher Q2, the neutrino can resolve the
internal structure of the nucleon and scatter directly off the quark constituents. This
splits up the nucleon leading to a jet of hadrons. This is the main component in the
ντ-nucleon scattering and dominant for energies >∼ 4 GeV. For details, see [107].
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Existing measurements of total neutrino and antineutino cross-sections are shown
in Fig. 2.3.

Figure 2.3: Muon neutrino (left) and antineutrino (right) CC cross section measurements and
predictions from the NUANCE generator [110] as a function of neutrino energy. The
contributing processes in this energy region include quasi-elastic (QE) scattering,
resonance production (RES) and deep inelastic scattering (DIS). The error bars
(typically 10 – 40%, depending on the channel) reflect the uncertainties on these cross
sections. Mind the scale on Y−axis. From [111].

Note that each of the above mentioned processes have both CC and NC counterparts, the
NC interaction cross-section being ∼ 3 times smaller than the associated CC interaction
cross-sections. Additionally, the cross-section for neutrinos is about a factor of 2 higher
than those for antineutinos.

The resulting cross-sections for all flavours used in the simulation (Sec. 3.3.3) are shown
in Fig. 2.4. The ντ interaction cross-section is reduced with a threshold of ∼ 3.5 GeV, due
to the large τ mass. The severely suppressed ντ CC cross-section is discussed in [112].
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Figure 2.4: Total neutrino-nucleon interaction cross-section divided by energy for several
interaction channels, as indicated in the labels. Adapted from [111].

2.3 Neutrino Detection

Even though neutrinos cannot be directly detected, the secondary charged particles
produced in neutrino–nucleon interactions in sea water can be observed. The light from
Cherenov radiation produced along the trajectory of the relativisitic charged particles can
be detected by photo-multiplier tubes (PMTs) instrumented within the detector volume.
The charge, time and space information of the digitised signals recorded in the PMTs
(hits), can be used to infer the direction and energy of the parent neutrino.

2.3.1 Cherenkov Radiation

Charged particles travelling in a dielectric medium at a velocity greater than the phase
velocity of light in that medium emit radiation akin to the sonic blast of an aircraft
travelling at supersonic speeds. This phenomenon is called the Cherenkov effect and
the radiation thus emitted is called Cherenkov light [113].
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Figure 2.5: A schematic of the Cherenkov effect showing a traversing particle with velocity greater
than the phase velocity of light in the medium, emitting radiations in concentric circles
which overlap and interfere constructively to produce coherent radiation in a cone.
The distance travelled by light is c

n t while the particle travels a distance of βct in the
same time t. From [114].

Cherenkov light is emitted in a cone around the direction of the particle with a
characteristic opening angle θc. The emitting particle lies at the vertex of the cone. The
emitted radiation at each point overlaps and interferes constructively at the edges of the
cone (Fig. 2.5). θc is related to the speed of the particle (β = v

c ) and the refractive index n
of the medium by the following formula:

cos θc =
1

βn
. (2.14)

Assuming β ≈ 1 for a highly relativistic particle, the Cherenkov angle becomes
independent of the particle’s energy. For sea water, n ≈ 1.35, and hence, θc ≈ 42◦.

Most of the observed Cherenkov radiation falls in the ultraviolet region and the blue
band of the visible spectrum due to the dispersion properties of water. The number of
photons N emitted within a wavelength interval dλ by a charged particle with charge ze
per path length dx is given by

d2N
dxdλ

=
2πα

λ2

(
1− 1

β2n2

)
, (2.15)

where λ is the Cherenkov photon’s wavelength and α(≈ 1
137 ) is the fine-structure

constant. For the wavelength range of 300 – 600 nm, which is the relevant one to
water-based neutrino telescopes, the above equation provides an estimate of the number
of Cherenkov photons to be expected per track length:
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dN
dx

= 340 cm−1. (2.16)

The Cherenkov threshold for a particle with rest mass m0 is given by:

Ec =
m0√

1− 1/n2
. (2.17)

This translates into a kinetic energy (Tc = Ec − m0c2) of Tc(e) ≈ 0.25 MeV for electrons
and Tc(µ) ≈ 53 MeV for muons in sea water.

2.3.2 Particle Propagation

While the Cherenkov effect is the main physical process exploited by neutrino telescopes
for detection of muons, it is not the major source of energy loss for muons travelling
in an optical medium. Energy loss for muons in water mainly happens via ionization
(dominant at Eµ < 1 TeV), e+e− pair production (dominant at Eµ > 1 TeV), bremsstrahlung
and nuclear interactions. The total contribution can be parameterised as

− dEµ

dx
= a + b · Eµ, (2.18)

where the ionization and stochastic loss terms (a and b, respectively) are assumed
independent of the muon energy. The typical values in water are: a = 0.274 GeV m−1

and b = 3.492× 10−2 m−1 [115, 116].

The signature of few-GeV muons in sea water is a single uniform track, the range, R, of
which can be derived from

R =
1
b
· ln
(

1 +
b · E0

a

)
. (2.19)

The length of the track is ∼ 4 m per GeV. Eventually, the muon decays (Trest
µ ∼ 2.2 µs)

into two neutrinos and an electron, which initiates an electromagnetic shower.

Electrons lose energy mainly via bremsstrahlung and ionisation. The radiated photon
in turn undergoes pair production or Compton scattering off electrons. This results
in a cascading of electrons and positrons producing photons and vice versa, called
electromagnetic shower (EM). Compared to clean muon tracks, showers appear as
point-like burst of light sources in the detector localised within a distance below the
Molière radius [117], which is less than 10 cm in sea water. The mean length and the
total Cherenkov light yield are proportional to the initial shower energy, allowing for a
calorimetric energy measurement. The signature of a hadronic shower is similar to that
of EM showers in the detector to a first approximation, apart from the fact that they
are induced by hadronic interactions rather than EM interactions. The characteristic
evolution of hadronic showers and the corresponding Cherenkov light emission in water
and ice is discussed in [118, 119, 120].

2.3.3 Light Detection

The number, arrival time and arrival direction of the Cherenkov photons are largely
affected by the light attenuation processes, namely, absorption and scattering. While
absorption reduces the photon content, scattering reduces the information content about
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the arrival times and directions. In particular, scattering limits the angular resolution,
since the scattered particles do not point back to their parent particle. The limitations
set by this attenuation on the effective path length of Cherenkov photons determine the
layout of detector elements in a typical under water/ice neutrino telescope.

The parameter governing absorption is the absorption length λa, which is
wavelength-dependent. The corresponding parameter for scattering is the mean
scattering length λs. These parameters correspond to the path length x travelled by light
of wavelength λ, at which its photon survival probability (intensity) I0 is reduced by a
factor of 1/e:

I(x) = I0 · e
−x
λa,s . (2.20)

In addition to the scattering length, scattering processes are characterised by the
distribution of the scattering angle β(θs), also called the phase function which determines
the effective scattering length:

λ
e f f
s = λs/[1− 〈cos θs〉], (2.21)

where 〈cos θs〉 is the average cosine of the scattering angle. For seawater and a
wavelength of ∼ 470 nm, the measured values of these parameters are : λa ≈ 60 m [121,
122] and λ

e f f
s = 265 m [122].

The arrival time of Cherenkov photons depends on the group velocity vg of the medium:

vg = c/ng, with ng =
n

1 + λ
n

dn
dλ

, (2.22)

where ng is the group refractive index of the medium. For a photon wavelength of ∼ 470
nm, the refractive indices for sea water are n ≈ 3.5 and ng ≈ 1.4 [123].

The Cherenkov photons reaching the detector are detected using photo-multiplier tubes
(PMTs), which are housed along with associated readout electronics within a spherical
glass called Digital Optical Modules (DOMs). The glass sphere shields the PMTs from
environmental nuances while being totally transparent to Cherenkov photons in the
relevant energy range. Photons incident on the PMT photocathode area are converted
into electrons (via photoelectric effect) with some efficiency (quantum efficiency, QE) and
amplified. The information of the electrical charge and the timestamp of the photon
striking on a PMT with a particular position and orientation is called a hit.

2.3.4 Background

Neutrino physics is a study of low statistics with abundant background. Neutrino
telescopes have mainly two categories of background: optical noise encountered in the
deep-sea environment, and a physical background of cosmic ray induced particles.

Optical noise

Sea water contains a trace amount of some radioactive isotopes, including 40K which
corresponds to 0.012% of potassium in Nature. The dominant decay channels of 40K
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nuclei are:

β−decay : 40K → 40Ca + e− + νe (BR: 89.3%)

Electron Capture : 40K + e− → 40Ar + γ + νe (BR: 10.7%)
(2.23)

The resulting electron, emitted in a β− decay, has a maximal energy of 1.3 MeV, which
is sufficient to generate Cherenkov light. The emitted photon from the excited state of
40Ar produced via electron capture of 40K has an energy of 1.46 MeV, which can generate
Compton electrons capable of emitting Cherenkov light.

On the other hand, bacteria and other sea microorganisms can create bioluminescence.
Bioluminescent light is spread out over a large band of wavelengths. One is a baseline
noise resulting from a continuum of hits (60 – 120 kHz) throughout the detector; the other
is manifested as short bursts of a few seconds on top of the baseline noise taking the hit
count to over a MHz for those time periods. Seasonal variation of the bioluminescence
baseline rate, due to changing sea currents and vertical convection of heat at the detector
depths. Random optical noise accounts for single noise per PMT (about 10 kHz in
ANTARES [124]), which is vetoed with proper trigger algorithms.

Figure 2.6: Left: live monitoring of the baseline rate of bioluminescence at the ANTARES site.
Right: fraction of bursts at the ANTARES site. Snapshot from the live monitoring
channel.

Physical background

Cosmic ray protons impinging on the upper Earth’s atmosphere with sufficient energies
produce extensive air showers in the atmosphere, consisting of charged pions and kaons
among other particles, both of which decay to contribute to the muon and neutrino flux
on the Earth’s surface (Sec. 2.1). Neutrino detectors are usually placed at great depths,
shielded by water, rock or ice, to reduce this background of atmospheric muon bundles
arriving at the detector from above.

The muon flux is several orders of magnitude higher than the flux of muon neutrino
induced muons (Fig. 2.7). To chop off atmospheric muons from above, analyses usually
select a rejection criterion based on the zenith angle. However, there can be atmospheric
events near the horizon, which are truly downgoing but reconstructed as up-going
and hence can mimic neutrino-induced signal events. Precise track reconstruction
algorithms, event containment conditions and multivariate classifiers are used to curtail
the atmospheric muon background from signal neutrino events.
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Figure 2.7: Flux of atmospheric muons and atmospheric neutrinos at two depths (1680 and 3880
m water equivalent) for two different muon energy thresholds (100 GeV and 1 TeV) as
a function of the cosine of the zenith angle. From [125].

2.4 Neutrino Telescopes

The term neutrino telescope refers to an array of optical devices arranged in a definite
geometry within a large volume of natural (and transparent) medium with the objective
of detecting Cherenkov radiation from neutrino interactions [126]. The directional
sensitivity is the reason to call them telescopes.

The first attempt to realise this idea was achieved in the DUMAND project [127] set
up in Hawaii, which unfortunately failed due to technological problems. However, it
was followed by the Baikal detector [128] in the water of Lake Baikal, the AMANDA
detector [129] in the glacial ice at the South Pole and the ANTARES detector [130] in
the abyss of the Mediterranean Sea. Based on the success of some prototype projects,
the larger IceCube detector [131] was built at the South Pole. KM3NeT [66] is being
built in the Mediterranean Sea and Baikal GVD [132] is under construction in Lake
Baikal. In the following, the undersea running telescope in the Northern hemisphere,
i.e. the ANTARES detector, and its successor next generation flagship experiment, i.e.
the KM3NeT detector, will be described in more detail.

2.4.1 ANTARES

ANTARES (acronym for Astronomy with a Neutrino Telescope and Abyss environmental
RESearch) [130] is an under-water neutrino telescope located 40 km offshore from
Toulon, France at (42◦ 48′ N, 6◦ 10′ E), anchored about 2475 m below the surface of the
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Mediterranean Sea. The first line was deployed in March 2006 and the detector was
completed in May 2008.

Detector layout

Fig. 2.9 shows a schematic view of the ANTARES detector. ANTARES consists of 12
vertical detection lines, instrumented in an octagonal configuration with a (horizontal)
separation of 60–75 m. The lines are anchored to the sea floor by means of a titanium
structure (Bottom String Socket) acting as a dead weight and buoy on its top to stay
vertical (optical modules have also their own buyoncy). Each line holds 25 storeys (apart
from line 12 with 20 storeys) starting 100 m above the sea floor with a (vertical) separation
of 14.5 m amounting to a total height of 450 m. The instrumented volume of ANTARES
is ∼ 0.01 km3.

Figure 2.8: Schematic diagram of the ANTARES detector. Photos of two storeys holding optical
and acoustic equipment are shown. From [130].

Optical Module

A storey is a titanium structure that hosts the Local Control Module (LCM), i.e. a titanium
cylinder containing three optical modules (OMs), associated electronics and an ethernet
switch. The OMs are 17-inch diameter (pressure resistant) glass spheres housing 10-inch
Hamamatsu PMTs [133]. A total number of 885 OMs are placed in triplets around the
LCMs with an equal spacing of 120◦ and facing downwards at an angle of 45◦ from the
vertical.

The glass sphere is optically coupled to the PMT by means of an optical gel of refractive
index 1.4. A hemispherical µ–metal magnetic cage surrounds the bulb of the PMT in
order to shield it from the effects of the Earth’s magnetic field. The PMTs are sensitive to
photons with wavelengths between 300–600 nm, with a transit time spread (TTS) ∼ 3 ns
(FWHM) and a quantum efficiency of ∼ 25% for a wavelength of 400 nm.

A String Control Module (SCM) placed at the bottom of each line contains the electronics
for the data transfer between the string and the Junction Box (JB). The JB is linked to the
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Figure 2.9: Schematic view of an ANTARES optical module. From [130].

shore station via a 42 km long and 58 mm diameter Main ElectroOptical Cable (MEOC),
which is responsible for powering the detector, transfer of data, synchronisation of the
clock signals and commands between shore station and the detector.

Data acquisition and trigger

The analogue signals registered by the PMTs is transformed into a readable format
for the purpose of physics analyses. This is achieved through a chain of steps
handled by the Data AcQuisition system (DAQ) [134]. The DAQ framework follows
an “all-data-to-shore” strategy, which entail all the information recorded by the PMTs
being transported to shore where it is digitised, filtered and stored. The DAQ begins
with the digitalisation of the hits by means of two Analogue Ring Sampler (ARS) chips
located in the LCM of each OM. A threshold of 0.3 p.e. (L0 threshold) is applied on the
integrated charge in order to reduce the dark current noise of the PMTs. A local clock
and two time-to-voltage converters (TVCs) in each LCM are used to timestamp every hit
above threshold. The ARS chips work in a token-ring configuration in order to reduce the
impact of the dead time of 200 ns which follows the integration time. The signal collected
by the LCMs is transferred to the JB and then sent to the shore station using a Dense
Wavelength Division Multiplexing (DWDM). The optical background determines a data
output rate of the detector around 1 GB/s. A data filtering process is performed by the
Data Filter programs which applies various algorithms (triggers) [135] based on different
physics interests. A list of the most relevant triggers is tabulated in Tab. 2.2.
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Trigger Description
L0 The level-zero filter (L0) referring to the threshold for the analogue pulses

(0.3 p.e.) which is applied off shore.
L1 The level-one filter (L1) refers to a coincidence of two (or more) L0 hits in

the same storey within a 20 ns time window.
3N 5 L1 hits within 20 ns.
T3 2 L1 hits within 100 ns in adjacent storeys or within 200 ns in

next-to-adjacent storeys.
TQ 2L1 + 4 L0 hits within 20 ns.

Table 2.2: Summary of the "most relevant triggers" used in ANTARES [135].

During its decadal years of operation, the ANTARES Collaboration has produced
scientific results in a variety of analyses, ranging from point source [136], transient
sources [137], diffuse fluxes [138], GRBs [139], dark matter [140] searches to measurement
of neutrino oscillations [60]. The decommissioning of the detector is planned for 2021.

2.4.2 KM3NeT

KM3NeT (acronym for KiloMetre cube Neutrino Telescope) [66] is a next generation
deep-sea Cherenkov neutrino observatory, currently under construction in the
Mediterranean Sea. Based on the granularity of the optical modules (to target different
neutrino energy regimes), KM3NeT will house two detector sub-arrays:

• ORCA (Oscillation Research with Cosmics in the Abyss): densely instrumented
sub-array of ∼ 5 × 10−3 km3 volume, located offshore of Toulon, France at (42◦41′

N, 6◦02′ E), designed primarily for studying neutrino properties and low-energy
astrophysics;

• ARCA (Astroparticle Research with Cosmics in the Abyss): sparsely instrumented
sub-array of ∼ 1 km3 volume, located offshore of Sicily, Italy at (36◦16′ N, 16◦06′

E), designed primarily for detection of high-energy cosmic neutrinos and neutrino
astronomy.

The term "ORCA" ("ARCA") will be used henceforth to designate the KM3NeT-ORCA
(-ARCA) detector.

Detector layout

The three-dimensional array built in a particular layout is called a “building block” (BB).
KM3NeT will consist of two BBs for ARCA and one BB for ORCA to reach the desired
instrumented volumes. Fig. 2.10 shows a schematic view of one BB of the KM3NeT
detector. Each building block will consist of a three-dimensional array of ∼ 64,000 PMTs
distributed among 115 detection strings (also known as "DUs"2) with 18 spherical Digital
Optical Modules (DOMs) per line. Starting about 40 m (80 m) from the sea floor, the DUs
of ORCA (ARCA) are 200 m (700 m) high, horizontally separated by about 20 m (95 m),
with 18 DOMs spaced 9 m (36 m) apart in the vertical direction.

2The terms "DU", "string" and "line" have been used interchangeably in this thesis.
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Figure 2.10: Conceptual view of the KM3NeT detector. The blue line represents an up-going
neutrino undergoing νµ–CC interaction close to the fiducial volume leading to
track-like event and creating a Cherenkov cone along its path. From KM3NeT
internal documentation.

Digital Optical Module

Each 17-inch diameter DOM houses 31 PMTs of 3-inch each, looking towards different
directions, along with their readout electronics and other sensors. Within each DOM,
the PMTs are arranged in 5 rings of 6 PMTs each, plus the bottom-most PMT pointing
vertically downwards. The upper hemisphere of the DOM contains 12 PMTs arranged in
2 rings, while the lower hemisphere houses the remaining 19 PMTs arranged in 3 rings.
The consecutive rings are staggered by 30◦ in zenith and the PMTs within a ring are
separated by 60◦ in azimuth.
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Figure 2.11: A KM3NeT Digital Optical Module.

KM3NeT uses Hamamatsu R12199-02 PMTs with a maximum quantum efficiency of
∼ 30% [141]. The high-voltage bias is set to provide a gain of 3× 106. Each PMT can
be individually tuned in voltage. The FWHM of transition time spread is less than 5 ns,
allowing for a good accuracy in photon arrival timing.

The instrumentation mounted in each DOM comprises a piezo-sensor for acoustic
positioning purposes, a tiltmeter and a compass, as well as sensors of the temperature
and humidity inside the DOM for monitoring purposes. A breakdown of the DOM
structure is shown in Fig. 2.12.
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Figure 2.12: Exploded view of a KM3NeT Digital Optical Module (DOM). From [142].

Similar to ANTARES, DOMs are immersed in the sea in ensembles of 18, laid out
vertically, anchored to the seafloor and kept taught by a buoy on the top. Each
DOM is attached to the string via a titanium collar. An electro-optical cable that
provides high-voltage connections to each DOM for power and two optical fibres for
communication and data transfer to the shore is attached to each DU.

Installation sites

The construction of the detector has been distributed into phases. Phase 1 foresees the
deployment of 6 DUs for the ORCA detector (achieved) and at least 24 DUs for the
ARCA detector to be completed by Fall of 2021. Phase 2 includes the construction of the
entire ORCA detector (single building block) and 2 building blocks of the ARCA detector.
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Beyond Phase 2, further detector expansion, with possibly a separate building block at
the Greek site, is planned. Fig. 2.13 shows the three proposed sites for the realization
of KM3NeT. The Toulon site located in the Ligurian Sea at a depth of 2475 m, the Capo
Passero site in the West Ionian Sea at a depth of 3500 m, the Pylos site in the East Ionian
Sea in three possible location at depths of 5200 m, 4500 m and 3750 m from the surface of
the Mediterranean sea. To date, 6 ORCA and 1 ARCA DUs are operational.

Figure 2.13: The installation sites of KM3NeT in the Mediterranean Sea. From [142].

Data acquisition and trigger

Similar to ANTARES, the KM3NeT the Data AcQuisition (DAQ) framework follows an
“all-data-to-shore” strategy [66, 143]. The filtering of interesting events is performed
via trigger algorithms (see Tab. 2.2) based on local coincidences within a particular time
window respecting causality conditions [66, 144].

2.5 Detector Calibration

In order to achieve a good quality in the reconstruction of the events, a precise calibration
of charge, position and arrival time of the Cherenkov photons reaching the PMTs is
imperative. A good charge calibration ensures good energy resolution, while a good
position and time calibration ensure good angular resolution on the reconstruction of the
event direction.
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2.5.1 Position calibration

Since the detection lines are flexible, the upper-most storeys can be dragged by deep-sea
currents up to ∼ 10 m. To account for this variation of relative positions of DOMs,
the Acoustic Positioning System (APS) based on acoustic devices, a tiltmeter and a
compass has been developed [145, 146]. The acoustic devices consist of a set of acoustic
transceivers and hydrophones. Using the time of flight of acoustic signals, the calibration
system provides the position of the telescope’s mechanical structures in a geo-referenced
coordinate system. A Tiltmeter-Compass System (TCS) attached to the LCM determines
the orientation of the DOMs by measuring its pitch, yaw and roll.

2.5.2 Charge calibration

When a photon impinges on the photocathode area at the entrance window of a PMT,
it produces electrons, which are then accelerated by a high-voltage field and multiplied
in number within a chain of dynodes by the process of secondary emission. This is the
working principle of a PMT, which is based on the amplification of secondary emission of
electrons off dynodes via photoelectric effect. The charge of the signal generated by the
photoelectrons is digitised by an Analog-to-Voltage Converter into a value, AVC, which
is related to the number of photoelectrons produced in the PMT, Np.e., by

Np.e. =
AVC−AVC0p.e.

AVC1p.e. −AVC0p.e.
. (2.24)

AVC0p.e. refers to the value of AVC corresponding to zero photoelectrons, while AVC1p.e.
corresponds to the single photoelectron peak. Regular charge calibration runs are
performed to determine these two characteristic parameters. Over time, the measured
values degrade, so regular high voltages tunings of the PMTs are performed to maintain
a 0.3 p.e. threshold.

2.5.3 Time calibration

The aim of time calibration at neutrino telescopes is two folds:

• absolute time calibration: monitor the absolute timing of an event with respect to
the Coordinated Universal Time (UTC) to correlate events related to any celestial
phenomenon observed by other experiments;

• relative time calibration: estimate the relative calibration constants between PMTs
to obtain a good angular resolution of reconstructed events.

We limit our discussion to the relative time calibration pursued in the context of KM3NeT.
Relative time calibration [147, 148] has some intrinsic, unavoidable limitations, which
add up to the total uncertainty, σtot:

σ2
tot =

σ2
TTS

Np.e
+

σ2
w

Nγ
+ σ2

e , (2.25)

where σTTS (≈ 5 ns) is the uncertainty on the transit time of electrons between dynodes
in the PMTs (Transit Time Spread); σw (≈ 2 ns for a traveling distance of 50 m)
is the uncertainty on the light propagation time in sea water due to scattering and
dispersion; Nγ is the number of Cherenkov photons emitted; σe (≈ 0.5 ns) is the intrinsic
uncertainty due to electronics. Taking into account these intrinsic uncertainties, the
required precision of the time calibration system for neutrino event reconstruction with
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an angular precision better than 1◦ should be < 1 ns and their position determined with
better than a meter precision.

Several strategies have been developed to account for these uncertainties within the
KM3NeT collaboration [147, 148].

• Intra-DOM calibration: Simultaneous coincident hits from radioactive 40K decays
in sea water is used for time calibration between PMTs within the same DOM.

• Inter-DOM calibration: Each DOM is equipped with nanobeacons to provide
light detection from one DOM to the neighboring DOMs for inter-DOM time
calibration. Vertically downgoing atmospheric muons also provide inter-DOM
calibration, which is our focus of work (reported in next section). Both methods
serve as a cross-check to each other.

• Inter-DU calibration: Laser beacons installed on the DU base provide light
detection by DOMs on different lines for the measurement of the Round-Trip-Time
(RTT) delay of the laser signal due to the length of the optical fiber.

We limit ourselves to inter-DOM calibration using atmospheric muons.

Inter-DOM calibration with atmospheric muons

Inter-DOM time calibration using atmospheric muons has been previously developed
within the ANTARES Collaboration [149, 150, 151, 152, 153]. A similar technique has
been implemented in KM3NeT [154]. However, the strategy for calculation of time offsets
used in [155] is slightly different and is based on the comparison of hit-time residual
distributions of data with the run-by-run Monte-Carlo (MC). Our work [156] focuses on
implementing the old strategy implemented in ANTARES, which is independent of MC
and converges faster.

Time calibration with atmospheric muons is an off-shore calibration strategy applicable
for inter-DOM calibration. The method is based on the estimation of hit time residuals
(HTR). For each event, the hits recorded by a random DOM ("probe-DOM") are excluded,
and the event is reconstructed using the hits detected by the other DOMs, providing
the values of the expected hit times on the probe-DOM i. The difference between the
expected arrival time (t f it) and the measured arrival time (tstamp) is a time residual (tres =
t f it − tstamp). Asynchronous clocks and different cable lengths can lead to relative offsets
for each DOM. Moreover, the PMTs can have their own offsets, which are estimated in
intra-DOM calibration with 40K. If a DOM is correctly calibrated, the distribution of these
hit time residuals should peak at zero; otherwise, we must adjust a DOM-specific time
offset (by adding/subtracting a fixed number to all PMTs on this DOM in the detector
file). Our goal is to estimate these time offsets for DOMs corresponding to specific period
of time. Note that these time offsets evolve with time subjected to environmental changes.

Methodology

This method involves the following iterative steps:

• A “probe-DOM” is randomly selected among all DOMs in a line (DU).

• The muon track is reconstructed with a minimum of 7 hits on each DOM (within a
25 ns window) excluding the "probe-DOM".

• Time residuals for the "probe-DOM" are calculated with respect to the fitted tracks.
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• Distribution of these residuals are histogramed and the value of the median of the
distribution is stored.

• The median (ti) is introduced as a correction to the hit times in the detector file.

• The muon track reconstruction is redone with the updated detector file.

• The HTR distribution peaks with a new median (ti+1), which is introduced again in
the detector file as a further correction.

• The process of introducing the median and reconstructing the muon track is
repeated until the recomputed median is < 0.5 ns.

The measured time offset Tn
0 at nth iteration is the cumulative summation of these

medians tis till the nth iteration. To account for the asymptotic behavior of the evolution
of the time offsets with the number of iterations and due to the uncertainty on the total
number of iterations, the final average time offset 〈T0〉 is read after by performing a fit to
the measured time offsets per iteration. The fit function follows a simple exponential fit:

Tn
0 = 〈T0〉+ [α · e−λαi + β · e−λβi], (2.26)

where α, β, λα, and λβ are arbitrary constants which are fitted. The quality of
reconstruction improves with the number of iterations i and therefore the number of
reconstructed events with good quality factor also increases.

Proof of principle

In order to cross-check the robustness of the method, we compared the values of time
offests 〈T0〉 obtained from our approach to the method implemented in [154]. The
comparison of time offsets of various DOMs (18 DOMs per DU) of ARCA DU1 is shown
in Fig. 2.14. The MC-independent approach was seen to converge faster and is in good
agreement with the MC-dependent approach within ∼ 2.0 ns.
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Figure 2.14: Evolution of cumulative time offsets, Tn
0 , for ARCA DU1 with the old MC-dependent

strategy [154] (top) and the new MC-independent strategy (bottom) developed for
this work. Each of the 18 coloured curves denotes the evolution of time offsets with
the number of iterations.

Additionally, the calibration procedure has been first employed for ARCA MC runs
assuming a perfect detector (before applying to data runs with a realistic detector). The
ARCA MC files refer to run numbers from 5009 to 5046, which correspond to a run period
between 13/12/2016 and 01/01/2017. The evolution of time offsets is shown in Fig. 2.15
and the final offsets for different DOMs are shown in Fig. 2.16.
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Figure 2.15: Evolution of cumulative time offsets, Tn
0 , for ARCA DU1 & DU2 for MC runs

assuming a perfect detector. The final offsets are also listed.
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Figure 2.16: Final time offsets, 〈T0〉, for ARCA DU1 & DU2 for MC runs assuming a perfect
detector.
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Results

Finally, the procedure was employed on ARCA and ORCA data runs to calculate the real
time offsets of the DOMs within DUs. A run period for ARCA data similar to the ARCA
MC runs was chosen. The ORCA data files refer to run numbers from 3165 to 3192,
which correspond to a run period between 04-12-2017 and 08-12-2017. The evolution of
time offsets for ARCA DU1 and DU2 are shown in Fig. 2.17 and their final time offsets of
different DOMs are shown in Fig. 2.18.

Figure 2.17: Evolution of cumulative time offsets, Tn
0 , for ARCA DU1 & DU2. This corresponds to

a run period between 13/12/2016 and 01/01/2017. The final offsets are also listed.
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Figure 2.18: Final time offsets, 〈T0〉, for ARCA DU1 & DU2. This corresponds to a run period
between 13/12/2016 and 01/01/2017.

The corresponding evolution of time offsets for ORCA DU2 and their final time offsets
for different DOMs are shown in Fig. 2.19.
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Figure 2.19: Evolution of cumulative time offsets, Tn
0 (top), and final time offsets, 〈T0〉 (bottom),

for ORCA DU2. This corresponds to a run period between 04-12-2017 and 08-12-2017.

The resulting time offsets were also compared with the ones obtained from inter-DOM
calibration with nano-beacons and was found in comfortable agreement (Fig. 2.20). One
of the limitations of this method was that it does not take into account possible errors
due to DU elongation, i.e. the accurate positioning and orientation of the DOMs. Hence,
further steps involves developing novel techniques in the light of real-time positioning
of DOMs in sea water.
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Figure 2.20: Comparison of final time offsets, 〈T0〉, for ARCA DU1 (left) & DU2 (right)
obtained from calibration with nanobeacons (yellow squares) and with atmospheric
muons (green circles). They correspond to a run period between 13/12/2016 and
01/01/2017. From [156].
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3 Monte Carlo Simulations and
Event Reconstruction

"You Ŋee my physicŊ ŊtudentŊ don’t underŊtand

it... That iŊ becauŊe I don’t underŊtand it.

Nobody doeŊ."

— RICHARD P. FEYNMAN
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The aim of Monte Carlo (MC) simulations is to reproduce the event distributions
expected at the detector in the most realistic way by folding the apparatus response
to the recorded events. The motivation behind MC productions does not lie only in
the understanding of the detector performance, but also in optimising selection cuts
to enhance the sensitivity to signal events. The output of the MC simulation is fed to
the event reconstruction algorithms, which in turn give out the reconstructed neutrino
energy and the direction of the incoming neutrino (among other event properties)
based on the information of the Cherenkov light induced by the propagation of the
secondary particles within the medium. The precision achieved in the reconstruction
of the energy and direction determines the accuracy with which we can probe the
neutrino properties and their sources. In this Chapter, the MC simulation chain
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and the corresponding reconstruction algorithms used in the ANTARES and KM3NeT
experiments are described.

3.1 MC Simulations in ANTARES

A run-by-run MC approach [157] is followed in order to simulate the response of the
detector, which is subjected to seasonal evolution of environmental phenomena and
operational situations leading to changes in the rates registered at the neutrino telescope.
The varying optical background conditions, measured every 0.1 seconds, the acoustic
positioning, performed every few minutes, and PMT efficiencies of individual OMs,
calculated at weekly intervals, are accounted to fold in the temporal evolution of the
detector response in the most realistic way to represent the data taken by the detector as
closely as possible.

The simulation chain in ANTARES involves three steps:

1. particle generation: particles capable of inducing observable signatures at the
detector are generated with a given energy and spatial distribution;

2. particle propagation and light emission: particles interacting with the medium
leading to energy losses and production of secondary particles are simulated. The
Cherenkov light generated by charged particles is tracked;

3. light detection: the response of the apparatus is folded in the form of the photon
arrival information at the OMs.

3.1.1 Particle generation

The instrumented volume of the detector is assumed to be a wide cylinder comprising
all the OMs. A larger cylindrical (generation) volume typically referred as the can,
within which the Cherenkov light is generated, engulfs the instrumented volume. The
dimension of the can has to be large enough to sustain the volume within which most
of the Cherenkov light detected by the experiment is generated. Typically it extends
beyond three absorption lengths of light in water. The geometry of the can used in the
event generation is shown in Figure 3.1. Cherenkov light is generated only for particles
within the can, whereas outside the can, charged particles are only propagated till the
surface of the can.
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Figure 3.1: Layout of detector geometry used for event generation in ANTARES [158].

Atmospheric neutrino generation

Neutrino interactions in ANTARES are simulated following the flux calculation of
Honda et al. [103] and using the interaction physics in the GENHEN [158] package.
The latter allows to simulate neutrino events of all flavours and for both CC and NC
interactions with an energy spectrum ranging from few-GeV to multi-PeV. Neutrinos are
generated following a E−1.4 power-law energy spectrum (which will be later reweighted
according to the flux we want to reproduce), while the neutrino directions are generated
isotropically. Neutrino interactions O(1010) are simulated within the generation volume
which is determined by the maximal muon range associated with the highest neutrino
energy (Emax

ν = 108 GeV).

The LEPTO [159] software is used for the calculation of differential neutrino-nucleon
interactions within the generation volume, by using the CTEQ6-D parton distribution
functions.

The probability for a neutrino to traverse the Earth (see Fig. 3.2) depends on the
interaction cross-section (σ(Eν)) and the density of the Earth matter (ρ(θ)) and is

PEarth(Eν, θ) = e−NAσ(Eν)ρ(θ), (3.1)

where NA is the Avogadro’s number and θ is the zenith angle of the incident neutrino.
(A value cosθz = 0 (−1) corresponds to horizontal (vertically up-going) neutrinos
traversing across the Earth. High energy vertically up-going neutrinos are more likely to
interact with Earth matter, thereby having a smaller chance to reach the detector without
interacting.
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Figure 3.2: Probability of a neutrino to traverse the Earth without undergoing an interaction as a
function of the neutrino energy and direction [158].

Since neutrinos are generated with a power law E−γ spectrum, the generated neutrino
can be normalised with a generation weight accordingly to represent atmospheric or
cosmic neutrino fluxes. A generation weight Wgen is defined to calculate neutrino fluxes
in accordance to relevant models:

Wgen = Vgen · tgen · Iθ · IE · Eγ · σEν · ρ · NA · PEarth, (3.2)

where

• Vgen is the generation volume [m3];

• tgen is the time represented in simulations;

• Iθ = 2π (cos θmax − cos θmin), is the angular factor taking into account the range of
sky with neutrino zenith angle cosθz;

• IE =
∫ Emax

Emin
E−γdE is the energy factor taking into account the range of neutrino

energies for which the simulation is performed;

• γ is the spectral index of the generated neutrinos;

• σEν is the total neutrino-nucleon interaction cross-section;

• ρ · NA is the total number of target nucleons per unit volume, where ρ is the target
density;
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• PEarth is the neutrino transmission probability through the Earth.

The atmospheric flux φ(Eν, θν) is then re-weighted to get the number of neutrino events
N(Eν, θν) per year in each energy and zenith angle bin [160]:

N(Eν, θν) =
Wgen

[GeV−1m−2s−1sr−1]
× φ(Eν, θν)

[GeV ·m2 · s · sr · yr]
. (3.3)

In ANTARES, to ensure larger statistics at high energies, the neutrinos (and
antineutrinos) are simulated with a spectral index γ = 1.4, within an energy range of
10 – 108 GeV.

Atmospheric muon generation

Atmospheric muons are generated as the consequence of hadronic showers produced
in the interaction of cosmic rays in the upper atmosphere. They are the most abundant
events, constituting the main source of background. However, a major fraction of these
events are rejected by appropriate selection criteria.

A full simulation of atmospheric muons is done with CORSIKA [161] package, which
allows for the generation of atmospheric showers, the production of muons from
hadronic interactions and their propagation down to the sea surface. However, this
accurate reproduction requires a large CPU usage, for which parameterisations are used.
CORSIKA describes the muon energy spectrum, the angular distribution, the multiplicity
of the muon bundles and all other kinematics of the muon on the surface. The simulation
range extends from 1.5 km to 5 km water equivalent (w.e.) vertical depths and from 0◦

up to 85◦ zenith angles.

3.1.2 Particle propagation and light emission

A GEANT-based [162] package, named, KM3 [163] is used to propagate neutrino events
and their decay products, including muons, hadrons and electromagnetic showers.
Relevant physics processes like multiple scattering, energy losses, radiative processes
and hadronic interactions are taken into account. The Cherenkov photons produced by
the final state particles are propagated through seawater taking into account the influence
of absorption and scattering of light [122] in seawater, before they reach the OM surface,
producing a hit (defined in Sec. 2.3.3.

Cherenkov photons are not tracked from generation to detection at PMTs, being
computationally unaffordable because of their extremely higher number. Rather, KM3
uses the so-called "photon tables", obtained in advance from a full simulation of photons
with GEANT [162], which stores the distributions of the number and arrival time of PMT
hits at different distances, positions and orientations of the PMTs depending on the event
topology (tracks or showers).

The propagation of background muons generated with MUPAGE [164] is similar to that
of the secondary muons from neutrino interactions. KM3 includes a modified version of
MUSIC [165] to propagate muons within the can volume.

3.1.3 Light detection

The TriggerEfficiency program [144] simulates the detector response by taking into
account the electronics and trigger algorithms [166]. Optical noise, from 40K decays and
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bioluminescence in water, observed from counting rates in data is added to each run to
reproduce the actual data taking situations.

The analogue signal of the PMTs is summed up for a time window of 25 ns taking into
account the angular acceptance and quantum efficiency of the PMTs [167]. The hit times
of the single photoelectron (p.e) signals are smeared by a Gaussian function with width,
σ = 1.3√

Nγ
ns, with Nγ being the number of photons detected simultaneously, to account

for the Transit Time Spread (TTS) of the PMTs. The amplitude of collected charge is
measured by smearing the integrated number of detected photons with a Gaussian of
width 0.3 p.e.

At this point, the output looks like hits from the DAQ [134]. The position, time and
collected charge of the hits are used to infer the direction and energy of the incident
neutrino.

3.2 Event Reconstruction for ANTARES

Event reconstruction algorithms use the timing and position information of the hits at the
PMTs to estimate the location of the outgoing lepton emanating from neutrino-nucleon
interaction vertices as the well as the energy of the lepton. Two different track
reconstruction algorithms are used in ANTARES. We would call them method A and
method B.

3.2.1 Direction estimation

The trajectory of the particle is parameterised by the direction and position of the lepton
at some arbitrary time t as (~rt,~pt).

Method A
This is an online fast reconstruction algorithm [168] for quick fit of tracks. It is particularly
suited for real-time applications like online visualisation of event display and triggering
of follow-up events for multi-messenger studies.

This method [168] assumes a simplified detector geometry consisting of straight vertical
detection lines. The geometry of the OMs is neglected and possible distortions due to sea
currents are ignored.

In order to select direct Cherenkov photons coming from a muon track, a hit selection
based on causality conditions is made. All hits detected within a time window of 20 ns
are merged and events with a multiplicity of 5 hits are accepted.

The photons are then projected along the muon track to find the first and last emission
point within the detector geometry. If the selected points occur on several detector lines,
a multi-line (ML) fit is performed; otherwise a single-line (SL) fit is performed for points
lying on one detector line. The fit function follows the strategy of a χ2 minimisation
defined as a function of the time difference between the observed hit time ti and the
expected arrival time of the photon tγ. A quality parameter used to discriminate good
and badly reconstructed events is defined as

λA =
χ2

Nd.o. f .
, (3.4)
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3.2. Event Reconstruction for ANTARES 71

where Nd.o. f . is the number of degrees of freedom in the fit, defined as the number of hits
minus the number of fitted parameters. The median of the angular error is defined as
the difference between the true muon direction and the reconstructed muon direction. In
the 20 GeV energy regime, the median angular resolution is 3◦ for SL and 0.8◦ for ML
events [169]. The distributions of λA for atmospheric neutrinos and atmospheric muons
are shown in Fig 3.3. More details can be found in [168].

Figure 3.3: Distribution of λA variable of method A for events reconstructed as up-going, for
ML tracks recorded data (black) compared to MC sample of up-going atmospheric
neutrinos (blue) and downgoing muons (red). From [170].

Method B
This method [171] involves a direction prefit based on a directional scan of isotropically
distributed directions, followed by a maximum log-likelihood fit to get the track
estimation. This method is more robust and is used in the majority of the offline
ANTARES physics analyses.

It consists of a chain of subsequent fits:

• linear prefit: the reconstruction chain starts with a random hit selection based on
local clusters, patterns, coincidence and hits of events in neighbouring floors. It
assumes that the muon track passes through the positions of the selected hits. This
provides a rough estimation of the muon track to be used as a starting point for the
next steps.

• M-estimator fit: hits closer than 100 m of linear prefit and whose time residuals fall
within a time window of ±150 ns with respect to the expected hit time are selected.
The expected arrival time tth of a Cherenkov photon for a given muon position and
direction at an arbitrary time t0 is given by:

tth = t0 +
1
c
(l − k

tan θc
+

1
vg

k
sin θc

), (3.5)

where vg is the group velocity of light, θc is the Cherenkov angle, and k is the
shortest distance between the track and the OM. The difference between tth and
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72 Chapter 3. Monte Carlo Simulations and Event Reconstruction

the measured arrival time of the photon is called time residual. A schematic
representation of the muon track is shown in Fig. 3.4.

Figure 3.4: Geometrical representation of a muon track. The muon passing through the detector
induces a Cherenkov light emission at an angle θc w.r.t. its trajectory. A photon
travelling at speed v is detected by an OM at a position~q, with k being the distance of
closest approach to the muon track. From [170].

• maximum likelihood fit: a probability density function is defined as a function of
track parameters to maximise the likelihood of obtaining a certain event

L(~r,~p) = ∏ P(t|tth,~r,~p), (3.6)

where the sum runs over the number of hits. The probability of a hit being due to
background is also accounted for. The goodness of the reconstruction is quantified
by the parameter:

λB =
logLmax

Nd.o. f .
+ 0.1× (Ncomp − 1), (3.7)

where Lmax is the maximum value of the likelihood, Nd.o. f is the number of degrees
of freedom of the fit given by Nd.o. f . = Nhits − 5, with Nhits being the number
oh hits used in the reconstruction, and Ncomp is the number of repetitions of the
M-estimator and the maximum-likelihood prefits which gives a track direction
within 1◦ from the selected one.

The track angular error estimate can be obtained from the errors on the zenith angle
σθ and azimuthal angle σφ:

βB =
√

sin2(θrec)σ2
φ + σ2

θ (3.8)

A median angular resolution better than 0.4◦ is achieved for energies above 10 TeV.
The distributions of λB for atmospheric neutrinos and atmospheric muons is shown
in Fig 3.5. More details can be found in [170].
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3.2. Event Reconstruction for ANTARES 73

Figure 3.5: Distribution of λB variable of method B for events reconstructed as up-going, for
atmospheric neutrinos (black) and atmospheric muons (red). From [170].

3.2.2 Energy estimation

Method A
The muon track length in the detector is used as a proxy for the neutrino energy
estimation. The total length of the track Lµ is directly related to the energy of the track as

Etracks = Lµ
dEµ

dx
, (3.9)

where the differential energy energy loss of a minimum ionising muon in water in the
energy range 10− 100 GeV, dEµ

dx , is fixed to 0.24 GeV/m [117].

For SL events, the z coordinates of the initial hit and final hit, zi and z f , are chosen to
estimate the muon track length:

Lµ = (z f − zi)/ cos θz, (3.10)

where θz is the reconstructed zenith angle. For ML events, the muon track length can
be computed from the difference between the spatial coordinates of the initial and final
track points:

Lµ =
√
(x f − xi)2 + (y f − yi)2 + (z f − zi)2, (3.11)

Whereas for ML events the threshold energy of the final neutrino sample is about 50 GeV,
for SL nearly vertical events set the threshold of the energy estimation in ANTARES as
low as 20 GeV, thereby reaching close to the first oscillation minimum. The presence
of a hadronic shower at the interacting vertex is ignored, as well as the fact that the
muon track might be partially contained. The secondary muon from a primary neutrino
interaction might have entered the detector after traversing a subsequent part of its track
length outside the instrumented volume, thereby making only a fraction of its actual
range accessible to measurement. For muons leaving the detector, only a lower threshold
of their energy can be derived. The energy resolution of the muonic events is found to be
around 50% ± 22% [147].
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Method B
The neutrino energy estimation in this method is based on the total deposited muon
energy, dEµ

dx , on an event-by-event basis [172]:

dEµ

dx
∼ ρ =

∑Nhits
i Qi

ε(~r)
1

Lµ(~r)
, (3.12)

where Qi is the charge registered by the OM i, ε(~r) is the light detection efficiency, Lµ is
the muon track length and~r is the muon track direction. The light detection efficiency
depends on the position and direction of the muon track:

ε(~r) =
NOMs

∑
i

exp(− ri

λabs
) · (αi(θi)

ri
) (3.13)

where the sum runs over all active OMs, ri is the distance between the OM i and the muon
track, λabs is the absorption length and αi(θi) parameterises the angular acceptance of the
OM i with θi being the impact point of the photon on the OM i.
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3.3. MC Simulation for ORCA 75

3.3 MC Simulation for ORCA

In this section, the scheme for computation of expected event signals in ORCA is
described. The simulation chain involves series of subsequent steps, in which the
process from the atmospheric neutrino flux to the observed event spectra is modelled.
Each subsequent stage, except the (initial) flux stage takes the output of the previous
stage as input and makes a functional transformation. Since the individual stages are
independent of each other, a parameter change affecting one stage does not affect the
transformation induced by other stages. A schematic view of the simulation chain is
shown in Fig. 3.6.

3.3.1 Atmospheric neutrino flux

The first data of interest are the tabulated atmospheric neutrino flux predictions provided
in bins of true neutrino energy Etrue and cosine of the true zenith angle cosθtrue:

φνα
Etrue, cos θtrue

and φνα
Etrue, cos θtrue

. (3.14)

They represent the number of atmospheric (anti)neutrino of flavour (να) να with energy
and zenith angle within the range of [Etrue, cos θtrue] bin passing through unit area of the
detector per unit time, oscillations neglected.

The table entries are collected from Honda et al. [103] (discussed in 2.1). Due to the
proximity of the Fréjus site1 to the ORCA site, the year-averaged tables at solar minimum
without effects of the mountain top at the Fréjus site is expected to resemble the flux at
the ORCA site. The Honda flux tables are provided in 101 equidistant bins of log(E)
from 0.1 to 10,000 GeV and 20 equidistant bins of cos θz ranging from −1 (up-going) to
+1 (downgoing).

In ORCA simulations, the energy range is divided into 40 bins with bin centers
equidistant in log(E), with E ∈ [1, 100] GeV. The zenith angle is binned 40 bins
equidistant in cos θz from −1 to 1. The choice of the binning is made to retain the
numerical accuracy and to reduce the computational load while avoiding smearing out
the physical effects under study.

The Honda flux tables are rebinned using a bilinear spline interpolation for each target
[Etrue, cos θtrue] bin, shown in Fig. 3.7 and Fig.3.8. The unoscillated atmospheric tau
(anti)neutrino fluxes are assumed to be negligible. The same binning in true variables is
retained till the detection stage, after which, a coarser binning is used for reconstruction
due to limited resolutions. A 20× 20 binning in reconstructed space, [Ereco, cos θreco], is
chosen in order to complement the detector resolutions, while ensuring enough statistics
in each bin.

1This refers to the Fréjus Underground Laboratory located near Modane, France.
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3.3. MC Simulation for ORCA 77

Figure 3.7: Distribution of atmospheric electron neutrino (top) and anti-electron neutrino flux
(bottom) based on the year-averaged flux at the Fréjus site without mountain at solar
minimum [103]. The colour code gives the integrated flux over the energy-zenith bin.
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78 Chapter 3. Monte Carlo Simulations and Event Reconstruction

Figure 3.8: Distribution of atmospheric muon neutrino (top) and anti-muon neutrino flux
(bottom) based on the year-averaged flux at the Fréjus site without mountain at solar
minimum [103]. The colour code gives the integrated flux over the energy-zenith bin.

3.3.2 Neutrino propagation through Earth

The Earth is modelled as a series of concentric spherical layers of constant matter
density called shells (Fig. 1.3), and adopted from PREM [53]. The OscProb [52] neutrino
oscillation calculator allows the definition of a radial planetary model and position of the
detector within this model to calculate oscillation probabilities.

The oscillation probabilities as a function of true variables for the adopted binning are
shown in Fig. 3.9 and Fig. 3.10. The oscillation probabilities are multiplied by the
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3.3. MC Simulation for ORCA 79

unoscillated fluxes from the previous step to yield the oscillated neutrino fluxes:

φ
νβ, osc
Eν, cos θz

= ∑
α

Pνα→νβ
(Eν, cos θz) · φνα

Eν, cos θz
,

φ
νβ, osc
Eν, cos θz

= ∑
α

Pν̄α→ν̄β
(Eν, cos θz) · φνα

Eν, cos θz
. (3.15)

Oscillations effects are negligible for downgoing neutrino events (cosθz > 0).

Figure 3.9: Pνe→νx (x = e, µ, τ) for neutrinos (left) and antineutrinos (right) as a function of true
neutrino energy Etrue and cosine of the true zenith angle cosθtrue. The top, middle
and bottom panels correspond to electron disappearance, muon appearance and tau
appearance channels, respectively. Normal Ordering is assumed.
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Figure 3.10: Pνµ→νx (x = e, µ, τ) for neutrinos (left) and antineutrinos (right) as a function of
neutrino energy Eν and cosine of the zenith angle cosθz. The top, middle and bottom
panels correspond to electron disappearance, muon appearance and tau appearance
channels, respectively. Normal Ordering is assumed.

3.3.3 Interaction Cross-sections

Neutrino-nucleon interactions are described in Sec. 2.2. Based on the different interaction
types, eight distinguishable interactions indexed by X are considered in the simulated
chain:

• CC interactions for each of the six neutrino flavours νe, νµ, ντ, νe, νµ, and ντ;

• NC interactions of all flavours νy and νy.
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3.3. MC Simulation for ORCA 81

Flavour distributed NC interactions are not considered since their cross-sections are
identical and they leave identical signature at the detector. A total combined CC
interaction cross-section is used irrespective of the type of underlying CC interactions
(DIS, QE, RES) since their experimental signature cannot be probed at ORCA.

Neutrino interactions are simulated with the gSeagen code [173], developed within
the KM3NeT collaboration. It is based on the widely used GENIE neutrino Monte
Carlo generator package [174], that incorporates theoretical models and constraints from
experimental data to model neutrino interactions over a wide range of energies for
different neutrino flavours and target material types. Electron and muon neutrinos
(and antineutrinos) in the energy range from 1 GeV to 100 GeV are simulated and
weighted accordingly to reproduce the atmospheric neutrino flux following the Honda
model [103]. The scheme for neutrino event generation in ORCA follows the strategy
adopted for ANTARES, as discussed in Sec. 3.1.1. The cross-section per nucleon is
calculated by taking a weighted mean of the cross-sections on free target protons and
on oxygen nuclei:

σnucleon =
2× σ(1

1H) + σ(16
8 O)

2 + 16
. (3.16)

The resulting cross-sections are shown in Fig. 2.4. In simulations, σ(E) is interpolated
from these curves for each interaction channel. The νe and νµ interaction cross-sections
are almost identical. The neutrino cross-sections are twice or more as high as their
antineutrino cross-sections. The ντ interaction cross-section is suppressed with a
threshold ∼ 3.5 GeV, due to the large τ mass.

The interaction rates are estimated from the oscillated neutrino fluxes Eq. 3.15 by:

RCC,να
Eν,cos θz

= σCC,να(Eν)× φνα, osc
Eν, cos θz

,

RCC,να
Eν,cos θz

= σCC,να(Eν)× φνα, osc
Eν, cos θz

,

RNC,ν
Eν,cos θz

= σNC,ν(Eν)×∑
α

φνα, osc
Eν, cos θz

,

RNC,ν
Eν,cos θz

= σNC,ν(Eν)×∑
α

φνα, osc
Eν, cos θz

, (3.17)

where σX represents the interaction cross-section per target nucleon for interactions of
type X at a particular neutrino energy Eν.

Since the interaction cross-sections are very low, the neutrino interaction rates in Eq. 3.17,
which give the number of interactions per unit time per target nucleon, are also very
small. It is rather convenient to work with interaction rates per unit target mass:

RX/mN , (3.18)

where mN is the average between the proton and the neutron masses2.

Fig. 3.11 to 3.14 show the results of the calculations of the expected rates of neutrino
events per megatonne3 per year. The oscillation effects for electron neutrinos in Fig. 3.11

2This approximation does not take into account the difference between the atomic mass and the sum of
the mass of the individual nucleons. However, this only incorporates a sub-percent error in the estimation of
the overall expected events, which is rather small compared to the systematic uncertainty on the atmospheric
neutrino flux.

3The mass of large volume neutrino telescopes are usually expressed in megatonne (Mton).
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are hardly discernible due to steep energy dependence of the flux. The disappearance
of muon neutrinos in Fig. 3.12 and the corresponding appearance of tau neutrinos in
Fig. 3.13 are clearly visible. The τ threshold suppressing ντ interactions at low energies
can be seen. The antineutrino rates look very similar to neutrino rates in shape. However
they differ in magnitude, shown by the colour scale.
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Figure 3.11: νe (top) and νe (bottom) CC interaction rates at the detector. The colour code gives
the number of neutrino interactions (per Megaton per year). Mind the difference in
the colour scales on individual plots.
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Figure 3.12: νµ (top) and νµ (bottom) CC interaction rates at the detector. See also the caption of
Fig. 3.11.
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Figure 3.13: ντ (top) and ντ (bottom) CC interaction rates at the detector. See also the caption of
Fig. 3.11.
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Figure 3.14: ν (top) and ν (bottom) NC interaction rates at the detector. See also the caption of
Fig. 3.11.

3.4 Detector Response for ORCA

The second part of the simulation chain models the detector response to neutrino
interactions. Similar to ANTARES, the Monte Carlo chain for ORCA is based on a
multi-stage process consisting of an event generator, a simulator for Cherenkov light
generation and tracking of particles in seawater and simulation of the detector response
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and triggering.

Neutrino induced interactions in seawater are simulated with gSeaGen [173]. All
particles emerging from neutrino interactions are propagated with the GEANT4-based
software package KM3Sim [163] developed within the KM3NeT Collaboration.
Atmospheric muon events are generated using the MUPAGE package [164], and the
KM3Sim package is used for tracking the muons in seawater and subsequent Cherenkov
light production and propagation.

Randomly distributed hits due to Cherenkov light emission from β-decays of 40K are
also added. An uncorrelated hit rate of 10 kHz per PMT as well as time-correlated noise
per DOM (600 Hz twofold, 60 Hz threefold, 7 Hz fourfold, 0.8 Hz fivefold and 0.08 Hz
sixfold) is added. This optical background rates are estimated from the data of the first
deployed DUs [175].

Trigger algorithms [143] based on only one local coincidence and a tunable number of
causally connected single hits on DOMs in vicinity have been developed to account
for the multi-PMT peculiarities of ORCA. The trigger rate for atmospheric muons is ∼
50 Hz and pure-noise events ∼ 4 Hz, while atmospheric neutrinos are triggered with
a rate ∼ 7.6 mHz4. To reduce the computational load of simulating a "full statistics"
corresponding to several years of equivalent livetime for atmospheric muons and pure
noise, only 14 days of atmospheric muons and 1.4 days of pure noise are simulated. For
atmospheric neutrinos, events with an equivalent livetime of ∼ 15 years are simulated.

3.4.1 Effective mass

The next intermediate stage in the simulation chain is the computation of detected events.
The detected events correspond to those neutrino interactions that meet the following
criteria:

• the event passes the L1 trigger5 (Sec. 2.4.1);

• the event is successfully reconstructed by any of the reconstruction algorithms
(Sec. 3.4.2);

• the event passes the atmospheric muon and pure noise rejection criteria (Sec. 3.4.3);

• the event is classified as a track or a shower (Sec. 3.4.3).

The expected number of detected events for each interaction type X , NX , is calculated in
the following way:

NX (Eν, cos θz) =
RX

mN
×MXe f f (Eν, cos θz)× T, (3.19)

where, RX/mN is the interaction rate per unit target mass of interaction type X ∈
{(νe, νe, νµ, νµ, ντ, ντ - CC) and (ν, ν - NC)}, T is the time duration of data taking, MXe f f is
the energy- and zenith angle-dependent effective mass corresponding to the interaction
type X .

4It should be kept in mind that these quoted rates are not comparable among them, since some refer to
event rates and other to hit events.

5The level-one filter (L1) refers to a coincidence of two (or more) L0 hits from different PMTs in the same
optical module within a 10 ns time window.
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The effective mass MXe f f incorporates the totality of the effects related to the detector
instrumented volume as well as the detector’s ability to identify a neutrino interaction.
It is defined as

MXe f f =
Ndet

Nsel
×Vgen × ρw, (3.20)

where, Ndet is the number of interactions events that meet the requirements to be
counted as a detected event, Nsel is the total number of interactions generated within
the instrumented volume Vgen and ρw is the density of seawater (= 1.025 g cm−3).

The ORCA detector (Sec. 2.10), upon completion, will consist of 115 DUs arranged in
circular geometry with a radius of ∼ 115 m. Along a DU, the average vertical spacing
between DOMs is ∼ 9 m. The horizontal spacing between DUs is an optimisation
between the technical constraints of the deployment procedure from the engineering
perspective and the instrumentation density required for the measurement of the the
neutrino mass ordering from the physics point of view. For the NSI study, we are going to
use the two average horizontal distance that have been considered by the collaboration:

• ORCA115 – 23 m: 115 DUs are spaced apart by 23 m, amounting to an instrumented
volume of ∼ 8 Mton.

• ORCA115 – 20 m: 115 DUs are spaced apart by 20 m, amounting to an instrumented
volume of ∼ 6 Mton.

The effective masses are estimated for both detector geometries. They are represented
by eight two-dimensional tables in true energy and zenith angle, as shown in Fig. 3.15 to
Fig. 3.18.
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Figure 3.15: νe (left) and νe (right) CC effective masses as a function of true neutrino energy and
zenith angle for two horizontal spacing of ORCA DUs: 23 m (top panels) and 20 m
(bottom panels). The colour code gives the effective masses in Mton.
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Figure 3.16: νµ (left) and νµ (right) CC effective masses as a function of true neutrino energy and
zenith angle for two horizontal spacing of ORCA DUs: 23 m (top panels) and 20 m
(bottom panels). The colour code gives the effective masses in Mton.
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Figure 3.17: ντ (left) and ντ (right) CC effective masses as a function of true neutrino energy and
zenith angle for two horizontal spacing of ORCA DUs: 23 m (top panels) and 20 m
(bottom panels). The colour code gives the effective masses in Mton.
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Figure 3.18: ν (left) and ν (right) CC effective masses as a function of true neutrino energy and
zenith angle for two horizontal spacing of ORCA DUs: 23 m (top panels) and 20 m
(bottom panels). The colour code gives the effective masses in Mton.

The sharp zenith-dependence of effective mass roots from two effects:

• the atmospheric muon rejection criteria disfavours downgoing events;

• the asymmetry in the number of PMTs within the DOMs in either hemisphere.
More downward-looking PMTs (19, housed in the lower hemisphere) and the
fact that Cherenkov light is emitted in the forward direction results in a higher
photon detection efficiency and consequently higher effective masses for up-going
neutrinos.

Integrating over the zenith angles for up-going events, the effective masses for different
neutrino event types are shown in Fig. 3.19. The effective masses increases with energy
since high energy neutrino events produce more light and are more probable to be
detected. At E ∼20 GeV, a plateau of the order of the instrumented mass (Vinst · ρw) is
reached for νe and νµ CC events.

In case of CC events, the effective masses for antineutrinos are higher than for neutrinos,
since the outgoing lepton on average receives a larger fraction of the initial neutrino
energy in antineutrino interactions. In case of NC events, the effect is reverse. In
antineutrino NC interactions the outgoing lepton on average carries more energy, which
is not visible in the detector. A higher average horizontal spacing of 23 m (compared
to 20 m) results in higher effective mass and consequently higher number of events. A
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turn-on is observed at 20% shifted lower energies due to improved trigger [143] and
effective reconstruction [155] compared to earlier studies in [66].
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Figure 3.19: Effective mass of the detector as a function of neutrino energy E for different neutrino
interaction channels X separated by flavour for the two spacing. Only up-going
events are considered.

The expected number of detected events at ORCA with 20 m horizontal spacing between
DUs are shown in Fig. 3.20 to Fig. 3.23. Most of the detected CC events fall in the energy
range of 3 to 30 GeV. The effect of oscillations is still visible.
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Figure 3.20: Rates of νe (top) and νe (bottom) CC detected events in ORCA as a function of true
neutrino energy and zenith angle for 20 m spacing. The colour code gives the number
of detected neutrino events. Mind the difference in the colour scales on individual
plots.
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Figure 3.21: Rates of νµ (top) and νµ (bottom) CC detected events in ORCA as a function of true
neutrino energy and zenith angle for 20 m spacing. See also the caption of Fig. 3.11.
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Figure 3.22: Rates of ντ (top) and ντ (bottom) CC detected events in ORCA as a function of true
neutrino energy and zenith angle for 20 m spacing. See also the caption of Fig. 3.11.
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Figure 3.23: Rates of ν (top) and ν (bottom) NC detected events in ORCA as a function of true
neutrino energy and zenith angle for 20 m spacing. See also the caption of Fig. 3.11.

3.4.2 Reconstruction

The next ingredient in the simulation chain for predicting the observed event
distributions is to model the performance of the reconstruction algorithms. So far, the
tables are presented as a function of true neutrino energy and zenith angle. This stage
comprises mapping from true to reconstructed variables, the ones actually observed in

96 of 299



3.4. Detector Response for ORCA 97

the detector. The KM3NeT track and shower reconstruction algorithms [170, 155] which
are used for the ORCA analyses, are discussed briefly in this section.

The energy and direction of the incoming neutrino as well as the event topology can
be reconstructed from the arrival time of the Cherenkov photons at the PMTs and the
position of the PMTs. The distribution of reconstructed energy and zenith angles for a
given true energy and zenith angle for MC events gives the resolution of the experiment
at that given true values.

Direction estimation

Similar to track reconstruction in ANTARES (Sec. 3.2.1), the first step is the hit selection
based on local coincidence of causally connected hits and hits which are closer than 50
m to at least 40% of all the hits. This is followed by a "prefit": a linear fit through the
positions of the hits called prefit. The prefit procedure is repeated for different directions
in steps of 5◦ over the whole sky. This is followed by the likelihood maximisation based
M-estimator fit, that depends on the time residuals, i.e. the difference between the exact
time of the hits and the expected times according to the track hypothesis. After this,
a probability density function (PDF) is created based on the light emission profiles of
muons obtained from simulations [170]. The PDF, P, is a function of the minimum
distance of the muon to the PMT i, ρi, the orientation of the PMT, φi, and θi and the
time residual of the hit, tres. P is used to calculate the likelihood:

L = ∏
hits

[
δP(ρi, φi, θi, tres)

δt

]
. (3.21)

Maximising L gives the reconstructed vertex and the direction of the muon trajectory.
The distribution of reconstructed zenith angles for νe CC and νµ CC events in the detector
are shown in Fig. 3.24 and Fig. 3.25. Events with reconstructed vertices within the
detector volume are considered.

The shower reconstruction [176, 177, 178] is performed in two steps. In the first step the
vertex is reconstructed based on the recorded time of the PMT signals and in the second
step the direction, energy and inelasticity are reconstructed based on the number of hits
and their distribution in the detector. In both steps a maximum likelihood fit is performed
for many different starting shower hypotheses and the solution with the best likelihood is
chosen. The neutrino direction resolution is dominated by the intrinsic lepton scattering
kinematics [179]. See [179, 120] for further details on shower reconstruction.

Figure 3.24: Cosine of the true zenith vs cosine of the reconstructed zenith angle for up-going
νe CC classified as shower-like events (left) and νµ CC classified as track-like events
(right). From [180].
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Figure 3.25: Cosine of the true zenith vs cosine of the reconstructed zenith angle for up-going
νe CC classified as shower-like events (left) and νµ CC classified as track-like events
(right) . From [180].

The spread of the distribution for a specific θtrue gives a measure of the angular resolution
of the detector. The median relative error, (med|θtrue − θreco|), on the measured direction
is defined as the resolution. The median resolution on the neutrino direction for
νe/νe/νµ/νµ CC events is 9.3◦/7.0◦/8.3◦/6.5◦ at Eν = 10 GeV.

Energy estimation

The neutrino energy estimation for muons is performed in two steps: first the muon
energy is estimated by reconstructing the muon track length and the interaction vertex.
The neutrino energy is estimated depending on the reconstructed muon length and the
number of hits used by the track reconstruction algorithm. The number of hits Nhits is
defined by integrating the PDF, P, over a time window ∆t. The length of the muon track is
obtained by calculating the distance between the first and last DOM along the track. The
relation between number of hits and the energy of the interacting neutrino, for a certain
interval of reconstructed muon track length, is obtained by fitting the median distribution
of Eν as a function of Nhits. A short track with large number of hits is an indication of an
energetic hadronic shower and the neutrino energy is scaled up accordingly. In case of
showers, the light yield is in first order proportional to the shower energy [120, 179].

Figure 3.26: True neutrino energy vs reconstructed neutrino energy for up-going νe CC classified
as shower-like events (left) and νµ CC classified as track-like events (right).
From [180].

98 of 299



3.4. Detector Response for ORCA 99

Figure 3.27: True neutrino energy vs reconstructed neutrino energy for up-going νe CC classified
as shower-like events (left) and νµ CC classified as track-like events (right).
From [180].

The median energy resolution for νe CC events is 25% at Eν = 10 GeV, while for νµ CC
events, it is ∼ 30% since the outgoing muon tends to leave the detector depositing only a
fraction of its total energy (Fig. 3.28).
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Figure 3.28: Energy resolution of ORCA as a function of neutrino energy E for different neutrino
interaction channels X separated by flavour.

The reconstruction performance is encoded within response functions
RX (Etrue, θtrue, Ereco, θreco), which is used to calculate the number of detected events in
the reconstructed phase space variables:

ÑXEreco , θreco
= RX (Etrue, θtrue, Ereco, θreco)× NXEtrue, θtrue

, (3.22)

where, RX (Etrue, θtrue, Ereco, θreco) represents the conditional probability for an event
occurring in true (Etrue, θtrue) bin to be detected, successfully reconstructed and selected
in the bin of observed characteristics (Ereco, θreco). This is implemented within the
KM3NeT custom oscillation framework SWIM [181, 182].
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The modelling of the detector response is based on full MC simulations rather
than parameterised detector response functions. Each entry in multi-dimensional
response matrices RX (Etrue, θtrue, Ereco, θreco) for different X is represented by a single
dimensionless coefficient (or weight), that gives the efficiency of detection, reconstruction
and selection for a true bin (Etrue, θtrue and is computed as:

RX (Etrue, θtrue, Ereco, θreco|X ) =
NMC

sel (Etrue, θtrue, Ereco, θreco)

NMC
gen (Etrue, θtrue)

, (3.23)

where NMC
sel (Etrue, θtrue, Ereco, θreco) is the number of "selected" (triggered, reconstructed

and classified) MC events in the reconstructed bin (Ereco, θreco) for a given interaction
channel X , and NMC

gen (Etrue, θtrue) is the number of "generated" MC events in the
true (Etrue, θtrue). Building response matrices would require filling 5-dimensional6

tables in (Etrue, θtrue, Ereco, θreco) phase space for each interaction channel X ∈
{(νe, νe, νµ, νµ, ντ, ντ - CC) and (ν, ν - NC)}. Building response matrices involves looping
over selected and generated events and is computationally costly. However, once it is
built, mapping of all the events from true to reconstructed variables spaces is very fast.
The binning scheme adopted for this analysis is listed in Tab. 3.1.

log(Etrue) cos θtrue log(Ereco) cos θreco
Bins 40 40 20 20
Units [1, 100] [-1, 0] [3, 100] [-1, 0]

Table 3.1: Binning scheme adopted for this analysis.

A coarse 20 × 20 binning in reconstructed space is chosen in order to complement
the detector resolutions, while ensuring enough statistics in each bin. Equidistant
logarithmic bins are used in harmony with power-law spectra of atmospheric neutrino
fluxes, to ensure enough statistics in high energy bins. Constant binning in cos θ is also
a choice to equally populate bins due to the (first order) isotropic nature of atmospheric
fluxes.

3.4.3 Event classification

As discussed earlier, depending on the Cherenkov signatures of the outgoing lepton
from the νe and νµ CC and NC interactions, two distinct event topologies are observed
at the detector: track-like and shower-like events. νµ CC and those ντ CC interactions
with muonic τ decays mostly account for track-like topology, since the outgoing muon
appears as a track within the detector. The shower-like topology has events from νe CC, ντ

CC interactions with non-muonic τ decays and NC interactions of all flavours. Showers
appear as blob-like light sources within the detector.

The reconstruction information is fed to a Particle IDentification (PID) chain, which is
based on a multivariate analysis (MVA) technique. MVA techniques can be divided into:

• classification: qualitative output predicting a category or class;

• regression: quantitative output predicting the value of a variable.

6Additional dimension to store a discrete integer flag indexing the type of interaction.
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3.4. Detector Response for ORCA 101

The Random Decision Forest (RDF) [183] classifier, which is a machine learning (ML)7

algorithm, is used in our case. This is built within the collaboration [184]. RDF
consists of an ensemble of consecutive binary decision trees. Each individual tree in the
random forest of reconstructed heuristics outputs a class prediction and the class with the
majority of votes becomes our prediction. The output score reflects the fraction of trees
that voted for a predicted class. In this way, a tunable output parameter f is obtained,
which can be used to cut on in the analysis. νµ CC events have been used to represent the
track-like event topologies, while νe CC and NC events have been used to represent the
shower-like event topologies while training the classifier.

The output ntuples8 contain 3 different types of classifiers ( f ), two to filter out
background and one for physics:

• atmospheric_muon_score: atmospheric muon vs neutrino decision to reject
atmospheric muons;

• pure_noise_score: pure noise vs neutrino event decision to reject events that
appear very noise-like in the detector;

• track_score: to distinguish between track-like and shower-like events.

The event type classifier for neutrinos, f , can be defined as:

ÑX ,C
Ereco , θreco

= fXC (Etrue)× ÑXEreco , θreco
, (3.24)

where, ÑXEreco , θreco
is the number of detected events of interaction type X , C indicates the

PID class (track or shower), ÑX ,C
Ereco , θreco

is the number of detected events of interaction type
X and classified as C, fXC is the energy-dependent event classification probability for
interaction types X satisfying the condition:

∑
C

fXC = fXtracks + fXshower = 1. (3.25)

The classifier performance of the event type classifier for neutrinos ( fXtracks, fXshower ) is
shown in Fig. 3.29 and Fig. 3.30.

7Machine learning (ML) refer to computer algorithms that involve automatic improvement of predictions
through experience/learning. It can be supervised learning or unsupervised learning based on the training with
a sample in which the real output is known or unknown respectively.

8An ntuple is a tabular representation of events where each event consists of a fixed length row of data.
It uses the same basic format as ROOT [185] trees.
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Figure 3.29: The RDF-based event selection probability for detected events to be classified as a
track fXtracks (top) or shower fXshower (bottom) for each of the different interaction types
X at ORCA for 23 m horizontal spacing between DUs.
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Figure 3.30: The RDF-based event selection probability for detected events to be classified as a
track fXtracks (top) or shower fXshower (bottom) for each of the different interaction types
X at ORCA for 20 m horizontal spacing between DUs.

For Eν ∼20 GeV the classifier reaches a plateau with 90% of νµ CC and 80% νµ CC events
correctly classified and 5% of νe CC and 5% of ν-NC mis-classified events as tracks for
23 m horizontal spacing detector geometry. In the case of a 20 m spacing, the classifier
reaches a plateau with 95% of νµ CC and 85% νµ CC events correctly classified and 5% of
νe CC and 8% of ν-NC mis-classified events as tracks.

An improvement of the classifier for 20 m results from a denser instrumentation and
additional hit-features (based on the likelihood ratios of the time and position of the
hits expected from νe and νµ CC events with respect to the reconstructed position
and direction from the shower reconstruction algorithm) that has been fed to train the
classifier. The difference in the classification performance for νµ CC and νµ CC is due to
the differences in the inelasticity of the Bjorken-y distributions (Eq. 2.9). The fraction of
ντ CC events classified as tracks is relatively higher due to the 17% branching ratio of
muonic τ decays.
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3.4.4 Event spectra

The eight distributions indexed by interaction type X ∈ {(νe, νe, νµ, νµ, ντ, ντ - CC)
and (ν, ν - NC)} are merged and split into two distributions corresponding to the two
event topologies: tracks and showers. The final event spectra observed at the detector
are shown in Fig. 3.31. Now the oscillation pattern is not well visible. The event
spectra are segregated by cutting on in the track_score9 at 0.6. The contamination from
mis-reconstructed atmospheric muons is estimated from MC simulated atmospheric
muons with a livetime of ∼ 14 days. However the absolute number of events that passes
the selection cuts is very small and accounts for 2% of the total sample. A total number of
∼ 63,000 (55,000) up-going neutrino events per year (corresponding to a rate of∼ 2 mHz)
is expected at ORCA for 23 m (20 m) horizontal spacing detector geometry.
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Figure 3.31: The expected event rates for up-going neutrinos at ORCA per year for 23 m
(top panels) and 20 m (bottom panels) horizontal spacing as a function of the
reconstructed energy and zenith angle for track-like (left) and shower-like (right)
event topologies. Normal Ordering is assumed.

9A value of track_score = 1 corresponds to perfect track, while 0 corresponds to perfect shower.
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4 Search for NSIs with ANTARES
and ORCA

"NeutrinoŊ, they are very Ŋmall.

They have no Ěarge and no maŊŊ

And do not interact at all.

- - - - - - - - - - - - - - - - -

At night, they enter at Nepal

And pierce the lover and his laŊŊ

From underneath the bed; you call

It wonderful; I call it craŊŊ."

— JOHN UPDIKE
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As explained in Chapter 1, the presence of Non-Standard Interactions (NSIs) of neutrinos
with matter can produce a significant departure of the event spectra from the predictions
with standard three-flavour neutrino oscillations. In this chapter, we search for such
departures using the data provided by the ANTARES detector and estimate how
sensitive the ORCA detector will be to such effects using simulated events.

In the case of ANTARES, a measurement of the parameters that describe the NSI can
be obtained and in the absence of a statistical significant deviation from the standard
oscillation pattern, limits on these parameters can be established. For ORCA, we can
provide sensitivities to these parameters, i.e. estimates of the values for which the
detector would be able to observe a deviation at a given confidence level.

Since NSIs would show up as sub-dominant effects above the main contribution of
the atmospheric neutrino oscillations, it is natural that the selection of events for the
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standard oscillation analysis is used also for the NSI search. Indeed, a common event
selection allows us to reproduce the results of the standard oscillation analysis and
cross-check and compare to our results for NSIs. Therefore, the event selection criteria
and the data–taking period used in this PhD thesis follows that of the latest analysis
of atmospheric neutrino oscillations with ANTARES, published in [60] and explained in
greater detail in [186]. We have first reproduced the analysis explained in these references
and then used it as a starting point to perform the NSI analysis as presented in Sec. 4.2.

Likewise, for ORCA, final event templates are simulated for a predicted exposure of
3 years of runtime comprising 115 DUs with 23 m and 20 m horizontal spacing between
DUs. The expected event numbers are weighted according to various possible NSI
signal hypotheses (in the light of agreement of pseudo-data with standard three-flavour
oscillations) in order to quantify how large such sub-dominant effects coming from NSIs
can still be viable at ORCA. The method used to compute the sensitivity of ORCA to NSIs
is reported in Sec. 4.3.

In both cases, the analysis methodology follows an Asimov dataset approach [187] to
quantify the median significance of the experiments towards the NSI signal hypothesis.
Finally, after performing a binned likelihood maximisation, the limits in the NSI µ − τ
sector with ANTARES have been constructed (Sec. 4.2) and discovery potential of ORCA
towards various NSI model parameters has been reported (Sec. 4.3).

4.1 Non-Standard Interactions

The study presented in this section employs a three-flavour neutrino scheme in presence
of NSIs (see Sec. 1.3.1 for details) to calculate bounds on NSIs in the µ − τ sector. In
experiments like ANTARES, where the atmospheric neutrino flux is dominated by νµ

events in the GeV energy range, NSIs in the µ− τ sector can be discerned by probing the
deficit of νµ events, since these events primarily transform into ντ governed by a large
mixing angle θ23 and by the NSI coupling parameter εµτ [188].

The effective Hamiltonian governing the propagation of neutrino flavour states in matter
in the presence of NSIs in the µ− τ sector reads [76]

Hij =
1

2Eν
Uik

0 0 0
0 ∆m2

21 0
0 0 ∆m2

31

U†
kj + VCC

nd(x)
ne(x)

δde 0 0
0 0 εµτ

0 ε∗µτ εττ − εµµ

 , (4.1)

where Eν is the neutrino energy and Uik is the PMNS matrix [81]. nd(x) and ne(x) are
the d-quark and electron number densities along the neutrino path, respectively, and
the εαβ with α ∈ {µ, τ} represent the strength of NSI coupling in the µ − τ sector. All
NSIa that couple to νe (εeα) are set to zero to switch off the electron neutrino NSIs. The
remaining non-zero parameters (εµµ, εµτ and εττ) introduce matter-dependent distortions
to standard νµ ↔ ντ oscillations and can be exploited to set limits on the NSI parameters
in the µ− τ sector.
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Under the one mass scale dominance (OMSD) approximation, the asymmetry in the muon
disappearance channel to first order in εµµ, εµτ and εττ is defined as [189, 190, 191]

∆Pµµ ≡ PNSI
µµ − PStd.

µµ

' −|εµτ|A[sin3(2θ23)∆ sin(∆) + 4 sin(2θ23)cos2(2θ23) sin2(
∆
2
)]

+ |εµµ − εττ|A sin2(2θ23)cos(2θ23)[
∆
2

sin(∆)− 2 sin2(
∆
2
)],

(4.2)

where ∆ ≡ ∆m2
31L/2Eν, A ≡

√
2GF NeL/∆.

A convenient approximation for the series expansion of otherwise complicated
three-flavour oscillation probabilities is the two-flavour hybrid model including matter NSIs
with two parameters εµτ ≡ ε and ε′ ≡ εττ − εµµ. In such a model, NSI effects in the
νµ− ντ coexist with the standard two-flavour (θ12, θ13 and ∆m2

21 = 0) νµ ↔ ντ oscillations.

The signatures of asymmetry in the muon disappearance channel, predicted in presence
of νµ → ντ NSI, parameterised by εµτ = 0.033 and εττ = 0.147 for up-going neutrinos1, is
shown in Fig. 1. The asymmetry is maximal for a wide region of core-crossing neutrinos
with energies of ∼ 25 GeV.
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Figure 4.1: Asymmetry in νµ (left) and ν̄µ (right) survival probabilities as a function of the neutrino
energy and cosine of the zenith angle. The NSI hypothesis has been parameterised as
εµτ = 0.033 and εττ = 0.147. NO is assumed.

Similarly, a model in which the NSI effects in the νe − ντ coexist with the standard
two-flavour (θ12, θ13, and ∆m2

21 = 0) νµ ↔ ντ neutrino oscillations is labelled as the
three-flavour hybrid model. All NSIs that couple to νµ (εµα) are set to zero. All three flavours
are present in this case. An overall νµ → νe transition occurs via standard νµ → ντ

oscillations driven by large θ23 working in concurrence with the εeτ induced ντ → νe
conversion:

νµ
θ23−→ ντ

εeτ−→ νe (4.3)

1This choice of values of NSI parameters is motivated by the experimental bounds set by Super-K [192]
at 90% C.L.
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The effective Hamiltonian governing the propagation of neutrino flavour states in matter
in the presence of NSIs in the e− τ sector reads [76]

Hij =
1

2Eν
Uik

0 0 0
0 ∆m2

21 0
0 0 ∆m2

31

U†
kj + VCC

nd(x)
ne(x)

δde + εee 0 εeτ

0 0 0
ε∗eτ 0 εττ

 . (4.4)

The signatures of asymmetry in the muon disappearance channel, predicted in presence
of νe → ντ NSI, parameterised by εeτ = 0.1 and εττ = 0.147 for up-going neutrinos, is
shown in Fig. 4.2. Although, the electron NSIs do not appear in leading order terms in
the expressions of muon survival probabilities, it can still be discerned as sub-leading
effects in the muon disappearance channel.
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Figure 4.2: Asymmetry in νe (left) and ν̄e (right) survival probabilities as a function of neutrino
energy and cosine of the zenith angle. The NSI hypothesis has been parameterised as
εeτ = 0.1 and εττ = 0.147. NO is assumed.

In our case, for the calculation of oscillation probabilities, the neutrino evolution equation
in the full three-flavour neutrino scheme in presence of NSIs is solved numerically with
the OscProb [52] package taking into account the PREM density profile [53].

4.2 Search for NSIs with ANTARES

When searching for NSIs, the first step is to select the event sample on which our analysis
will be performed. This selection is optimised to select charged current interactions
of muon neutrinos, which yield a muon crossing the detector and produces a track-like
event. The muon disappearance channel is selected since it is sensitive to the NSI
sector which we would try to constrain. The background will be dominated by poorly
reconstructed atmospheric muons, νe CC interactions that produce electromagnetic
showers and neutral-current (NC) interactions of all flavours that produce hadronic
showers. In addition, oscillations of νµ to ντ will produce ντ CC events with or without
muons in the final state that can be a potential source of background for this study.

In this section, the event selection procedure followed to obtain the oscillation
parameters, including the possible existence of a sterile neutrino, is described [60]. We
first show the results when the method is applied to simulated data, and summarise the
results obtained when applied to the oscillation analysis.
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4.2.1 Event selection

A total livetime of 2830 days corresponding to a data acquisition from 2007 to 2016 (both
years included) has been used. The event selection criteria employed here has been
optimised by performing a MC-only sensitivity study [186] to select track-like events
coming from νµ and νµ CC interactions.

Method A criteria

• Direction cut: Events reconstructed with cos θz > 0.15 (cos θz = 0 correspond
to horizontal-going events) are discarded in order to avoid misreconstructed
atmospheric muons closer than 9◦ from the horizon. For events passing the
selection criteria of both methods (Sec. 3.2), an additional constraint is imposed,
which requires the difference between reconstructed zenith angle values to lie
within an uniform circle of radius 0.15: |cos θA − cos θB | < 0.15 (θB refer to the
reconstructed zenith direction with method B (Sec. 3.2.1)). However, some of
the down-going atmospheric muon background events are still reconstructed as
up-going, which requires further quality cuts.

• Quality cut: The quality parameter λA (Fig. 3.3) tends to have larger values for
atmospheric muons. A cut on λA = 0.8 for SL events and λA = 1.3 for ML events
has been chosen to discard events with quality parameter larger than the cut value.

• Multiplicity cut: Algorithm A reconstructs SL and ML events if hits in at least 4
and 5 storeys are found, respectively. However, hits at a minimum number of 5
storeys is required for both SL and ML events to pass the selection criterion.

• Containment cut: A containment condition is applicable to ML events, such
that events with interaction vertex reconstructed far away from the instrumented
volume are discarded. A containment cut, which requires the reconstructed track
vertex to lie within a cube of sides 340 m around the detector center, has been
applied for ML events.

Method B criteria

• Direction cut: In order to curtail the contamination of down-going atmospheric
muon background, only events reconstructed as up-going (cosθz > 0.0) are
considered.

• Quality cut: A quality cut is decided by "goodness of the track fit", a quantity
equivalent to χ2 per number of degrees of freedom (Nd.o. f .). The quality parameter
λB (Fig. 3.5) tends to have smaller values for atmospheric muons. A cut on λB > −5
and βB < 1 has been chosen to discard events with quality parameter smaller and
larger than the cut value, respectively.

Events reconstructed by method A and passing the selection criteria are kept. Events
failing to surpass the selection cuts of method A are reconstructed by method B. These
events are also included in the final sample if the corresponding quality cuts of method
B are achieved.

MC composition

The MC expectation from different channels, oscillations excluded, for the final sample,
that pass the selection criteria of cuts are listed in Table 4.1. The muon neutrino
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purity (relative abundance) is 94% and is always the largest over the entire phase space
covered by the observables, as shown in Fig. 4.3. Additional sources of background, at
sub-percent level, are made of events from both νe CC and NC interactions of all flavours
at sub-percent level.

The atmospheric muon background has been obtained from the normalised (and
smeared) PDF of simulated events passing the event selection criteria. These up-going
mis-reconstructed MC muon PDF is then weighted according to the best-fit expectation
value obtained from the fit of standard oscillations [60]. The muon background
contamination is the largest and about 5%.

When applied to data, the event selection criteria leads to a total of 7710 events: 1950
from SL (method A), 3682 from ML (method A) and 2078 from method B.

Component Events %
νµ + ν̄µ CC 7591.2 94.4
νe + ν̄e CC 15.8 0.2
NC 23.5 0.3
Atm. µ (normalised) 414.0 5.1
Total (MC no osc.) 8044.48 100

Table 4.1: Expected composition and number of data events of the final sample surpassing the
selection criteria and corresponding to a livetime of 2830 days of ANTARES.
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Figure 4.3: The unoscillated MC event distribution, binned in logarithm of reconstructed muon
energy (left), and the reconstructed zenith angle (right), of the muon track. The colour
code depicts the composition of MC after the final event selection.

The correlated true–reconstructed energy distributions are shown in Fig. 4.4. Although
the true energies of the neutrino events span few TeV, the reconstructed muon energies
of the fully and partially contained events extend till 100 GeV.
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Figure 4.4: The unoscillated energy distribution of the final MC sample in the Etrue − Ereco phase
space, summed over zenith bins with cosθz ∈ [0.15, 1.0].

Results of standard oscillation analysis

The low-energy threshold of ANTARES (∼ 20 GeV) sits above the energy range sensitive
to neutrino mass ordering. However, it is still close to the first oscillation minimum in the
muon disappearance channel, thereby making it sensitive to oscillations irrespective of
the mass ordering. In 2019, ANTARES published the result [60] of fitting 7710 events,
obtaining three-neutrino oscillation parameters to a precision comparable with that
from dedicated neutrino oscillation experiments [193, 194, 195, 62]. The non-oscillation
hypothesis was disfavoured at 4.6σ. Fig. 4.5 shows the 90% C.L. contours constructed in
the sin2 θ23 − ∆m2

32 plane obtained from the analysis assuming a standard three-flavour
neutrino oscillation hypothesis. The best-fit ∆m2

32 is found at 2 × 10−3eV2 and θ23
compatible with maximal mixing. The data was found to have a mild preference for
an energy shifted first oscillation minimum. This feature of data in fact motivates the
consideration of fitting the non-standard oscillation hypotheses to search for new physics
with the ANTARES data.
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Figure 4.5: Constraints on sin2 θ23 − ∆m2
32 plane at 90% C.L. from the analysis of standard

oscillation fit with ANTARES data. In the plot, the black line refers to the results
published in [60]. From [60].

Comparison with sterile neutrino search

Under the assumption of 3+1 PMNS mixing matrix and to cross-check the validity of NSI
search, the measurement of atmospheric neutrino oscillations in the presence of a sterile
neutrino, has been carried out following the analysis in [60]. A non-zero best-fit value of
θ34 has been found at 25.9◦, while θ24 is found compatible with zero. Left panel of Fig. 4.6
shows the 99% C.L. allowed region in the sterile phase space of |Uµ4|2(= sin2 θ24) and
|Uτ4|2(= sin2 θ34 · cos2 θ24) obtained with the event selection described in this thesis. The
99% C.L. contour are in agreement with the allowed region reported in [60], as shown in
the right panel of Fig. 4.6 with solid black curve.
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Figure 4.6: Left: Constraints on the 3+1 sterile neutrino model obtained based on the event
selection perfromed in this thesis. Right: 99% C.L limits from the publication [60].
In the right plot, the black line refers to the results published in [60]. Both results are
consistent.
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4.2.2 Analysis

The analysis procedure to probe the presence of non-standard interactions consists on
comparing the data with the MC template oscillated with some NSI model hypothesis.
The parameters in the model are varied and the set of parameters that results most
compatible with the data is obtained after a likelihood maximisation.

Statistical method

The method employed in this pursuit of search for NSI signals is the binned likelihood
approach in presence of nuisance parameters [196].

In our analysis, the likelihood used in the fit is defined as

L(µ, n) = ∏
i∈{bins}

µni
i e−µi

ni!
∏

j∈{syst}

1√
2πσ2

j

e
− (sj−ŝj)

2

2σ2
j . (4.5)

The Poisson term defines the probability for the expected number of entries µi from a
certain simulation prediction for observable2 in bin i to reproduce the observed number
of events in that data bin ni. The number of predicted events µi in the ith bin is a
function of the set of oscillation parameters, ō (see Tab. 4.2), as well as on the set of
parameters related to systematic uncertainties, s̄. The nuisance parameters sj enter within
the Gaussian term labelled with the subscript j. The hypothesis is allowed to change
based on the change in sj, thereby penalizing their deviation about their mean value ŝj in
units of their uncertainty σj.

However since we are comparing hypotheses, the absolute value of the log-likelihood is
irrelevant, what matters is the relative difference. The expression in Eq. 4.5 is simplified
by taking a logarithm and dropping the constant terms:

lnL(µ, n) = −∑
i

µi(ō, s̄) + ∑
i

ni ln µi(ō, s̄)−∑
j

(sj − ŝj)
2

2σ2
j

. (4.6)

In the case of a Poissonian distribution, the number of events µi diverges from the
Gaussian approximation because of the small number of entries. However, an alternative
to the Gaussian-motivated Neyman’s [197] or Pearson’s [198] χ2 has been proposed
in [199], suggesting the use of the following logarithm of likelihood ratio (LLR):

−2LLR(µ, n) = −2 · ln ∏
i

L(µi, ni)

L(ni, ni)
= −2 · ln ∏

i

µni
i e−µi

ni!
· ni!

nni
i e−ni

(4.7)

= 2 ·∑
i

[
µi(ō, s̄)− ni + ni ln

(
ni

µi(ō, s̄)

)]
(4.8)

Eq. 4.8 gives the same values of (ō, s̄) at the minimum as Eq. 4.6, since only a constant
term has been added to the log-likelihood function in Eq. 4.6 (if we avoid the Gaussian
penalty term for now). It provides a goodness-of-fit information and motivates the choice
of Eq. 4.8 as the test statistic according to the Wilks’ theorem [200], since it asymptotically
obeys a χ2 distribution.

2Eν and cos θz in our case.
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In the event of ni being large enough to be approximated by a Gaussian with standard
deviation

√
ni, the LLR reads

−2LLR(µ) = ∑
i

(ni − µi(ō, s̄))2

ni
+ ni(ln 2π + 2lnσj) (4.9)

= χ2(µ) + const. (4.10)

Eq. 4.10 defines the so-called Neymans’s χ2 variable; when ni is replaced by µi, it is called
Pearson’s χ2. Maximising LLR is equivalent to minimising χ2 (off by a sign inversion).

However, the test statistic (TS), that we will consider assuming Poisson statistics
including the Gaussian penalty terms for nuisance parameters, is

− 2LLR(µ) = 2 · ∑
i∈{bins}

[
µi(ō, s̄)− ni + ni ln

(
ni

µi(ō, s̄)

)]
+ ∑

j∈{syst}

(sj − ŝj)
2

σ2
j

. (4.11)

Binning scheme

The resulting MC and data events are split into 136 bins in reconstructed muon energy
and cosine of the zenith angle. The reconstructed energy is split into 8 bins: the low
energy part of the spectrum has a wide logarithmic bin between 10−0.3 and 101.2 GeV,
while the rest has 7 logarithmic bins between 101.2 and 102 GeV. The reconstructed cosine
of zenith angle, cosθz, is split into 17 bins between 0.15 and 1.0, the latter referring to
vertically up-going events.

Figure 4.7: The un-oscillated MC event distribution (left) and selected data (right), binned in
logarithm of reconstructed muon energy, log10(Ereco/GeV), and the reconstructed
cosine of the zenith, cosθreco, of the muon track. (cosθreco = 1 corresponds to vertically
up-going neutrinos.)

Statistical Significance

Fig. 4.8 shows the signed-
√

χ2 maps: the total number of events expected with and
without NSI, for reconstructed events. The absolute value of

√
χ2 is stored, so that each

bin content represents the contribution to the total
√

χ2 from each event class. The sign
information is retained to represent the excesses and deficits. The total statistical

√
χ2 for

each bin is computed from:√
χ2

E,θz
(εαβ) =

Ntest
E,θz

(εαβ)− Ntrue
E,θz

(εαβ = 0)√
Ntrue

E,θz
(εαβ = 0)

. (4.12)
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Ntrue
E,θz

is the expected number of events in the corresponding (log10(Ereco), cos θreco)
bin weighted under standard oscillation hypothesis with parameters adopted from
NuFit 4.1 [90]; while, Ntest

E,θz
is the number of expected events in the same

(log10(Ereco), cos θreco) bin but with non-zero test values of NSI parameters, as quoted
on the plots.
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Figure 4.8: Expected pulls of predicted event numbers as a function of the reconstructed neutrino
energy (log10(Ereco)) and direction (cosθreco). Both panels correspond to different
NSI hypothesis parameterised by εαβs as quoted on the plots. Normal Ordering is
assumed. The color code indicates the values of signed-

√
χ2, as defined in Eq. 4.12.

The total significance quoted is the sum of the absolute values of the
√

χ2 from each
bin. Mind the difference in the colour scales.

Fig. 4.8 demonstrates that the effect of NSIs is manifested for up-going events since larger
amount of matter is traversed. This is also the zenith region where MSW resonances
manifest themselves such that interference with them is possible.

4.2.3 Systematics

Systematic uncertainties (si) included as nuisance parameters affecting the shape and
normalisation of the expected event distribution are listed in Table 4.2. Their central
values, ŝj, and priors, σsj , are motivated in this section.

115 of 299



116 Chapter 4. Search for NSIs with ANTARES and ORCA

Nuisance parameters Treatment Central value Prior
Oscillation parameters (ō)
θ12(

◦) fixed 33.82 -
∆m2

21(×10−5eV2) fixed 7.39 -
∆m2

31(×10−3eV2) fitted 2.494 -
θ23(◦) fitted 47.2 -
θ13(

◦) fitted 8.54 0.28
δCP(

◦) fitted 234 -
Systematic uncertainties (s̄)
Atmo. µ fixed 441.0 -
Nν fitted 1 -
∆γ fitted 0 0.05
∆ν/ν̄ (σ) fitted 0 1.0
∆MA(σ) fitted 0 1

Table 4.2: List of nuisance parameters along with their central values and priors (if any). The
parameter values refer to the ANTARES NSI analysis.

Minimisation

The ROOT MINUIT package [201] has been used to minimise Eq. 4.13. The
program performs a scan of the multi-dimensional log-likelihood landscape in the
gradient-descent approach, and returns a set of parameter values that yields the
minimum value of TS (or maximum LLR). Different values of parameters are injected
as starting points on the parameter space to ensure that the minimiser finds the true
global mimima.

The NSI parameters are extracted from the global minimum obtained by the likelihood
maximisation of the two-dimensional histograms in the plane of log10(Ereco/GeV)
and cosθreco (shown in Fig. 4.7) weighted under a certain oscillation hypothesis with
parameters adopted from NuFit 4.1 [90]. The fit is done following an Asimov
dataset3 [187] approach, by minimising the Poissonian log-likelihood ratio function:

− 2LLR = 2 · ∑
i∈{bins}

[
Ntest

i (ō, s̄)− Ndata
i (ō, s̄) + Ndata

i · ln Ndata
i (ō, s̄)

Ntest
i (ō, s̄)

]
+ ∑

j∈{syst}

(sj − ŝj)
2

σ2
sj

,

(4.13)

where the first sum runs over the histogram bins, Ndata
i (ō, s̄) is the number of data events

in the ith bin and Ntest
i (ō, s̄) is the number of expected MC events in the ith bin. The second

sum runs over penalty terms of the number of nuisance parameters, j, taken into account,
ŝj and σ2

sj
being the assumed prior and Gaussian standard deviation of the parameter j,

respectively.

Oscillation parameters

The solar mass splitting ∆m2
21 is fixed to 7.5× 10−5 eV2 and the mixing angle θ12 to 33.48◦.

The reactor angle θ13 is treated as a systematic uncertainty and is assigned a Gaussian
prior with a central value of 8.54◦ and an uncertainty of ±0.28◦. Although no impact
was found on the final results, δCP has been fitted without prior. No prior constraints are

3An Asimov dataset is a single instance of "representative dataset" obtained by replacing all random
observables with their expected values.
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used on the atmospheric oscillation parameters ∆m2
31 and θ23 which vary freely in the fit.

A normal neutrino mass ordering is assumed. The fit is done is both octants (sin2θ23 <
0.5 and > 0.5) and the value yielding the maximum likelihood is accepted. All the above
values are taken from [90].

Flux parameters

Our nominal flux model is based on the calculation of Honda et al. [103]. A global
neutrino normalisation factor, Nν, is accounted without constraints and treated as a free
parameter. The spectral index γ, applied as a function of Eγ

ν , accounts for a change in
the neutrino spectrum due to uncertainties in the primary cosmic ray spectrum. ∆γ is
the change in spectral index γ; its central value is ∆γ = 0. The spectral index is fitted
with a 5%-width Gaussian prior. Uncertainties on the neutrino-antineutrino flux ratio,
ν/ν̄, and on the flux asymmetry between up-going and horizontal flux, νup/νhor, come
from calculations done in [104]. A unique nuisance parameter based on parameterised
uncertainties on the flux ratios by the IceCube Collaboration [62], is considered in the fit.

Cross-section parameter

Uncertainties on the neutrino interaction models can be parameterised using axial
masses from quasi-elastic (QE) and resonant (RES) scattering cross-sections. Dedicated
studies have been performed by the ANTARES Collaboration with gSeaGen [202], which
uses GENIE [174] to model neutrino interaction cross-sections. For the CC resonant
production, its value is MCCRES

A = 1.12 GeV with an uncertainty of ±20%. Expected event
numbers are computed in the final fit by varying this parameter by ±1σ.

Detector and sea water parameters

Detector and sea water related systematics in ANTARES has been studied in [167,
203]. Two different MC productions have been made with modified OM photon
efficiency [204] and water absorption lengths4 varied at±10% from their nominal values.
The effect has been accounted while estimating the event weights as a function of true
energy. The effect of the modified OM photon efficiency and water absorption lengths
are found compatible with the functional form of f (E) ∼ A · EB (Fig. 4.9) and hence are
absorbed within the global normalisation factor Nν (≡ A), which is left unconstrained,
and by the uncertainty on the spectral index ∆γ (≡ B), which is fitted with a prior.

4For a photon wavelength of ∼ 470 nm, an absorption length λa ≈ 60 m is measured in sea water [121,
122].
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Figure 4.9: Expected event weight corrections for a +10% (red) and −10% variation from the
nominal value of OM photon detection efficiency and water absorption length as a
function of true neutrino energy, computed for νµ + νµ CC events. From [186].

Atmospheric muon background

The value and the uncertainty of the atmospheric muon background contamination has
been obtained with a data-driven technique [205], by fitting the muon data distribution
extrapolated to the signal-like region, as shown in Fig. 4.10.

Figure 4.10: Left: normalised muon background PDF used in this analysis. Right: distribution
of χ2

BB,SL values (≡ λB) variable of BBFit for data (black) compared to MC sample
comprising atmospheric neutrinos (red) and muons (green). The fit is shown along
with its extrapolation to the signal-like region. The vertical line at χ2

BB,SL = 0.8
indicates the value of the applied cut on this parameter. From [186].

The fitted mean value of the atmospheric muon background and its standard deviation
have been injected as the starting point and corresponding prior, respectively, in the fit
of ANTARES data with the standard oscillation hypothesis [60]. The muon background
PDF in this work has been normalised to 414.0, the best-fit value obtained from the fit
with the standard oscillation hypothesis. Fixing the muon background at ±1σ variations
from the best-fit value yields compatible results (as will be shown in Fig. 4.17).

4.2.4 Results

The complete list of fitted parameters obtained from the minimisation of the
log-likelihood function for the NSI hypothesis is shown in Table 4.3.
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The best-fit value for εττ has been found at a non-zero value of 3.5 × 10−2, which is
in compliment with U2

τ4 for the sterile search with ANTARES [60]. εττ finds a value
distant from origin (corresponding to standard oscillations), to mimic the mild preference
of ANTARES data for an energy-shifted first oscillation minimum [60]. The best-fit
value for εµτ has been found at 1.3 × 10−3, which is consistent with results reported
by other analyses [93]. The non-NSI hypothesis has been examined by performing
the minimisation by setting null values for NSI parameters and is found to be slightly
disfavoured with a significance of ∼ 2.3σ (−2∆LLR = 5.5), which corresponds to a
2-parameter p-value of 9.3%.

A strong pull is found for ∆m2
31 due to a strong anti-correlation with εµτ. The best-fit

∆m2
31 is found at a higher value of 3.1 × 10−3eV2. The mixing angle θ23 is found to be

compatible with maximal mixing within its error at 52.2◦. The reactor angle θ23 finds
a best-fit value at 8.41◦. The effect of δCP was found flat on all parts of the likelihood
landscape. The best-fit δCP is found at 0.01◦.

The global normalisation factor for neutrinos, Nν, is found to be 15% lower than unity,
which falls within the atmospheric neutrino flux uncertainties. This is compensated by a
non-negligible pull on ν/ν̄, which finds a minimum at 1.2. No significant deviation from
the mean value is obtained for the spectral index correction ∆γ.

Parameter best-fit
NSIs
εµτ -1.3 ×10−3

εττ 3.5 ×10−2

Oscillation
∆m2

31(eV2) 3.1 ×10−3

θ23(◦) 52.25
θ13(

◦) 8.41
δCP(

◦) 0.01
Flux
Nν 0.85
∆γ −0.01
ν/ν̄ 1.2
Cross-section
∆MA(σ) 0.1

Table 4.3: Best-fit point (bfp) values obtained from the minimisation for all parameters considered
in the analysis. NO is assumed.

The distribution of MC events as a function of the ratio of the reconstructed energy and
the cosine of the reconstructed zenith is shown in Fig. 4.11. The red dashed line assumes
MC with no oscillations, whereas the black points refer to data. All the Ereco/cosθreco
bins nicely match the simulation. This is reflected by the goodness-of-fit parameter
χ2/d.o. f . = 164.31/126, where d.o. f . is the number of bins (∑ i = 8 × 17) minus the
number of nuisance parameters (= 10) varied in the fit.
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Figure 4.11: Ereco/cosθreco distribution for data (black points), MC without oscillations (red
dashed line) and MC assuming best-fit values of this analysis (stacked).

The oscillation effects are more prominent in linear scale, as shown in Fig. 4.13
and Fig. 4.12. In Fig. 4.12, the MC distributions are compared to the data bin-by-bin.
The data and MC at the best-fit point are in good agreement after the fit.

120 of 299



4.2. Search for NSIs with ANTARES 121

ANTARES Preliminary 
0

2

4

6

8

10

ev
en

ts
N

MC NSI best fit
MC std. osc. fit
Data

 [0.5, 15.6]GeV ∈ recoE

0

50

100  [15.6, 20.4]GeV∈ recoE

0

100

200

300

400

ev
en

ts
N

 [20.4, 26.6]GeV∈ recoE

0

100

200

300  [26.6, 34.6]GeV∈ recoE

0

100

200

300

ev
en

ts
N

 [34.6, 45.2]GeV∈ recoE

0

50

100

150

200

250

 [45.2, 58.9]GeV ∈ recoE

0.2 0.4 0.6 0.8 1.0
recoθcos

0

50

100

150

ev
en

ts
N

 [58.9, 76.7]GeV∈ recoE

0.2 0.4 0.6 0.8 1.0
recoθcos

0

10

20

30

40

50

60

 [76.7, 100]GeV∈ recoE

ANTARES Preiminary

Figure 4.12: Data (black points) and MC (solid lines) comparisons of this analysis, as a function of
the reconstructed zenith angle, cos θreco, for the eight different energy, Ereco bins. The
blue colour corresponds to the MC at the best-fit from this work and the green to the
MC assuming standard oscillations.

The ratio of data and MC assuming best-fit oscillation from this work with MC assuming
the standard oscillation hypothesis is plotted in Fig. 4.13. The mild preference of data
towards the NSI hypothesis is visible at the first few bins. The MC no oscillation
hypothesis is discarded at ∼ 4.6σ.
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Figure 4.13: Ereco/cosθreco distribution for data (black points), MC without oscillations (red
dashed line) and MC assuming standard oscillations fit (green) and MC assuming
best-fit values of this analysis (blue). Top plot shows the number of events whereas
the bottom plot gives the event ratio with respect to MC standard oscillations fit
(green).

Exclusion regions

After finding the log-likelihood ratio value LLRmin at the global minimum represented
by (ōmin, s̄min) by fitting N (= 10, in our case) number of total fitted parameters, we can
construct confidence limits in a reduced parameter space of εµτ and εττ. This is done by
calculating LLR values around the global minimum with respect to LLRmin:

− 2∆LLR = −2LLR(εµτ, εττ)−
(
− 2LLRmin(ōmin, s̄min)

)
, (4.14)

where LLR(εµτ, εττ) is the value of LLR in the N − 2 phase space. This is obtained by
fitting all N parameters, except the two in which the confidence region is to be built.

Thus, using Eq. 4.13, a value of LLR is computed over a 2-dimensional grid of parameter
phase space defined by εµτ and εττ, where εµτ ranges from −1.2 × 10−3 to 1.2 × 10−3

and εττ ranges from −1.5× 10−2 to 1.5× 10−2. The fit is performed on a 151× 101 grid
over this space by maximising the likelihood over the N − 2 = 8 fit parameters listed in
Table 4.2.

Exclusion contours are drawn in the form of confidence level intervals for two d.o.f.
assuming Wilks’ theorem [200]. The median significance of the test statistic is computed
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in this way without the need of producing ensembles of toy-MC. However, in the absence
of asymptotic approximations, based on Wilk’s theorem, there are other methods as
proposed by Feldman and Cousins [206]. However, they are computationally expensive
and require comparison of test statistic distributions of pseudo-experiments for each
point in the parameter space. In this work, we restrict ourselves to the choice of Wilks’
theorem, which allows to approximate asymptotically −2LLR as χ2.

The resulting sensitivity and exclusion limit contours at 90% C.L., derived from this
analysis in the εµτ − εττ plane, are shown in Fig. 4.14 and Fig. 4.15. Fig. 4.14 corresponds
to a MC-only sensitivity analysis with the toy-MC weighted according to the standard
oscillation hypothesis (point (0,0) in the NSI phase space). Fig. 4.15 shows the 90% C.L.
upper limit obtained with data. The red cross depicts the best-fit point in the εµτ − εττ

phase space. The (ōmin, s̄min) parameters that do not appear on the plot are marginalised
over.

Figure 4.14: MC-only sensitivity at 90% C.L. after 10 years of ANTARES livetime obtained in this
work is shown.
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Figure 4.15: 90% C.L. upper limits allowed after 10 years of ANTARES livetime obtained in this
work are shown. The cross depicts the best-fit point obtained. The top and right
lateral plots show the 1D projections on εµτ and εττ axes respectively.

Finally, limits on the NSI matrix elements are obtained by profiling over the other
variable:

−4.2× 10−3 < εµτ < 2.7× 10−3 (at 90% C.L),
−6.1× 10−2 < εττ < −2.1× 10−2 and 2.1× 10−2 < εττ < 7.3× 10−2 (at 90% C.L).

(4.15)
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Comparisons with other experiments

Fig. 4.16 shows the exclusion regions in the first quadrant of log-scaled εµτ − εττ phase
space. In this case, a coarser grid of 60× 50 points over the parameter phase space defined
by εµτ and εττ, where both εµτ and εττ range from 10−3 to 1, is chosen. Finally, 90% C.L.
and 99% C.L. contours are drawn w.r.t. to the best-fit point lying in the second quadrant
(Tab. 4.3). Note that the Super-K constraints have been drawn assuming a two-flavour
hybrid model approximation (Sec. 4.1).
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Figure 4.16: 90% (top) and 99% (bottom) C.L. upper limits in the εµτ − εττ phase space allowed
after 10 years of ANTARES livetime obtained in this work, together with MC-only
sensitivities (dashed) and limits (assuming a two-flavour hybrid model approximation)
from Super-K [192] are shown.

Contours for 90% C.L. have been re-evaluated by setting the atmospheric muon
background at ±1σ errors from the nominal value of 414+48

−24, obtained from the best
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fit with standard oscillations [60]. The muon background was found to be negatively
correlated with εµτ. Nevertheless, as shown in Fig. 4.17 the effect on the final results is
rather small.
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Figure 4.17: Comparison of 90% C.L. upper limits for different muon background estimations.

We also considered an effective Hamiltonian in the presence of NSIs in the e− τ sector to
compare with Super-K. A similar analysis has been pursued thereafter, resulting in limits
in the εeτ − εττ phase space. Best-fit points obtained on fitting this NSI model hypothesis
are listed in Tab. 4.4. 90% C.L. contour for εee = 0 (fixed) is drawn as shown in Fig. 4.18.
Note that the Super-K constraints have been drawn assuming a three-flavour hybrid model
approximation (Sec. 4.1).

Parameter best-fit
NSIs
εeτ −6.8× 10−2

εττ −1.9× 10−2

εee 0 (fixed)
Oscillations
∆m2

31(eV2) 3.0 ×10−3

θ23(◦) 38.52
θ13(

◦) 8.41
δCP(

◦) 0.01
Flux
Nν 0.84
∆γ −0.01
ν/ν̄ 1.06
Cross-section
∆MA(σ) 0.1

Table 4.4: Best-fit point (bfp) values obtained from the minimisation for all parameters considered
in this analysis. NO is assumed.
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Figure 4.18: 90% C.L. upper limit in the εeτ − εττ phase space allowed after 10 years of ANTARES
livetime obtained in this work, together with MC-only sensitivities (dashed) and
limits (assuming a three-flavour hybrid model approximation) from Super-K [192] are
shown.

For comparison with IceCube Deepcore [93], limits on NSI εµτ with εττ being kept fixed
or fitted, have been computed and drawn in Fig. 4.19. The case when εττ is fitted, the
best-fit points bfp coincides with the previous analyses presented in Table 4.3. The bfp,
when εττ is fixed at zero, is presented in Table 4.5. A χ2/d.o. f . = 169.24/127 is obtained
in this case with nine free parameters in the fit.

Parameter best-fit
NSIs
εµτ −1.2× 10−3

εττ 0 (fixed)
Oscillations
∆m2

31(eV2) 2.0 ×10−3

θ23(◦) 45.83
θ13(

◦) 8.41
δCP(

◦) 360
Flux
Nν 0.8
∆γ −0.01
ν/ν̄ 1.2
Cross-section
∆MA(σ) 0.1

Table 4.5: Best-fit point (bfp) values obtained from the minimisation for all parameters when εττ

is fixed to zero. NO is assumed.

A limit on the NSI parameter εµτ (∀ εττ = 0) is obtained:
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−3.8× 10−3 < εµτ < 1.6× 10−3 (at 90% C.L), (4.16)
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Figure 4.19: Limits on εµτ after 10 years of ANTARES livetime obtained in this work when εττ

is fixed at zero. Sensitivity projections from ANTARES (red dashed) as well as
limits from IceCube DeepCore [93] (green) and Super-K [192] (cyan) are drawn for
comparisons.

While, the IceCube Deepcore analysis restricts high energy events with a fiducial
volume cut, which is essentially equivalent to a cut on reconstructed energy at 56
GeV, the ANTARES true energies of events considered in this analysis span till 10 TeV.
These partially contained high energy neutrino events bring enhanced sensitivity to
non-standard effects in ANTARES. However, to be in line with IceCube Deepcore, it
has been verified that the limit degrades (marginally) when a cut on true/reco energy
is imposed as shown in Fig. 4.20.
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Figure 4.20: Comparison of 90% C.L. limits for cuts on true and reconstructed energies. The cut
on true energy has the largest impact, since partially-contained high energy events
bring enhanced sensitivity to NSI effects.

In conclusion, a first ANTARES analysis constraining the NSI sector has been presented.
In this analysis, ANTARES data has been used to set world-wide competitive limits
in the NSI parameter space, using the same dataset used in the analysis of standard
oscillations [60]. The limits for NSI obtained with ten years of atmospheric muon
disappearance data collected by ANTARES are more stringent than allowed by current
experimental limits, and thereby constitutes the world’s best limits in the µ− τ sector.
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4.3 Sensitivity to NSIs at ORCA

This section details the method employed to estimate of the sensitivity of
KM3NeT-ORCA towards different NSI sectors. The strategy for event selection, statistical
methods for calculating the sensitivity and the list of systematics included in this study
are discussed in detail.

4.3.1 Event selection

The analyses concerning ORCA have been pursued adopting two different strategies for
event selection and two possible detector geometries, on what the horizontal spacing
between DUs is concerned. We shall refer to them as ORCA115–20m and ORCA115–23m
MC throughout this thesis:

• 23 m – 2 PID bins: assuming 23 m horizontal spacing between DUs and with two
event classes (tracks and showers) with the following selection criteria:

– muon cut: a relatively aggressive cut on atmospheric_muon_score < 0.05 for
the neutrino to atmospheric muon background is used to reach a few percent
muon contamination in the final sample;

– noise cut: a cut on pure_noise_score < 0.1 is imposed to reject pure-noise
events;

– zenith cut: only up-going events with cos θreco < 0 are considered;

– shower cut: passes shower selection (trigger and reconstructed by the shower
algorithm) && (track_score ≤ 0.6);

– track cut: passes track selection (triggered and reconstructed by the track
algorithm) && (track_score > 0.6).

The resulting event distributions passing the selection cuts for tracks and showers are
shown in Fig. 4.21.
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Figure 4.21: The expected event rates at ORCA with 23 m horizontal spacing per year as a function
of reconstructed energy and zenith angle for each event topology. NO is assumed.

• 20 m – 3 PID bins: assuming 20 m horizontal spacing between DUs and with three
event classes (tracks, middles and showers) with the following selection criteria:

– muon cut: atmospheric_muon_score < 0.05;

– noise cut: pure_noise_score < 0.1;
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– zenith cut: only up-going events with cos θreco < 0 are considered;

– shower cut: passes shower selection && (track_score ≤ 0.3);

– middle cut: passes shower selection && (0.3 < track_score < 0.7). An extra
event class translates into having an extra binning in Bjorken-y distribution
(or PID), which adds up an extra component at the χ2 level.;

– track cut: passes track selection && (track_score ≥ 0.7).

The resulting event distributions passing the selection cuts for each topology are shown
in Fig. 4.22.
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Figure 4.22: The expected event rates at ORCA with 20 m horizontal spacing per year as a function
of reconstructed energy and zenith angle for each event topology. NO is assumed.

The MC expectation for one year of ORCA exposure comprising 115 DUs from the eight
different interaction channels, oscillations included (weighted under standard oscillation
hypothesis with parameters adopted from NuFit 4.1 [90]), for the final samples that pass
the selection criteria of cuts are listed in Table 4.6.
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Component Tracks (23m/20m) Middles (23m/20m) Showers (23m/20m)
νµ CC 12508/12000 -/4423 9149/2295
νµ CC 6760/6679 -/1997 3489/501
νe CC 807/511 -/3998 14268/8351
νe CC 333/208 -/1539 5328/3117
ντ CC 313/280 -/516 2476/1364
ντ CC 156/140 -/231 1038/573
ν NC 208/143 -/1197 5007/2981
ν NC 60/40 -/348 1401/824
Total 21145/20001 -/14249 42156/20006

Table 4.6: Expected composition of the final oscillated MC sample of atmospheric neutrinos
surpassing the selection criteria and corresponding to a livetime of one year of full
ORCA with 115 DUs for 23 m and 20 m detector geometries. The "middle" selection is
only applied to the 20 m geometry. NO is assumed.

In the track selection, a 93.3% purity of νµ + νµ is achieved for a 20 m detector geometry
compared to 91.1% in case of a 23 m geometry. In the shower selection, νe + νe events
comprise 57% (46.4%) of the total events for a 20 m (23 m) detector geometry. A higher
purity is achieved in the case of a 20 m geometry due to the hard PID cuts. The events
which are not classified as "good" tracks (track_score ≥ 0.7) or "good" showers (track_
score ≤ 0.3) fall into the intermediate middle class.

4.3.2 Statistical significance

Fig. 4.23 – Fig. 4.26 show the signed-χ2 maps for reconstructed events in the three event
classes for 3 years of full ORCA (115 DUs) runtime with 20 m horizontal spacing. 20
logarithmic bins were chosen in the reconstructed neutrino energy (Eν) ∈ [3, 100] GeV,
while 20 linear bins in cosine of the reconstructed zenith angle (θz) ∈ [−1, 0]. The absolute
value of χ2 is stored, so that each bin content represents the contribution to the total χ2

from each event class. The sign information is retained to represent the excesses and
deficits. The statistical signed-χ2 for each bin is computed as:

χ2
E,θz

(εαβ) =

(
Ntest

E,θz
(εαβ)− Ntrue

E,θz
(εαβ = 0)

)
×
∣∣∣Ntest

E,θz
(εαβ)− Ntrue

E,θz
(εαβ = 0)

∣∣∣
Ntrue

E,θz
(εαβ = 0)

. (4.17)

Ntrue
E,θz

is the expected number of track/middle/shower events in the corresponding
(E, θz) bin weighted under standard oscillation hypothesis with parameters adopted
from NuFit 4.1 [90], while Ntest

E,θz
is the number of expected events in the same (E, θz)

bin but with non-zero test values of NSI parameters, εαβ.

The “total sensitivity", χ2
tot(εαβ), at any given NSI point represented by εαβ, refers

to the sum of the absolute values of the statistical χ2 from every (E, θz) bins for that
particular NSI hypothesis. In case of Poissonian distribution of events, χ2 is replaced by
the log-likehood ratio, −2LLR (Eq. 4.8)5. χ2

tot(εαβ) is calculated in the following way:

χ2
tot(εαβ) = ∑

E,θz

χ2
E,θz

(εαβ)

∣∣∣∣∣
tracks

+ ∑
E,θz

χ2
E,θz

(εαβ)

∣∣∣∣∣
middles

+ ∑
E,θz

χ2
E,θz

(εαβ)

∣∣∣∣∣
showers

. (4.18)

5We use −2LLR as our test statistic for further calculations.
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The square-root of the absolute value of total sensitivity is termed as the “significance",
σtot(εαβ). The significance gives an estimate of how well an experiment can measure εαβ

from a given experimental dataset.
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Figure 4.23: Statistical signed-χ2 maps for 3 years of exposure of ORCA-115 lines corresponding
to 20 m horizontal spacing between DUs as a function of reconstructed neutrino
energy (Ereco) and zenith direction (cosθreco) for track (left column), middle (middle),
and shower (right) event topologies. The NSI hypothesis parameterised by εeµ = 0.02.
NO is assumed. The plots for IO assumption are not shown for brevity. The color
code indicates the values of signed-χ2, as defined in Eq. 4.17. The total sensitivity
quoted is the square-root of the sum of the absolute values of the χ2 from each bin.
Mind the difference in the colour scales.
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Figure 4.24: Statistical signed-χ2 maps for 3 years of exposure of ORCA-115 lines corresponding
to 20 m horizontal spacing between DUs as a function of reconstructed neutrino
energy (Ereco) and zenith direction (cosθreco) for track (left column), middle (middle),
and shower (right) event topologies. The NSI hypothesis parameterised by εeτ = 0.02
. NO is assumed. See caption of Fig. 4.23 for more info.
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Figure 4.25: Statistical signed-χ2 maps for 3 years of exposure of ORCA-115 lines corresponding
to 20 m horizontal spacing between DUs as a function of reconstructed neutrino
energy (Ereco) and zenith direction (cosθreco) for track (left column), middle (middle),
and shower (right) event topologies. The NSI hypothesis parameterised by εµτ =
0.002 . NO is assumed. See caption of Fig. 4.23 for more info.
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Figure 4.26: Statistical signed-χ2 maps for 3 years of exposure of ORCA-115 lines corresponding
to 20 m horizontal spacing between DUs as a function of reconstructed neutrino
energy (Ereco) and zenith direction (cosθreco) for track (left column), middle (middle),
and shower (right) event topologies. The NSI hypothesis parameterised by εττ = 0.01
. NO is assumed. See caption of Fig. 4.23 for more info.

Thus the individual contributions from track, middle and shower event classes are added
in quadrature to compute the “total significance", σtot:

σtot =
√
−2 lnLstat

=

√
(−2 lnL)

∣∣∣
tracks

+ (−2 lnL)
∣∣∣
middles

+ (−2 lnL)
∣∣∣
showers

(4.19)

The contribution from three event classes to the total statistical significance for different
assumed NSI model hypotheses are shown in Fig. 4.27 to Fig. 4.30. Sensitivity curves
corresponding to IO assumption are also drawn.
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(a) 20 m geometry with 3 event classes: tracks (red), middles (blue) and showers (green).
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(b) 23 m geometry with 2 event classes: tracks (red) and showers (green).

Figure 4.27: Contribution from tracks (red), middles (blue) and showers (red) to the total
statistical significance as a function different test values of εeµ. For 20 m (top panels)
and 23 m geometries (bottom) assuming NO (left) and IO (right). The dashed
horizontal line corresponds to 90% C.L. limit.

NSI εeµ receives contribution from both the track (primarily muon appearance channel)
and shower (primarily electron disappearance) classes as shown in Fig. 4.27.
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(a) 20 m geometry with 3 event classes: tracks (red), middles (blue) and showers (green).
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(b) 23 m geometry with 2 event classes: tracks (red) and showers (green).

Figure 4.28: Contribution from tracks (red), middles (blue) and showers (red) to the total
statistical significance as a function different test values of εeτ . See caption of Fig. 4.27
for more info.

NSI εeτ modify the νe oscillation probabilities and hence get the largest contributions from
the shower class (Fig. 4.28). The contribution from the middle class is most pronounced
for NSI εeτ.
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(a) 20 m geometry with 3 event classes: tracks (red), middles (blue) and showers (green).
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(b) 23 m geometry with 2 event classes: tracks (red) and showers (green).

Figure 4.29: Contribution from tracks (red), middles (blue) and showers (red) to the total
statistical significance as a function different test values of εµτ . See caption of Fig. 4.27
for more info.
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(a) 20 m geometry with 3 event classes: tracks (red), middles (blue) and showers (green).
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(b) 23 m geometry with 2 event classes: tracks (red) and showers (green).

Figure 4.30: Contribution from tracks (red), middles (blue) and showers (red) to the total
statistical significance as a function different test values of εµτ . See caption of Fig. 4.27
for more info.

NSI εµτ and εττ distort the νµ oscillation probabilities and get the largest contributions
from the track class (Fig. 4.29 and Fig. 4.30).
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4.3.3 Systematics

This section discusses the uncertainties associated with the systematics and their impact
on the event distribution corresponding to different NSI hypotheses. Tab. 4.7 summarises
the exhaustive list of systematic parameters considered in the fit, along with their
statistical treatment (fixed or fitted), nominal values and external constraints, if used.
They can be grouped in four categories:

Nuisance parameters Treatment Nominal values Priors
Oscillation
θ12(

◦) fixed 33.82 -
θ13(

◦) fitted 8.60 0.13
θ23(◦) fitted 48.6 free
δCP(

◦) fitted 221 free
∆m2

21(×10−5eV2) fixed 7.39 -
∆m2

31(×10−3eV2) fitted 2.528 free
Flux
Track norm. fitted 1 free
Shower norm. fitted 1 free
Middle norm. fitted 1 free
νµ/νe skew fitted 0 5%
νµ/νµ skew fitted 0 5%
νe/νe skew fitted 0 5%
Energy slope (∆γ) fitted 0 5%
Zenith slope fitted 0 2%
Cross-section
NC scale fitted 1 5%
Detector
Energy scale fitted 1 10%

Table 4.7: The list of systematics studied in the NSI ORCA analysis, along with their statistical
treatment, injected nominal and prior values (if any).
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142 Chapter 4. Search for NSIs with ANTARES and ORCA

• Oscillation parameters: The solar parameters (θ12, ∆m2
21) are kept fixed at their

nominal values (adopted from NuFit v4.1 [90]), since ORCA being an atmospheric
oscillation experiment is not very sensitive to them. The mixing angle θ13 has a
large effect on oscillation probabilities. Hence existing experimental constraints
are used to exploit the full potential of ORCA for estimating the sensitivity to the
NSI parameters. It is reflected by a prior of 0.13◦. No priors are used on the
atmospheric oscillation parameters (θ23, ∆m2

31) and δCP since they are also supposed
to be measured by ORCA. Due to the degeneracy between the octant of θ23 and the
sign of ∆m2

31 (+/− correspond to NO/IO), a starting value of θ23 in both octants
(θ23 < 45◦ ∈ lower octant or θ23 > 45◦ ∈ higher octant) is chosen and the minimum
value of−2 lnL is stored. The effect of these uncertainties on oscillation parameters
on the final event distributions are shown in Fig. 4.31 to Fig. 4.34.
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Figure 4.31: Percentage modification of event numbers for tracks (left), middles (middle) and
shower (right) classes when θ13 is set at +1σ away from its nominal value listed
in Tab. 4.7. X− and Y−axis represent reconstructed energy and cosine of the
reconstructed zenith direction, respectively. Modification of event numbers for a test
point of θ13 at −1σ away from its nominal value is not shown for brevity.
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Figure 4.32: Percentage modification of event numbers for tracks (left), middles (middle) and
shower (right) classes when θ23 is set at +1σ away from its nominal value listed
in Tab. 4.7. Read caption of Fig. 4.31 for more info.
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Figure 4.33: Percentage modification of event numbers for tracks (left), middles (middle) and
shower (right) classes when ∆m2

31 is set at +1σ away from its nominal value listed
in Tab. 4.7. Read caption of Fig. 4.31 for more info.
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Figure 4.34: Percentage modification of event numbers for tracks (left), middles (middle) and
shower (right) classes when δCP is set at +1σ away from its nominal value listed
in Tab. 4.7. Read caption of Fig. 4.31 for more info.
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• Flux systematics: Systematic parameters compared to atmospheric neutrino flux
uncertainties are considered. The total number of events in each event class has
an associated normalisation factor: "Track norm.", "Middle norm." and "Shower
norm.", which is fitted without any constraint. This also takes into account
the uncertainty on the effective mass and on the interaction cross-sections of
neutrinos. The effective change in the event numbers in any [E, cos θz] bin is
directly proportional to the normalisation factor.

The ratio between the total number of νµ and νe ("νµ/νe skew" ), νµ and νµ ("νµ/νµ

skew") and νe and νe ("νe/νe skew") events are allowed to vary with a standard
deviation of 5% of the parameter nominal value. The prior value (5%), which is
independent of energy and zenith angle, is more conservative than the current
estimated flux uncertainties [207]. The effect of these uncertainties on the final event
distributions are shown in Fig. 4.35 to Fig. 4.37.
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Figure 4.35: Percentage modification of event numbers for tracks (left), middles (middle) and
shower (right) classes when νµ/νe is set at +5% away from its nominal value listed
in Tab. 4.7. Read caption of Fig. 4.31 for more info.
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Figure 4.36: Percentage modification of event numbers for tracks (left), middles (middle) and
shower (right) classes when νµ/νµ is set at +5% away from its nominal value listed
in Tab. 4.7. Read caption of Fig. 4.31 for more info.

147 of 299



148 Chapter 4. Search for NSIs with ANTARES and ORCA

Energy [GeV]
4 5 6 7 8 910 20 30 40 50 210

zθ
 c

os

1.0−

0.8−

0.6−

0.4−

0.2−

0.0

 %
 c

ha
ng

e 
in

 e
ve

nt
 r

at
e

3−

2−

1−

0

1

2

3
) - Trackseν/

e
νN(∆

Energy [GeV]
4 5 6 7 8 910 20 30 40 50 210

zθ
 c

os

1.0−

0.8−

0.6−

0.4−

0.2−

0.0

 %
 c

ha
ng

e 
in

 e
ve

nt
 r

at
e

3−

2−

1−

0

1

2

3
) - Showerseν/

e
νN(∆

Energy [GeV]
4 5 6 7 8 910 20 30 40 50 210

zθ
 c

os

1.0−

0.8−

0.6−

0.4−

0.2−

0.0

 %
 c

ha
ng

e 
in

 e
ve

nt
 r

at
e

3−

2−

1−

0

1

2

3
) - Middleseν/

e
νN(∆

Figure 4.37: Percentage modification of event numbers for tracks (left), middles (middle) and
shower (right) classes when νe/νe is set at +5% away from its nominal value listed
in Tab. 4.7. Read caption of Fig. 4.31 for more info.
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The "energy slope" error ∆γ, applied as a function of Eγ
ν , accounts for a change in

the neutrino spectrum due to uncertainties in the primary cosmic ray spectrum.
The energy slope error is allowed to vary within ±5% around its central value of
∆γ = 0. Similarly, the uncertainty on the ratio of up-going to horizontal-going
neutrinos, named "zenith slope", is allowed to vary with a standard deviation of 2%
of its nominal value. The effect of these uncertainties on the final event distribution
is shown in Fig. 4.38 and Fig. 4.39.
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Figure 4.38: Percentage modification of event numbers for tracks (left), middles (middle) and
shower (right) classes when energy slope (∆γ) is set at +10% away from its nominal
value listed in Tab. 4.7. Read caption of Fig. 4.31 for more info.
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Figure 4.39: Percentage modification of event numbers for tracks (left), middles (middle) and
shower (right) classes when zenith slope (νup/νhor) is set at +10% away from its
nominal value listed in Tab. 4.7. Read caption of Fig. 4.31 for more info.
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• Cross-section systematics: While lepton universality means the cross section ratios
between flavours are well known, the same is not necessarily the case for the ratio
between CC and NC events. Therefore, the neutral current event normalisation
is also fitted with a prior of 5%. Uncertainties on the absolute CC and NC
cross-sections are not considered in this study. However they would be somewhat
absorbed within the flux normalisations. The effect of NC scale normalisation on
the final event distribution is shown in Fig. 4.40.
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Figure 4.40: Percentage modification of event numbers for tracks (left), middles (middle) and
shower (right) classes when NC scale factor is set at +1σ away from its nominal
value listed in Tab. 4.7. Read caption of Fig. 4.31 for more info.

• Detector systematics: Among the systematic parameters incorporated into this
analysis, the track, middle and shower normalisations and energy scale can be
considered detector effects. The energy scale depends on the PMT efficiencies and
water properties [179]. If events are systematically brighter or less bright than
expected, this will cause a shift to the normalisation of the effective mass. This
is accounted in the energy scale which is fitted with a 10% Gaussian width across
its nominal value.
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Analysis

Systematics are included in our simulation using the “pull” method described in [208,
209]. The final fit is done following an Asimov dataset [187] approach, by minimising the
Poissonian log-likelihood ratio function:

− 2 lnL = 2 · ∑
i∈{bins}

[
Ntest

i (ō, s̄)− Ntrue
i (ō, s̄) + Ntrue

i · ln Ntrue
i (ō, s̄)

Ntest
i (ō, s̄)

]
+ ∑

j∈{syst}

(sj − ŝj)
2

σ2
sj

.

(4.20)
The number of predicted events Ni in the ith bin is a function of the set of oscillation
and NSI parameters, ō, as well as on the the set of parameters related to systematic
uncertainties, s̄. Ntrue

i (ō, s̄) is the expected number of track/middles/shower events in
the ith bin weighted under a certain standard oscillation hypothesis with parameters
adopted from NuFit 4.1 [90]; while, Ntest

i (ō, s̄) is the number of expected events in the ith

bin with non-zero test values of NSI parameters. The first sum runs over the histogram
bins Ereco, cos θreco. The second sum runs over penalty terms of the number of nuisance
parameters, j, listed in Tab. 4.7, ŝj and σ2

sj
being the assumed prior and Gaussian standard

deviation of the parameter j, respectively.

The effect of systematics on the sensitivity to NSI parameters (εeµ, εeτ, εµτ and εττ),
when fitted uniquely or cumulatively are shown in Fig. 4.41 to Fig. 4.56 for two possible
detector geometries corresponding to 20 m and 23 m horizontal spacing between DUs
and for NO and IO truth assumptions. The systematic with the most drastic effect on the
sensitivity to a particular NSI parameter corresponds to the curve that lies farthest from
the statistical-only (black) curve in all the figures.
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NSI εeµ - Normal Ordering
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Figure 4.41: Effect of systematics (listed in Tab. 4.7), when fitted uniquely (top) and incrementally
(bottom), on the sensitivity to εeµ at ORCA with 23 m horizontal spacing for NO
assumption and 3 years of runtime. The black curve on both panels corresponds
to the statistical-only sensitivity. The effect of systematics represented by colour
coded curves at a particular NSI point can be gauged by looking at the relative
separation from the stat-only curve. Top: each colour coded curve refers to the
effect of that particular systematic which is uniquely fitted while the rest are kept
fixed at their nominal values. Bottom: each colour coded curve corresponds to the
effect of that particular systematic plus (+) the ones appearing on top of it being
fitted simultaneously. The systematics are added cumulatively in the sequence as
they appear in the legends from violet to red. The final sensitivity can be read from
the widest (red) curve, which refers to the case of inclusion of all the systematic
uncertainties accounted in this study throughout this thesis. Negative NSI points
are not scanned for brevity.
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Figure 4.42: Effect of systematics (Tab. 4.7) when fitted uniquely (top) and incrementally (bottom)
on the sensitivity to εeµ at ORCA with 20 m horizontal spacing for NO assumption.
See caption of Fig. 4.41 for more info.

θ13 and δCP are found to exhibit strong pulls in the cumulative fits of NSI εeµ assuming
normal ordering (NO), as seen in the lower panels of Fig. 4.41 and Fig. 4.42. The effect
of the uncertainty on θ23 (which is fitted with a starting value in both octants) is rather
negligible. The ordering is assumed to be known (NO) and kept fixed in the fit.
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NSI εeµ - Inverted Ordering
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Figure 4.43: Effect of systematics (Tab. 4.7), when fitted uniquely (top) and incrementally
(bottom), on the sensitivity to εeµ at ORCA with 23 m horizontal spacing for IO
assumption. See caption of Fig. 4.41 for more info.
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Figure 4.44: Effect of systematics (Tab. 4.7), when fitted uniquely (top) and incrementally
(bottom), on the sensitivity to εeµ at ORCA with 20 m horizontal spacing for IO
assumption. See caption of Fig. 4.41 for more info.

θ13 and δCP are found to exhibit strong pulls in the cumulative fits of NSI εeµ assuming
inverted ordering (IO), as seen in the lower panels of Fig. 4.43 and Fig. 4.44. The effect
of the uncertainty on θ23 (which is fitted with a starting value in both octants) is rather
negligible. The ordering is assumed to be known (IO) and kept fixed in the fit.
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NSI εeτ - Normal Ordering
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Figure 4.45: Effect of systematics (Tab. 4.7) when fitted uniquely (top) and incrementally (bottom)
on the sensitivity to εeτ at ORCA with 23 m horizontal spacing for NO assumption.
See caption of Fig. 4.41 for more info.
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Figure 4.46: Effect of systematics (Tab. 4.7) when fitted uniquely (top) and incrementally (bottom)
on the sensitivity to εeτ at ORCA with 20 m horizontal spacing for NO assumption.
See caption of Fig. 4.41 for more info.

Since sensitivity on εeτ is mostly driven by the shower channel, a non-trivial pull is
exhibited by the shower normalisation. Besides this, δCP is found to employ a strong
pull in the cumulative fits of NSI εeτ assuming normal ordering, as seen in the lower
panels of Fig. 4.45 and Fig. 4.46. The effect of the uncertainty on θ23 (which is fitted with
a starting value in both octants) is rather negligible. The ordering is assumed to be known
(NO) and kept fixed in the fit.
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NSI εeτ - Inverted Ordering
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Figure 4.47: Effect of systematics (Tab. 4.7) when fitted uniquely (top) and incrementally (bottom)
on the sensitivity to εeτ at ORCA with 23 m horizontal spacing for IO assumption.
See caption of Fig. 4.41 for more info.
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Figure 4.48: Effect of systematics (Tab. 4.7) when fitted uniquely (top) and incrementally (bottom)
on the sensitivity to εeτ at ORCA with 20 m horizontal spacing for IO assumption.
See caption of Fig. 4.41 for more info.

Similar to the NO case, a non-trivial pull is exhibited by the shower normalisation, since
sensitivity on εeτ is mostly driven by the shower channel. δCP is found to employ a
strong pull in the cumulative fits of NSI εeτ assuming inverted ordering, as seen in the
lower panels of Fig. 4.47 and Fig. 4.48. The effect of the uncertainty on θ23 (which is fitted
with a starting value in both octants) is rather negligible. The ordering is assumed to be
known (IO) and kept fixed in the fit.
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NSI εµτ - Normal Ordering
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Figure 4.49: Effect of systematics (Tab. 4.7) when fitted uniquely (top) and incrementally (bottom)
on the sensitivity to εµτ at ORCA with 23 m horizontal spacing for NO assumption.
See caption of Fig. 4.41 for more info.
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Figure 4.50: Effect of systematics (Tab. 4.7) when fitted uniquely (top) and incrementally (bottom)
on the sensitivity to εµτ at ORCA with 20 m horizontal spacing for NO assumption.
See caption of Fig. 4.41 for more info.

Since sensitivity on εµτ is mostly driven by the track channel, a non-trivial pull is
exhibited by the track normalisation. Besides this, δCP and θ23 are found to employ strong
pulls in the cumulative fits of NSI εµτ assuming normal ordering, as seen in the lower
panels of Fig. 4.49 and Fig. 4.50. The ordering is assumed to be known (NO) and kept
fixed in the fit.
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NSI εµτ - Inverted Ordering
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Figure 4.51: Effect of systematics (Tab. 4.7) when fitted uniquely (top) and incrementally (bottom)
on the sensitivity to εµτ at ORCA with 23 m horizontal spacing for IO assumption.
See caption of Fig. 4.41 for more info.
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Figure 4.52: Effect of systematics (Tab. 4.7) when fitted uniquely (top) and incrementally (bottom)
on the sensitivity to εµτ at ORCA with 20 m horizontal spacing for IO assumption.
See caption of Fig. 4.41 for more info.

Similar to NO case, a non-trivial pull is exhibited by the track normalisation, since
sensitivity on εµτ is mostly driven by the track channel. Besides this, δCP and θ23 are found
to employ strong pulls in the cumulative fits of NSI εµτ assuming inverted ordering, as
seen in the lower panels of Fig. 4.51 and Fig. 4.52. The ordering is assumed to be known
(IO) and kept fixed in the fit.
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NSI εττ - Normal ordering
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Figure 4.53: Effect of systematics (Tab. 4.7) when fitted uniquely (top) and incrementally (bottom)
on the sensitivity to εττ at ORCA with 23 m horizontal spacing for NO assumption.
See caption of Fig. 4.41 for more info.
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Figure 4.54: Effect of systematics (Tab. 4.7) when fitted uniquely (top) and incrementally (bottom)
on the sensitivity to εττ at ORCA with 20 m horizontal spacing for NO assumption.
See caption of Fig. 4.41 for more info.

Since sensitivity on εττ is mostly driven by the track channel, a non-trivial pull is
exhibited by the track normalisation. Only θ23 is found to employ a non-negligible pull
in the cumulative fits of NSI εττ assuming normal ordering, as seen in the lower panels
of Fig. 4.53 and Fig. 4.54. The ordering is assumed to be known (NO) and kept fixed in
the fit.
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NSI εττ - Inverted ordering
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Figure 4.55: Effect of systematics (Tab. 4.7) when fitted uniquely (top) and incrementally (bottom)
on the sensitivity to εττ at ORCA with 23 m horizontal spacing for IO assumption.
See caption of Fig. 4.41 for more info.
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Figure 4.56: Effect of systematics (Tab. 4.7) when fitted uniquely (top) and incrementally (bottom)
on the sensitivity to εττ at ORCA with 20 m horizontal spacing for IO assumption.
See caption of Fig. 4.41 for more info.

Similar to the NO case, a non-trivial pull is exhibited by the track normalisation, since
sensitivity on εττ is mostly driven by the track channel. Only θ23 is found to employ a
non-negligible pull in the cumulative fits of NSI εττ assuming normal ordering, as seen
in the lower panels of Fig. 4.55 and Fig. 4.56 The ordering is assumed to be known (IO)
and kept fixed in the fit.

4.3.4 Results

The final sensitivities after inclusion of all the systematics listed in Tab. 4.7 can be grouped
in two categories:
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4.3. Sensitivity to NSIs at ORCA 169

• One-NSI sensitivities: one-dimensional sensitivities when only one NSI parameter
is allowed to be non-zero, while the rest are kept fixed at zero.

• Correlated NSI sensitivities: two-dimensional sensitivities when two NSI
parameters are allowed to be non-zero, while the rest are kept fixed at zero.

One-NSI sensitivities

ORCA one-dimensional sensitivities to εeµ, εeτ, εµτ and εττ are shown in Fig. 4.57
to Fig. 4.60. The sensitivities are calculated after fitting over the nuisance parameters
and marginalising over the oscillation parameters as listed in Tab. 4.7. Marginal
improvements have been observed for the 20 m geometry with 3 PID classes for the
electron NSIs: εeµ and εeτ. A higher instrumentation density with better resolution in the
shower channel leads to this marginal improvement. Final limits are read from curves
referring to the 20 m geometry in coherence with the benchmark set by the KM3NeT
Collaboration.
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Figure 4.57: Projected sensitivity to εeµ, for three years of running of full ORCA detector
comprising 115 string, with either 23 m (blue) or 20 m (red) horizontal DU spacing.
Normal (Inverted) ordering is assumed in the top (bottom) plot. All NSI parameters
except εeµ are kept fixed at zero. The dashed horizontal line correspond to the 90%
C.L. limit.
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Figure 4.58: Projected sensitivity to εeτ . See caption of Fig. 4.57 for more info.
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Figure 4.59: Projected sensitivity to εµτ . See caption of Fig. 4.57 for more info.
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Figure 4.60: Projected sensitivity to εττ . See caption of Fig. 4.57 for more info.

Correlated-NSI sensitivities

The 90% C.L. interval regions in the NSI parameter space allowed after 3 years of running
of ORCA are shown in Fig. 4.61 to Fig. 4.66 for NO and IO assumptions, respectively.
Each panel depicts the sensitivities for two considered detector geometries corresponding
to 23 m and 20 m horizontal spacing between DUs. The sensitivity contours are drawn
around the orgin (0, 0), where the pseduo-data is simulated keeping all NSI parameters
fixed at zero. The contours are drawn after profiling over the nuisance parameters and
marginalisation over the oscillation parameters listed in Tab. 4.7. The allowed region
corresponds to the area contained within the contours at a given C.L.
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NSI εeµ − εeτ

Figure 4.61: 90% C.L. regions in the correlated εeµ− εeτ NSI phase space, allowed after three years
of running of full ORCA detector comprising 115 strings, with either 23 m (blue) or
20 m (red) horizontal spacing. Normal (Inverted) ordering is assumed in the top
(bottom) plot. The NSI parameters not appearing on the plots are kept fixed at zero.
Pseudo-data is simulated at the standard oscillation point, represented by (εeµ, εeτ) =
(0, 0), which corresponds to the assumed best-fit point (bfp).
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NSI εeµ − εµτ

Figure 4.62: 90% C.L. regions in the correlated εeµ− εµτ NSI phase space, allowed after three years
of running of full ORCA detector comprising 115 strings, with either 23 m (blue) or
20 m (red) horizontal spacing. Normal (Inverted) ordering is assumed in the top
(bottom) plot. See caption of Fig. 4.61 for more info.
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NSI εeµ − εττ

Figure 4.63: 90% C.L. regions in the correlated εeµ− εττ NSI phase space, allowed after three years
of running of full ORCA detector comprising 115 strings, with either 23 m (blue) or
20 m (red) horizontal spacing. Normal (Inverted) ordering is assumed in the top
(bottom) plot. See caption of Fig. 4.61 for more info.
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NSI εeτ − εµτ

Figure 4.64: 90% C.L. regions in the correlated εeτ− εµτ NSI phase space, allowed after three years
of running of full ORCA detector comprising 115 strings, with either 23 m (blue) or
20 m (red) horizontal spacing. Normal (Inverted) ordering is assumed in the top
(bottom) plot. See caption of Fig. 4.61 for more info.
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NSI εeτ − εττ

Figure 4.65: 90% C.L. regions in the correlated εeτ− εττ NSI phase space, allowed after three years
of running of full ORCA detector comprising 115 strings, with either 23 m (blue) or
20 m (red) horizontal spacing. Normal (Inverted) ordering is assumed in the top
(bottom) plot. See caption of Fig. 4.61 for more info.
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NSI εµτ − εττ

Figure 4.66: 90% C.L. regions in the correlated εµτ− εττ NSI phase space, allowed after three years
of running of full ORCA detector comprising 115 strings, with either 23 m (blue) or
20 m (red) horizontal spacing. Normal (Inverted) ordering is assumed in the top
(bottom) plot. See caption of Fig. 4.61 for more info.

179 of 299



180 Chapter 4. Search for NSIs with ANTARES and ORCA

Finally, expected bounds on NSIs obtained from this work are reported in Tab. 4.8. The
projected limits correspond to the ORCA configuration of 115 strings spaced 20 m apart
horizontally and for a livetime of 3 years.

NSI Couplings Assumed True NMO Bounds (90% C.L.)
εeµ NO (−1.7× 10−2, 1.7× 10−2)

IO (−2.0× 10−2, 2.0× 10−2)
εeτ NO (−1.8× 10−2, 2.1× 10−2)

IO (−3.1× 10−2, 2.7× 10−2)
εµτ NO (−1.7× 10−3, 1.7× 10−3)

IO (−1.7× 10−3, 1.7× 10−3)
εττ NO (−0.8× 10−2, 1.1× 10−2)

IO (−1.1× 10−2, 0.8× 10−2)

Table 4.8: Bounds on NSI couplings of neutrinos with d-quarks at 90% C.L. for a runtime of 3 years
of full ORCA comprising 115 DUs with 20 m horizontal DU spacing. Only one NSI
parameter is considered at a time.
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Comparisons with other experiments

Fig. 4.67 shows the exclusion regions in the first quadrant for comparison of ORCA
sensitivites obtained from this work with limits from Super-K [192]. Note that the
Super-K constraints have been drawn assuming a two-flavour hybrid model approximation
(Sec. 4.1).
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Figure 4.67: 90% (top) and 99% (bottom) C.L. intervals in the εµτ − εττ phase space allowed
after 3 years of ORCA livetime obtained in this work is shown together with limits
(assuming a two-flavour hybrid model approximation) from Super-K [192].

We also considered an effective Hamiltonian in the presence of NSIs in the e− τ sector to
compare with Super-K. A similar analysis has been pursued thereafter, resulting in limits
in the εeτ − εττ phase space. The 90% C.L. contour for εee = 0 (fixed) is shown in Fig. 4.68.
Note that the Super-K constraint has been drawn assuming a three-flavour hybrid model
approximation (Sec. 4.1).
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Figure 4.68: 90% C.L. region in the εeτ − εττ plane assuming εee = 0 allowed after 3 years of ORCA
livetime obtained in this work is shown along with limits (assuming a three-flavour
hybrid model approximation) from Super-K [192].

For comparison with IceCube Deepcore [93], sensitivities on NSI εµτ have been drawn
in Fig. 4.69. The ORCA sensitivity curve has been superimposed on contours from
IceCube [93] and Super-K [192] assuming a two-flavour hybrid model approximation
(Sec. 4.1) for comparison.
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Figure 4.69: Sensitivity to εµτ after 3 years of ORCA livetime obtained in this work when εττ is
fixed at zero. Limits from IceCube DeepCore [93] (green) and Super-K [192] (cyan)
are drawn for comparison.
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In conclusion, an analysis to estimate the discovery potential of KM3NeT-ORCA for
different NSI sectors has been presented. It has been demonstrated that ORCA has an
excellent potential to put tighter constraints on various NSI parameter spaces by one
order of magnitude better than what is allowed by current experimental limits. Finally,
expected bounds on NSI parameters have been reported.
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5 Neutrino Mass Ordering and NSI
at ORCA

"I turned my attention for a while to gamma ray

aŊtronomy and Ŋoon began the firŊt in a continuouŊ

ŊerieŊ of experimentŊ at the Savannah River Ŋite

to Ŋtudy the propertieŊ of the neutrino."

— FREDERICK REINES
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In Chapter 4, we have explored the discovery reach of ANTARES and KM3NeT-ORCA
neutrino experiments for the search for NSI of neutrinos. Thereafter, limits in the NSI
µ − τ sector with ANTARES are constructed and sensitivity of ORCA towards various
NSI model parameters are reported. Infusing non-standard interactions of neutrinos
with matter fermions is one of the minimal extensions of the Standard Model (SM),
which leads to a rich phenomenology. This Chapter demonstrates the phenomenological
implications of NSIs on the neutrino mass ordering measurement with KM3NeT-ORCA.

Analyses estimating the sensitivity for neutrino mass ordering (NMO) at ORCA have
been covered in great detail in previous works within the KM3NeT Collaboration. These
studies [120, 180, 182, 210] entail a detailed estimation of the ORCA sensitivity to the
NMO measurement, corresponding to a detector geometry of 23 m horizontal spacing
between DUs. In order to estimate the NMO sensitivity with ORCA in a NSI test
hypothesis, the study of NMO in the standard oscillation framework has been pursued
earlier for completeness and reference. The study laid out in this Chapter, not only
presents an updated study of the NMO sensitivity based on a denser instrumentation
of ORCA with 20 m horizontal spacing between DUs, but also estimates the impact of
sub-dominant effects in neutrino oscillations coming from NSIs on the NMO sensitivity
at ORCA.
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After a short introduction in Sec. 5.1 on the NMO problem, Sec. 5.2 reports the sensitivity
study for NMO in the standard paradigm of three-flavour neutrino oscillations. Sec. 5.3
investigates the interplay between the mass ordering and NSIs and estimates the
degenerate effects on the final sensitivity of NMO at ORCA in the presence of NSIs.

5.1 The Neutrino Mass Ordering

As seen in Sec. 1.2.2, for three neutrino states, ν1, ν2, ν3 with masses m1, m2, m3, there are
two unique mass-squared differences ∆m2

21 and ∆m2
31 (∆m2

21 + ∆m2
32 + ∆m2

13 = 0). The
sign of ∆m2

31 is one of the three current unknowns in the recipe of standard three-flavour
neutrino oscillations, the octant of the atmospheric mixing angle θ23 (See Chapter 6) and
the CP violating phase δCP between neutrinos and antineutinos being the other two.
Depending on the sign of the mass-squared splitting ∆m2

31, the relative mass spectrum of
neutrinos can have two possible scenarios: Normal Ordering (NO) with m3 > m2 > m1
or Inverted Ordering (IO) with m2 > m1 > m3. The two scenarios are represented in
Figure 1.1.

Oscillations in vacuum cannot tell us about the sign of ∆m2
31. The sensitivity towards

the sign of |∆m2
31| stems from the differential matter-induced modifications of neutrino

oscillation probabilities for neutrino and antineutrino channels. However there is a
serious degeneracy between the helicity states and the mass ordering. The degeneracy
is exact if we assume no CP violation (δCP = 0), and partial if we assume that
there is non-zero CP violation in the neutrino sector. To be sensitive to helicity states
(−1 =⇒ "left-handed"1 neutrinos and +1 =⇒ "right-handed" antineutrinos), one
requires a detector which can discriminate between neutrinos and antineutino events
on an event-by-event basis. This is achieved in atmospheric neutrino experiments like
the magnetised Iron Calorimeter at INO [211], which is sensitive to the charge of
the outgoing lepton from the neutrino interaction, or in long-baseline experiments like
NOνA [212], T2K [213], DUNE [214], where the initial helicity (and flavour) state is
known a priori. However, for iso-scalar charge-blind detectors like ANTARES [130],
KM3NeT [66], IceCube or Super-K, an event-by-event separation of particles and
antiparticles is not possible. However, Nature comes to our rescue in this case. The
atmospheric neutrino flux is almost twice the corresponding antineutino flux (Fig. 3.7 and
Fig. 3.8). Moreover, interaction cross-sections (Fig. 2.4) of neutrinos and antineutrinos are
also different. Since the distortions in oscillations due to matter effects are different, the
expected event counts are different for either orderings (NO or IO). This gives a handle
to disentangle the two orderings by looking for a statistical excess or deficit of (ν + ν)
events in the "asymmetry distribution" (NIO

Eν,cos θz
− NNO

Eν,cos θz
) of event predictions with

either ordering assumptions. In case of real data, the best-fit to data decides the true
ordering.

5.2 NMO in the Standard Oscillation Framework

The basic idea to determine the NMO is to identify if matter induced resonance occurs
for neutrinos (NO) or antineutinos (IO). Before going into how it is usually achieved at
helicity blind detectors like ORCA, let us explore first the partial degeneracy between the
helicity and the NMO at the probability level.

1For (Dirac) neutrinos the intrinsic spin is opposite to the linear momentum which is referred to
as "left-handed", whereas the antineutrinos are always "right-handed". "Right-handed" neutrinos and
"left-handed" antineutrinos do not exist within the SM.
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5.2. NMO in the Standard Oscillation Framework 187

Figure 5.1 (and Fig. 5.2) depicts oscillograms for electron (and muon) neutrinos (helicity
state = −1) and antineutrinos (helicity state = +1) for normal (∆m2

31 > 0) and inverted
ordering (∆m2

31 < 0) hypotheses. Matter effects are prominent for neutrinos in case of NO
and for antineutrinos in case of IO. As shown in the figures, the behaviour of neutrinos
in NO is identical to antineutrinos in IO, as expected.

Figure 5.1: Pνe→νe for NO (top panels) and IO (bottom). Neutrinos on the left and antineutrinos on
the right. Behaviour of neutrinos in NO (IO) is identical to antineutrinos in IO (NO).
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Figure 5.2: Pνµ→νµ for NO (top panels) and IO (bottom). Neutrinos on the left and antineutrinos
on the right. Behaviour of neutrinos in NO (IO) is identical to antineutrinos in IO
(NO).

Thus, the oscillation probabilities for ν in NO are nearly degenerate with ν in IO.
However, due to the difference in the atmospheric neutrino flux and interaction
cross-sections, a net asymmetry in the ν + ν events between NO and IO for a particular
neutrino flavour can be observed. This asymmetry A can be defined as

A =
NWO − NTO

NTO
, (5.1)

where NTO is the number of expected interacting events in a (E, θz) bin for an assumed
true mass ordering (TO = NO or IO) and NWO is the number of expected interacting
events for the wrong mass ordering (WO = IO or NO, respectively). Fig. 5.3 shows the
asymmetry for muon and electron CC events (no smearing due to detector resolutions
have been applied). If resolution effects are incorporated, the asymmetry is further
blurred and partially washed out.
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Figure 5.3: Asymmetry (Eq. 5.1) between the number of ν + ν events expected in case of NO and
IO as a function of true neutrino energy and cosine of zenith angle for muon- (left) and
electron-CC (right) events. The colour code indicates the value of A in each bin. True
NO is assumed. The results are computed for a 115 lines ORCA detector with 20 m
spacing between DUs for 3 years of runtime. Mind the scales on individual plots.

A higher asymmetry is observed in the muon channel than in the electron channel at the
interaction level. However, the detector cannot separate (νe, νe, νµ, νµ, ντ, ντ - CC) and
(ν, ν - NC) events but distinguish them as two event classes: track and showers (a third
class "middles" is also used for ambiguous cases (Sec. 4.3.1)). The asymmetry from each
class after incorporating the detector effects is discussed in the next subsection.

5.2.1 Event selection and statistical significance

The event selection strategy is kept at par with what has been pursued for the NSI
analysis with ORCA (Sec. 4.3.1) corresponding to a detector geometry of 20 m horizontal
spacing between DUs. The number of expected events from different channels entering
into the final MC sample can be found in Tab. 4.6.

The test statistic in this case is defined as

χ2
E,θz

=

(
NWO

E,θz
− NTO

E,θz

)
×
∣∣∣NWO

E,θz
− NTO

E,θz

∣∣∣
NTO

E,θz

. (5.2)

NTO
E,θz

is the expected number of track/middle/shower events in the corresponding (E, θz)
bin weighted under an assumed true mass ordering (TO) hypothesis (NO or IO); while,
NWO

E,θz
is the number of expected events in the same (E, θz) bin for the wrong mass ordering

(WO) hypothesis (IO or NO, respectively).

Fig. 5.4 shows the signed-χ2 maps for reconstructed events in the three event classes for
3 years of full ORCA (115 DUs) runtime with 20 m horizontal spacing. 20 logarithmic
bins were chosen in reconstructed neutrino energy (E) ∈ [3, 100] GeV; while 20 linear
bins in cosine of the reconstructed zenith angle (θz) ∈ [−1, 0]. The absolute value of χ2

is stored, so that each bin content represents the contribution to the total χ2 from the
respective event class. The colour codes represent the excesses and deficits.
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Figure 5.4: Statistical χ2 maps for 3 years of exposure of ORCA corresponding to 20 m horizontal
spacing between DUs as a function of reconstructed neutrino energy (Ereco) and zenith
direction (cosθreco) for track (left column), middle (middle), and shower (right) event
topologies. The color code indicates the values of signed-χ2, as defined in Eq. 5.2. The
total sensitivity quoted is the square-root of the sum of the absolute values of the χ2s
from each bin. Mind the difference in the colour scales on individual plots.

The individual contributions from track, middle and shower event classes are added in
quadrature to compute the total significance, σtot( Eq. 4.19).

A higher (statistical-only) sensitivity (∼ 6.7σ) is observed in the shower class (mostly νe +
νe CC events). This happens due to an interesting feature of oscillation probabilities and
atmospheric neutrino fluxes. The transitions between νµ and νe are almost symmetrical,
i.e. Pνµ→νe ≈ Pνe→νµ , as seen in Fig. 1.4 and Fig. 1.6. Now, since νµ (νµ) flux is almost
4 times larger than the νe (νe) flux, the resulting νe (νe) flux reaching the detector is
significantly higher compared to the unoscillated flux in case of NO (IO). Furthermore,
the difference in νe/νe cross-sections (Fig. 2.4) and the initial νµ/νµ flux difference
(Fig. 3.8) lead to a significant different number of νe (νe) events for NO and IO in a large
(Ereco, θreco) region of interest. The difference in event numbers are robust compared to
the detector resolutions leading to a higher asymmetry effect in the shower channel.
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5.2. NMO in the Standard Oscillation Framework 191

5.2.2 Systematics

A similar set of systematics as accounted in the NSI analysis (Sec. 4.3.3) has been
considered for the NMO sensitivity analysis. Tab. 4.7 summarises the exhaustive list of
systematic parameters considered in the fit along with their statistical treatment, nominal
values and external constraints, if any.

The final fit is done following an Asimov dataset [187] approach, by minimising the
Poissonian log-likelihood ratio function:

− 2 lnL = 2 · ∑
i∈{bins}

[
NWO

i (ō, s̄)− NTO
i (ō, s̄) + NTO

i · ln
NTO

i (ō, s̄)
NWO

i (ō, s̄)

]
+ ∑

j∈{syst}

(sj − ŝj)
2

σ2
sj

,

(5.3)

where the first sum runs over the histogram bins. NTO
i (ō, s̄) is the expected number

of track/middles/shower events in the ith bin weighted under an assumed true mass
ordering (NO or IO); while, NWO

i (ō, s̄) is the number of expected events in the ith bin
for the wrong mass ordering (IO or NO, respectively) hypothesis. Both NTO

i (ō, s̄) and
NWO

i (ō, s̄) are a function of the set of oscillation parameters, ō, as well as on the set
of nuisance parameters, s̄. The second sum runs over penalty terms of the number of
nuisance parameters, j, listed in Tab. 4.7, ŝj and σ2

sj
being the assumed prior and Gaussian

standard deviation of the parameter j, respectively.

The effect of systematics on the sensitivity to neutrino mass ordering at ORCA, when
fitted uniquely and/or cumulatively, are shown in Fig. 5.5 and Fig. 5.6 for NO and IO
true orderings, respectively.
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Figure 5.5: Effect of systematics (see Tab. 4.7), when fitted uniquely (top) and incrementally
(bottom), on the projected NMO sensitivity at ORCA with 20 m horizontal spacing
for true NO assumption. The black curve on both panels corresponds to the
statistical-only sensitivity. The effect of systematics represented by colour coded
curves for a particular value of θ23 can be gauged by looking at the relative separation
from the stat-only curve. Top: each colour coded curve refers to the effect of that
particular systematic which is uniquely fitted while the rest being kept fixed at
their nominal values. Bottom: each colour coded curve corresponds to the effect
of that particular systematic plus (+) the ones appearing on top of it being fitted
simultaneously. Systematics are added cumulatively in the sequence as they appear
in the legends from violet to red. The final sensitivity can be read from the widest
(red) curve, which refers to the case of inclusion of all the systematic uncertainties
accounted in this study.
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Figure 5.6: Effect of systematics, when fitted uniquely (top) and incrementally (bottom), on
the projected NMO sensitivity at ORCA with 20 m horizontal spacing for true IO
assumption. Read the caption of Fig. 5.5 for more info..

A starting value of θ23 in both octants (θ23 < 45◦ ∈ lower octant and θ23 > 45◦ ∈
higher octant) is given to the fitter and the minimum yield for −2 lnL is adopted. The
drastic effect of marginalising over θ23 around ∼ 42◦(48◦) for NO (IO) happens due to
the degeneracy between the octant of θ23 and the sign of |∆m2

31|. For true NO, values of
θ23 ∈ lower octant (LO) are in partial degeneracy with values of θ23 ∈ higher octant (HO)
in the IO hypothesis. So the fitter finds the global minimum in the wrong (higher) octant
for true NO. The situation is exactly reversed for true IO assumption.

Precise measurement of θ23 or deciphering its true octant is imperative for disentangling
the mass ordering in a relatively quicker time frame. Vice versa, it can also be said
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that knowledge of the true mass ordering will help in ruling out the wrong octant in
a smaller time scale compared to the case when the NMO is unknown. We will study the
later case in Chapter 6 in more detail. Besides this fact, the shower normalisation factor
("ShowerNorm") is seen to exhibit a "strong-pull" on the wrong-ordering fits.

5.2.3 Results

The final predicted mass ordering resolution achieved at ORCA is plotted as a function
of true values of θ23 for both NO and IO assumptions including the effect of all other
oscillation and systematic parameters. Sensitivity curves for sparse detector geometry of
23 m horizontal spacing are also estimated and drawn for comparison.
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Figure 5.7: Projected sensitivity to the NMO after 3 years of ORCA runtime, as a function of true
θ23, for NO (red) and IO (blue) assumptions, with a global best-fit δCP of 221◦ (228◦)
for NO (IO). Solid (dashed) lines refer to 20 m (23 m) horizontal spacing between DUs.

A higher sensitivity with a denser detector geometry of 20 m horizontal spacing is
achieved due to the improved resolutions and additional "hit-features" used for training
the PID classifier, leading to a purer event sample and finally three event classes which
adds up their contribution at the χ2 level.

After 3 years of data taking, the NMO can be determined at the level of ∼ [2.5 − 5]σ
([2.5− 3]σ) depending on the true value of θ23, given the true ordering is NO (IO). The
sensitivity is maximum for NO at true θ23 ∈ HO since, in the NO hypothesis, MSW
resonance [26] happens in the neutrino channels, for which the initial atmospheric flux
and the cross-sections are higher which further undergo large oscillation effects driven
by high values of θ23.

5.3 NMO in presence of NSIs

The conventional model of three-flavour neutrino oscillations provides a successful
interpretation of the data taken by various experiments. This is true since the statistical
fits to experimental data are usually done in the context of no NSI. One of the goals of
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5.3. NMO in presence of NSIs 195

the present and future generation neutrino experiments is to firmly establish the correct
framework to understand neutrino interactions. This motivates the phenomenological
study of neutrino oscillations in the context of various exotic scenarios like the presence
of NSIs [215, 216, 217]. In this work, we study the NMO sensitivity of ORCA in an
assumed hypothesis of three-flavour neutrino oscillations in presence of NSI of neutrinos
with d-quarks.

5.3.1 Ordering - NSI degeneracy

First, let us explore the partial degeneracy between the mass ordering and the sign of the
NSI parameter εµτ. The muon disappearance probability, in presence of νµ → ντ NSIs,
parameterised by non-zero εµτ, reads (Eq. 1.51)

Pνµ→νµ = 1− sin22θ̃sin2

[
∆m2L

4E
εµτ

]
. (5.4)

From Eq. 5.4, it is clear that a sign change in εµτ (εµτ → −εµτ) is equivalent to flipping the
ordering (∆m2 → −∆m2). Fig. 5.8 demonstrates the sign dependence of εµτ in the muon
disappearance channel. In the [30, 100] GeV range, we can see a parametric enhancement
in the oscillation signature for εµτ = −0.033 in NO (top-left) which is congruent with
εµτ = 0.33 in IO (botom-right). Similarly, a parametric suppression is also seen for εµτ =
−0.033 in IO (top-right), which is in congruence with εµτ = 0.33 in NO (bottom-left).

This boils down to the problem that experimentally obtained NNO
ν (εµτ = 0) and

N IO
ν (εµτ 6= 0) or N IO

ν (εµτ = 0) spectra and NNO
ν (εµτ 6= 0) spectra might look very similar.

Moreover, this degeneracy can have serious implications on the task of fitting theoretical
models to experimental data. We will account for these degenerate effects coming from
NSIs while estimating the mass ordering sensitivity at ORCA in the next section.
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(a) εµτ = −0.33

(b) εµτ = 0

(c) εµτ = 0.33

Figure 5.8: Pνµ→νµ for (a) NSI εµτ = −0.033 (top panels) (b) NSI εµτ = 0 (middle) and (c) NSI
εµτ = 0.033 (bottom). NO on the left and IO on the right. Negative NSI εµτ in NO
(top-left) is similar to positive NSI εµτ in IO (bottom-right plot). Similarly, negative
NSI εµτ in IO (top-right) is similar to positive NSI εµτ in NO (bottom-left). The case is
exactly reversed for antineutrinos.

5.3.2 Systematics

In presence of sub-dominant new physics effects such as NSI, the resolution of neutrino
mass ordering can be severely affected. If we assume εαβ = 0, then a certain level of
experimental precision is required to resolve the NO oscillation spectrum from an IO
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5.3. NMO in presence of NSIs 197

oscillation spectrum. But, if εαβ 6= 0 is assumed, much better experimental precision
is needed to distinguish between both ordering spectra. The degree of precision can be
quantified by doing a log-likelihood analysis with a modified test statistic:

−2 lnL = 2 · ∑
i∈{bins}

[
NWO

i (ō, s̄, ε̄αβ)− NTO
i (ō, s̄, ε̄αβ = 0) + NTO

i · ln
NTO

i (ō, s̄, ε̄αβ = 0)
NWO

i (ō, s̄, ε̄αβ)

]

+ ∑
j∈{syst}

(sj − ŝj)
2

σ2
sj

.

(5.5)
NTO

i (ō, s̄, ε̄αβ = 0) is the expected number of track/middles/shower events in the ith

bin weighted under standard oscillations (εαβ = 0) with an assumed true mass ordering,
NWO

i (ō, s̄, ε̄αβ) is the number of expected events in the ith bin for the wrong mass ordering
(IO or NO, respectively) hypothesis weighted under a certain NSI hypothesis (εαβ 6= 0).
The second sum runs over penalty terms of the number of nuisance parameters, j,
which now also include the NSI parameters. They are allowed to vary without any
constraints/priors during the fitting procedure.

The effect of treating NSI parameters (over which we have obtained constraints in the
previous chapters) as systematic uncertainties while fitting over in the alternate mass
ordering hypothesis is shown in Fig. 5.9.
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Figure 5.9: Effect of NSI parameters, when fitted uniquely on the projected NMO sensitivity at
ORCA with 20 m horizontal spacing for true NO (top) and IO (bottom) assumptions.
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5.3.3 Results

The impact of NSI on the expected mass ordering resolution at ORCA for an exposure
of 3 years is shown in Fig. 5.10. While the effect of fitting an NSI model is seen to be
marginal in the case of true NO for possible values of θ23, in case of true IO, depending
on true value of θ23, there can be ∼ 1σ dilution in the sensitivity at ORCA. This is caused
by the pulls exerted by the NSI parameters in the true IO fits (see Fig. 5.11).
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Figure 5.10: Projected sensitivity to the NMO after 3 years of ORCA runtime, as a function of
true θ23, for NO (red) and IO (blue) assumptions, with a global best-fit δCP of 221◦

(228◦) for NO (IO) assumptions. Dashed (solid) lines refer to the case when the NSI
parameters are simultaneously fitted (fixed at 0).

The resulting best-fit values of NSI parameters in the wrong ordering fits remain within
the allowed range of the projected ORCA sensitivities (listed in Tab. 4.8), which are by
far tighter than the current experimental limits and bounds from cosmology [76]. The
best-fit values of NSI εαβ are shown in Fig. 5.11. While only NSI εττ is seen to exhibit a
negligible pull in the true NO fit, in the case of true IO fit, all the NSI parameters exert
non-negligible pulls on the final sensitivity, as seen in Fig. 5.10. Their best-fit values are
compatible with current experimental limits.
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Figure 5.11: The best-fit values of NSI parameters for true NO (solid) and IO (dashed) fits, when
they are all simultaneously fitted, as a function of true θ23. Strong pulls are exhibited
in the true IO fits. Mind the difference on Y-axis scales.

In conclusion, this work takes into account the uncertainty of fitting models to
experimentally observed oscillation spectra and emphasizes the importance of testing
different frameworks for better understanding and high precision measurements of the
oscillation parameters. It also estimates how much the presence of NSIs can impair
the sensitivity of ORCA to the measurement of neutrino mass ordering. Synergistic
measurements from different experiments can resolve these ambiguities and point out
to the correct framework realised in Nature.
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6 Octant Sensitivity at ORCA

"NeutrinoŊ are a billion timeŊ more abundant than

the elementary particleŊ of whiĚ we’re made. So

clearly, if you want to underŊtand the univerŊe, you

have to underŊtand the neutrinoŊ."

— BORIS KAYSER
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In Chapter 5, we have estimated the potential of ORCA to identify the true neutrino
mass ordering (NMO) and explored the degenerate effects between the ordering and
the octant of θ23 on the NMO sensitivity at ORCA. In this Chapter, we will quantify the
resolving power of ORCA to disentangle the two octants of θ23 and explore the effects of
this degeneracy on the octant sensitivity.

Sec. 6.1 poses the ambiguity in the determination of the true octant of θ23 and possible
ways to resolve it in the light of three-flavour neutrino oscillations in matter driven
by a non-zero θ13. Sec. 6.2 and Sec. 6.3 present the event selection strategy and list of
systematics, respectively, employed in this study. Finally, based on an Asimov dataset
approach [187], sensitivities to the octant of θ23 are reported in Sec. 6.4.

6.1 The Octant Problem

The “general” definition of the octant problem refers to the present uncertainty in the
measurement of θ23 [90]. However, the octant degeneracy implies the indistinguishability
between θ23 and π/2 − θ23. This is exact in case of vacuum oscillations, since the
oscillation probabilities are functions of sin2 2θ23. Depending on the true value of θ23,
we can have three solutions:



202 Chapter 6. Octant Sensitivity at ORCA

• Maximal mixing: θ23 = 45◦. This is called maximal mixing since sin2 2θ23 appears
as an amplitude term in the oscillation probabilities and a value of 45◦ correspond
to maximum oscillation effects driven by sin2 2θ23 = 1.

• Lower Octant1 (LO): θ23 ∈ [0◦, 45◦).

• Higher Octant2 (HO): θ23 ∈ (45◦, 90◦].

The source of this ambiguity in the determination of the value of θ23 can be classified into
two categories:

• Intrinsic degeneracy: This happens when oscillation probabilities are function
of sin2 2θ23 and hence it is impossible to distinguish between θ23 and π/2 − θ23.
This is inherent and cannot be lifted if θ23 corresponds to maximal mixing 45◦.
Mathematically,

P(θtrue
23 ) = P(π/2− θtrue

23 ). (6.1)

• Parameter degeneracy: This refers to the degeneracy of θ23 with other oscillation
parameters, which leads to the confusion of the true octant in this case. This
happens when oscillation probabilities are function of sin θ23 or cos θ23 : P(θtrue

23 ) 6=
P(π/2− θtrue

23 ). However, for different values of the parameters θ13 and δCP and the
uncertainty of the knowledge of the true mass ordering, the oscillation probability
functions become identical for values of θ23 in opposite octants for different choices
of values of these parameters. Mathematically,

P(θtrue
23 , ∆m2

32, θ13, δCP) = P(π/2− θtrue
23 ,−∆m2′

32, θ′13, δ′CP). (6.2)

More generically, it can be expressed as

P(θtrue
23 , ∆m2

32, θ13, δCP) = P(θwrong
23 ,−∆m2′

32, θ′13, δ′CP). (6.3)

Although θ13 is known with great precision from current experiments, δCP covers a
wide range of allowed values [90]. Apart from this, the neutrino mass ordering
is still unidentified, which is one of the biggest sources of uncertainty in the
determination of the octant of θ23. These degeneracies are studied closely in the
next section.

6.1.1 Parameter degeneracies

A continuous degeneracy in the θ23 − θ13 − δCP plane has been studied in [218].
However, for our study, we present the estimation of octant sensitivity in the light of
well-constrained non-zero θ13 [219]. This drastically reduces the uncertainty on the
measurement of θ23. A precise measurement of θ13 is imperative for resolving the octant
degeneracy [220, 221]. We classify eight degenerate solutions corresponding to different
combinations of hierarchy3 – octant – δCP. The harmonic δCP plane can be divided into
two parts, “Lower-Half-Plane" (LHP) (with δCP ∈ [0◦, 180◦]) and “Upper-Half-Plane"
(UHP) (with δCP ∈ [180◦, 360◦]).

Let us look at occurrence of different degenerate combinations one by one. We restrict our
arguments to the electron appearance channels Pνµ→νe (and/or Pνµ→νe ), since this "golden
channel" is sensitive to all three parameters (δCP, θ23 and sign of ∆m2

32) and is also one of
the dominant channels in both atmospheric and long-baseline experiments.

1Also known as First Octant (FO) in literature.
2Also known as Second Octant (SO).
3The term “hierarchy” is used here instead of “ordering” to avoid confusion with the initials of octant.
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1. Wrong hierarchy (WH) – Wrong octant (WO) – Wrong δCP: This corresponds to
isoprobability curves such that P(NH, LO, LHP) = P(IH, HO, UHP).

2. Wrong hierarchy (WH) – Wrong octant (WO) – Right δCP: P(NH, LO, LHP) = P(IH,
HO, LHP).

3. Wrong hierarchy (WH) – Right octant (RO) – Wrong δCP: P(NH, LO, LHP) = P(IH,
LO, UHP).

4. Wrong hierarchy (WH) – Right octant (RO) – Right δCP: This does not exist at the
probability level.

5. Right hierarchy (RH) – Wrong octant (WO) – Wrong δCP: P(NH, LO, LHP) = P(NH,
HO, UHP).

6. Right hierarchy (RH) – Wrong octant (WO) – Right δCP: This does not exist at the
probability level.

7. Right hierarchy (RH) – Right octant (RO) – Wrong δCP: P(NH, LO, LHP) = P(NH,
LO, UHP).

8. Right hierarchy (RH) – Right octant (RO) – Right δCP: The correct solution.

The eight combinations are schematically represented in Fig. 6.1 (for neutrinos) and
in Fig. 6.2 (for antineutrinos). In each figure, the right (left) annular rings represent
the parameter space for NO (IO). The outer (inner) ring corresponds to the choice of
octant HO (LO). In each ring, the angular direction denotes the value of δCP, which is
divided into two half planes: LHP and UHP. Thus, the complete parameter space in each
figure is divided into eight regions, corresponding to the two choices of ordering, octant
and half-plane of δCP. The ordering – octant degeneracy is depcited in yellow while the
ordering – δCP degeneracy is shaded with red stripes. The parts of the rings that are
marked in green are free of parameter degeneracies.

Note that, moving from neutrinos in Fig. 6.1 to antineutrinos in Fig. 6.2 is equivalent to
flipping the mass ordering (rings switched sideways) followed by a CP phase change by
π (rings rotated upside-down). The ordering – octant degeneracy is discrete, while the
octant – δCP is continuous.

Figure 6.1: Schematic representation of parameter degeneracies in three-flavour neutrino
oscillations. From [222].
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Figure 6.2: Schematic representation of parameter degeneracies in three-flavour antineutrino
oscillations. From [222].

Some of these degenerate cases can be alleviated at long-baseline experiments by looking
at the neutrino and antineutino data separately. But in our case, this is not possible
since neither ORCA is sensitive to the helicity states, nor it can differentiate between
appearance and disappearance channels. However, we can still measure the true θ23
by looking for statistical excess or deficit of (ν + ν) event distributions relative to the
combination of hierarchy – octant – δCP that fits the data most accurately. This will lead
to the rejection of hypotheses that correspond to some of these eight combinations.

6.1.2 Lifting the degeneracy

In the light of atmospheric experiments like ORCA, the relevant oscillation channels to
which the octant of θ23 is mostly sensitive to are the muon disappearance and electron
appearance channels. The probability expressions in the OMSD approximations [219]
read

Pm
νµ→νµ

= 1− cos2 θm
13 sin2 2θ23 sin2

( [∆m2
31 + ACC + (∆m2

31)
m]L

E

)
− sin2 θm

13 sin2 2θ23 sin2
( [∆m2

31 + ACC + (∆m2
31)

m]L
E

)
− sin4 θ23 sin2 2θm

13 sin2
( (∆m2

32)
mL

E

) (6.4)

and

Pm
νµ→νe

= sin2 θ23 sin2 2θm
13 sin2

(∆m2m
32 L
E

)
, (6.5)

where,

sin2 2θm
13 =

sin2(2θ13)

(cos 2θ13 − ACC/∆m2
31)

2 + sin2 2θ13
(6.6)

(∆m2
31)

m = ∆m2
31[(cos 2θ13 − ACC/∆m2

31)
2 + sin2 2θ13]. (6.7)

Pm
νµ→νµ

has leading terms proportional to sin2 2θ23, which give rise to the intrinsic octant
degeneracy. However, θm

13 in matter gets amplified to maximal values near resonance and
the combination sin4 θm

23 sin2 2θ13 no longer remains invariant over opposite octants of θ23.
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The value of sin2 2θ13 becomes close to unity in both octants, irrespective of the value of
θ13 in vacuum.

The signatures of the asymmetry in the muon neutrino disappearance channel, predicted
for a true value of θtrue

23 = 48.6◦ in HO and corresponding degenerate test value of θtest
23 =

(90− 48.6)◦ in LO, are shown in Fig. 6.3. The asymmetry is maximal for a wide region of
core-crossing neutrinos with energies ∈ [20, 30] GeV.

Figure 6.3: Asymmetry in Pm
νµ→νµ

channel as a function of neutrino energy and cosine of the zenith
angle for NO (left) and IO (right) assumptions. The true value of θ23 is set at 48.6◦

(adopted from [90]) in HO and the test value at θtest
23 = 41.4◦. The behaviour for

antineutrinos is equivalent to mass ordering being flipped (given δCP = 0).

Pm
νµ→νe

has the leading term proportional to sin2 θ23, which is sensitive to the octant.
The strong octant-sensitive behaviour of the term sin2 θ23 sin2 2θm

13 near resonance can
alleviate the degeneracy. However, this channel is affected by the large uncertainty in
δCP since, in this case, sub-leading corrections appear while estimating the oscillation
probabilities numerically.

The signatures of asymmetry in the electron neutrino appearance channel, predicted for
a true value of θtrue

23 = 48.6◦ in HO and corresponding degenerate test value of θtest
23 =

(90− 48.6)◦ in LO, are shown in Fig. 6.4. The asymmetry is maximal for a wide region
of mantle-crossing neutrinos with energies ∈ [4, 10] GeV. Since matter effects happen for
antineutinos in IO, the asymmetry in the electron neutrino appearance channel for IO is
negligible.
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Figure 6.4: Asymmetry in Pm
νµ→νe channel as a function of neutrino energy and cosine of the zenith

angle for NO (left) and IO (right) assumptions. The true value of θ23 is set at 48.6◦

(adopted from [90]) in HO and the test value at θtest
23 = 41.4◦. The behaviour for

antineutrinos is equivalent to mass ordering being flipped (given δCP = 0).

6.2 Event selection and statistical significance

The strategy for event selection is kept at par with what has been employed in the NSI
and NMO analyses with ORCA (Sec. 4.3.1) corresponding to a detector geometry of 20 m
horizontal spacing. The number of expected events from different channels entering into
the final MC sample can be found in Tab. 4.6.

The test statistic in this case to disentangle the octants of θ23 is defined as

χ2
E,θz

=

(
NWO

E,θz
− NTO

E,θz

)
×
∣∣∣NWO

E,θz
− NTO

E,θz

∣∣∣
NTO

E,θz

. (6.8)

NTO
E,θz

is the expected number of track/middle/shower events in the corresponding (E, θz)
bin weighted with a true value of θ23 under an assumed octant hypothesis (LO or HO),
while NWO

E,θz
is the number of expected events in the same (E, θz) bin in the wrong octant

(HO or LO, respectively). We set the values of true and test values such that, θtest
23 =

π/2− θtrue
23 .

Fig. 6.5 and Fig. 6.6 show the signed-χ2 maps for reconstructed events in the three event
classes for 3 years of full ORCA (115 DUs) runtime with 20 m horizontal spacing. 20
logarithmic bins were chosen in reconstructed neutrino energy (Eν) ∈ [3, 100] GeV, while
20 linear bins in cosine of the reconstructed zenith angle (θz) ∈ [−1, 0]. The absolute value
of χ2 is stored, so that each bin content represents the contribution to the total χ2 from
respective event class. The colour codes represent the excesses and deficits.
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Figure 6.5: Statistical χ2 maps for 3 years of exposure of ORCA corresponding to 20 m horizontal
spacing between DUs as a function of reconstructed neutrino energy (Ereco) and zenith
direction (cosθreco) for track (left column), middle (middle), and shower (right) event
topologies. The true θ23 is kept in HO (= 48.6◦) [90], while the test point is fixed at
θ23 = 41.4◦ in the wrong octant. Normal Ordering (NO) is assumed. The color code
indicates the values of signed-χ2, as defined in Eq. 6.8. The total sensitivity quoted is
the square-root of the sum of the absolute values of the χ2 from each bin. Mind the
difference in the colour scales on individual plots.
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Figure 6.6: Statistical χ2 maps for 3 years of exposure of ORCA corresponding to true Inverted
Ordering (IO). See also caption of Fig. 6.5.

A higher (statistical-only) sensitivity is observed in the shower class for both orderings.
The statistical-only sensitivities are higher for true NO, since in the true NO hypothesis
(top panels), matter effects [26] happen in the neutrino channels, for which the initial
atmospheric (neutrino) flux and (neutrino) cross-section are larger than for antineutrinos.
The individual contributions from track, middle and shower event classes are added in
quadrature to compute the total significance, σtot Eq. 4.19.

6.3 Systematics

A similar set of systematics as accounted in the NSI and NMO analysis (Sec. 4.3.3) has
been considered for the octant sensitivity analysis. Tab. 4.7 summarises the exhaustive
list of systematic parameters considered in the fit along with their statistical treatment,
nominal values and external constraints, if any.

The final fit is done following an Asimov dataset [187] approach, by minimising the
Poissonian log-likelihood ratio function

− 2 lnL = 2 · ∑
i∈{bins}

[
NWO

i (ō, s̄)− NTO
i (ō, s̄) + NTO

i · ln
NTO

i (ō, s̄)
NWO

i (ō, s̄)

]
+ ∑

j∈{syst}

(sj − ŝj)
2

σ2
sj

,

(6.9)

where the first sum runs over the histogram bins. NTO
i (ō, s̄) is the expected number of

track/middles/shower events in the ith bin weighted under an assumed true octant (LO
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or HO), while NWO
i (ō, s̄) is the number of expected events in the ith bin for the wrong

octant (HO or LO, respectively) hypothesis. Both NTO
i (ō, s̄) and NWO

i (ō, s̄) are a function
of the set of oscillation parameters, ō, as well as on the set of nuisance parameters, s̄.
The second sum runs over penalty terms of the number of nuisance parameters, j, listed
in Tab. 4.7, ŝj and σ2

sj
being the assumed prior and Gaussian standard deviation of the

parameter j, respectively.

The effect of systematics on the resolution of the octant at ORCA, when fitted uniquely or
cumulatively, is shown in Fig. 6.7 and Fig. 6.8 for NO and IO true orderings, respectively.

Note that, for each curve, except the widest (red) curve that corresponds to the case
of marginalising over θ23 in the wrong octant, the test values of θtest

23 have been fixed
at π/2 − θtrue

23 . This is rather an arbitrary choice of θtest
23 , motivated by the fact θtest

23 is
partially degenerate with π/2− θtrue

23 (as we have seen at the probability level discussions
in Sec. 6.1). Thus, the effect of θ23 appears to be the most drastic among all other
systematic parameters considered in the fit. Apart from θ23, the shower normalisation
factor ("Shower Norm") is seen to exhibit a strong pull in the wrong-octant fits.
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Figure 6.7: Effect of systematics (Tab. 4.7), when fitted uniquely (top) and incrementally (bottom),
on the octant resolution at ORCA with 20 m horizontal spacing for true NO
assumption. The black curve on both panels corresponds to the statistical-only
sensitivity. The effect of systematics represented by colour coded curves for a
particular value of θ23 can be gauged by looking at the relative separation from the
stat-only curve. Top: each colour coded curve refers to the effect of that particular
systematic which is uniquely fitted while the rest being kept fixed at their nominal
values. Bottom: each colour coded curve corresponds to the effect of that particular
systematic plus (+) the ones appearing on top of it being fitted simultaneously.
Systematics are added cumulatively in the sequence as they appear in the legends
from violet to red. The final sensitivity can be read from the widest (red) curve which
refers to the case of inclusion of all the systematic uncertainties accounted in this study.
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Figure 6.8: Effect of systematics, when fitted uniquely (top) and incrementally (bottom), on the
octant resolution at ORCA with 20 m horizontal spacing for true IO assumption. Read
the caption of Fig. 6.7 for more info..

6.4 Results

Results of the sensitivity to the octant resolution of θ23 at ORCA are presented in different
physics planes in the following sub-sections.

6.4.1 Sensitivity vs δCP

The final octant sensitivity achieved at ORCA is plotted in Fig. 6.9 as a function of
true values of δCP including the effect of all other oscillation and systematic parameters.
For each true value of δCP, sensitivities corresponding to four possible combinations of

211 of 299



212 Chapter 6. Octant Sensitivity at ORCA

ordering – octant are drawn. Note that for each case, the true ordering is kept fixed in the
test hypothesis which is fitted. Hence, the Wrong Ordering – Wrong Octant combinations
are not taken into account for brevity. This translates into the optimistic assumption of
the NMO being correctly identified beforehand ORCA is set to resolve the octant.
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Figure 6.9: Resolving power of ORCA in disentangling the octant of θ23 as a function of true
δCP for various possible combinations of the true ordering and the octant. Normal
(Inverted) ordering is assumed for the red (blue) curves. True θ23 is assumed at 48.6◦

in the higher octant (solid curves) or at 42.4◦ in the lower octant (dashed).

If we compare the true HO cases (solid lines), the sensitivities are higher in NO than IO
due to higher statistics of neutrinos encountering matter effects in true NO hypothesis.
On the other hand, if we compare true HO and true LO cases (solid and dashed) for a
specific mass ordering (NO or IO), sensitivities are higher for true LO than true HO. This
is because χ2 ∼ (NLO/HO − NHO/LO)2/NHO/LO for true HO/LO. The numerator is the
same in both cases whereas the denominator is larger for a true HO resulting in a lower
sensitivity. Note that, to a first order approximation, the octant sensitivity is mostly flat
in the δCP plane. This is expected since atmospheric experiments are not so sensitive to
δCP, stemming from the fact that they observe events from disappearance (sensitive to
δCP) as well as appearance channels simultaneously.

6.4.2 Sensitivity vs θ23

Since atmospheric experiments are not so sensitive to δCP, it is more appropriate to plot
the sensitivities as a function of true values of θ23. In Fig. 6.10, the octant sensitivity is
plotted as a function of true values of θ23 for both NO and IO assumptions for a predicted
exposure of 3 years of ORCA. Due to the existence of the ordering-octant degeneracy, two
additional curves are obtained by minimizing over not only the regular set of systematic
parameters, but also over the ordering itself. This translates into the case when the true
mass ordering is not identified.
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Figure 6.10: ORCA sensitivity to the octant of θ23 after three years of runtime for the true neutrino
mass ordering. The solid curves refer to the test ordering being kept fixed at the
truth, while for the dashed curves it is treated as a free parameter in the fit. The
dashed horizontal line indicate the 90% C.L. sensitivity.

If the ordering is normal and correctly identified, ORCA will allow the octant to be
determined at more than 90% C.L. if θ23 < 42.5◦ and θ23 > 47.5◦. However, if the ordering
is inverted, it will resolve the octant at more than 90% C.L. if θ23 < 42.2◦ and θ23 > 48.2◦.
Sensitivities are, in general, higher in NO.

The “shoulders” at θ23 ∼ 42◦ (true NO) and θ23 ∼ 49◦ (true IO) correspond to the
regions where the uncertainty in the true knowledge of the NMO degrades the octant
sensitivity. If the true ordering is NO, testing for a wrong octant solution within the IO
has a significant effect on the octant sensitivity for θ23 < 42◦. For true IO, testing for a
wrong octant solution within the NO has rather mild effect on the octant sensitivity for
θ23 > 49◦.

6.4.3 Sensitivity vs runtime

In addition to a fixed exposure of 3 years, we have also investigated how many years
it would require for ORCA to make a 1/2/3σ C.L. measurement of the octant, again
depending on the true NMO and true θ23. The results are shown in Fig. 6.11 and Fig. 6.12.
Curves referring to minimization over the ordering are also included.
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Figure 6.11: Expected runtime in years required for ORCA to exclude the wrong octant of θ23 at
1/2/3σ C.L. as a function of true θ23 for NO assumption. The solid curves refer to the
test ordering being kept fixed at the truth, while for the dashed curves it is treated as
a free parameter in the fit.
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Figure 6.12: Expected runtime in years required for ORCA to exclude the wrong octant of θ23 at
1/2/3σ C.L. as a function of true θ23 for IO assumption. The solid curves refer to the
test ordering being kept fixed at the truth, while for the dashed curves it is treated as
a free parameter in the fit.

The very flat behavior of the value of −2 lnL when θ23 is near the maximal mixing
value observed in Fig. 6.10 finds its counterpart here in the very steep rise in runtime as
maximal mixing is approached from both sides. The “shoulder” in the true NO case for
θ23 < 42◦ and θ23 > 49◦ for IO again correspond to the regions where misidentification of
the NMO degrades the octant sensitivity and leads to an increase in the runtime required
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to determine it. ORCA is projected to make a 1σ C.L. determination of the octant of θ23
within less than a year if the NO is true and either θ23 < 42.5◦ or θ23 > 47.6◦, or if the IO
is true and either θ23 < 42.2◦ or θ23 > 48.0◦. A five-year measurement at the 1σ C.L. is
achieved for NO and θ23 < 42.2◦ or θ23 > 46.2◦, or for IO and θ23 < 42.4◦ or θ23 > 47.0◦.
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Summary

"Light thinkŊ it travelŊ faŊter than anything but it

iŊ wrong. No matter how faŊt light travelŊ, it

findŊ the darkneŊŊ haŊ alwayŊ got there firŊt, and

is waiting for it."

— TERRY PRATCHETT,
The Reaper Man.

During the past decades, a plethora of evidences, accumulated from solar [29],
atmospheric [223], accelerator [224] and reactor [36, 38, 39] experiments, testify for the
transmutation of neutrino flavours while they propagate through macroscopic distances.
This phenomenon, called neutrino oscillation, is simply explained by the non-degenerate
neutrino mass and lepton flavour eigenstates. The discovery of the neutrino oscillations
itself caps the study of new physics beyond the Standard Model (SM). Although the
paradigm of the SM plus neutrino mass, mixing and oscillations has been verified by a
gamut of experiments, there are a few experimental signals that cannot be accommodated
within this model, which motivates the study of new physics Beyond the Standard
Model. The study of non-standard interactions (NSIs) of neutrinos with matter fermions
is envisaged from this phenomenological point of view, since their existence provides a
probe to the nature of new physics beyond the Standard Model.

The presence of such additional interactions of neutrinos are expected to produce a
significant modification in the spectra of events predicted with the standard three-flavour
neutrino oscillations. The ANTARES neutrino telescope and its successor low energy
sub-array, KM3NeT-ORCA (ORCA in what follows), have the potential to measure
atmospheric neutrino oscillations with enhanced precision to sub-dominant effects
arising from new physics beyond the SM like NSIs.

Objectives

The thesis ventured out in the development of a strategy to identify the signal from
non-standard neutrino interactions at ANTARES and ORCA neutrino telescopes. The
signal is affected by uncertainties on the atmospheric neutrino flux models and the
neutrino-nucleon cross-sections in sea water, as well as by the detector performances,
like thresholds and resolutions. The effect of these individual systematic uncertainties
on the final signal strength has been quantified and the physics reach of ANTARES and
ORCA explored.

The major objectives of the thesis can be grouped as follows:
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• Search for NSIs with 10 years of ANTARES: The atmospheric muon-neutrino
disappearance data collected by ANTARES in the period 2007–2016 has been
analysed and bounds on the NSI phase space in the µ − τ sector has been
constructed.

• Sensitivity to NSIs at ORCA: Future sensitivities at ORCA towards the discovery of
NSIs with three years of run-time has been evaluated.

• Effect of NSIs on neutrino mass ordering (NMO) at ORCA: Apart from the standard
8 fold octant–ordering–CP-phase degeneracy, the presence of NSI causes additional
degeneracies, which might affect the determination of neutrino mass ordering at
ORCA. The impact of various NSI parameters on the ORCA sensitivity to the NMO
has been explored.

• Sensitivity to the octant of θ23 at ORCA: Non-zero θ13 drives large matter effects in
atmospheric neutrino oscillations and can be used to study deviations of θ23 from
maximal mixing and deciphering its octant. The projected sensitivity of ORCA to
the θ23 octant has been estimated for an exposure of three years.

Theory: Neutrino Oscillations and Non-Standard Interactions

Neutrinos {να} (α representing the flavour family) are produced in charged current
(CC) and neutral current (NC) weak interaction processes. Each (neutrino) flavour
eigenstate να is a quantum superposition of multiple mass eigenstates {νi} with masses
mi. Oscillations are generated due to interference between different massive neutrinos
{νi}, which are produced and detected coherently as {να} with small mass differences.
This implies that when a neutrino of a certain flavour (say να) is produced in a
weak interaction process and propagates through space (or medium), each of the mass
eigenstates {νi} travel with different speed leading to a phase lag between them. After
a certain distance, the composition of the mass eigenstates is different from the initial
state. The final composition of mass eigenstates might constitute a neutrino of completely
different flavour {νβ : β 6= α}. This process of transmutation of flavour from a να into a
νβ is called neutrino oscillation. It is basically analogous to the quantum mechanics of
mixed states, which itself is equivalent to the classical theory of coupled oscillators. Let
us discuss the theory of neutrino oscillations in a quantitative way in the following.

In the standard theory of neutrino oscillations4 with n number of light neutrino
generations5, a neutrino flavour eigenstate can be expressed as a linear superposition
of n mass eigenstates (or the other way round):

|να〉 =
n

∑
i=1

U∗αi|νi〉, (or |νi〉 = ∑
α

Uαi|να〉, ) (10)

where Uαi is the mixing matrix, which relates the mass basis {νi} (eigenstates of the
Hamiltonian) to the flavour basis {να} (eigenstates of the gauge group). Uαi satisfies
the following conditions:

U†U = In×n, ∑
i

UαiU∗βi = δαβ, ∑
α

UαiU∗αj = δij. (11)

4For a concrete derivation, see [47].
5Precision measurement of the decay width of Z at LEP [48] indicate that there are three generation of

neutrinos, (accompanying their charged lepton partners) which take part in weak interactions.
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The Latin indices i, j = 1, 2, 3... correspond to the mass eigenstates, while the Greek
indices α, β = e, µ, τ.... correspond to the flavour eigenstates.

The amplitude of |να〉 → |νβ〉 transition as a function of time is given by

Aνα→νβ
(t) = 〈να|νβ〉t = ∑

i
U∗αiUβie−iEit. (12)

The transition probability then reads

Pνα→νβ
(t) = |A|να〉→|νβ〉(t)|2 = ∑

i,j
U∗αiUβiUαjU∗βje

−(Ei−Ej)t. (13)

For ultra relativistic neutrinos (Ei ' Pi +
m2

i
2E in the limit m2

i � Pi), assuming same
momentum for all massive neutrino components (Pi = P ∀ i) and using light-ray
approximation (t ' L (c = 1)), the transition probability can be approximated by [47,
49]

Pνα→νβ
(L) = δαβ − 4 ∑

i>j
Re[U∗αiUβiUαjU∗βj] sin2 φij

± 2 ∑
i>j

Im[U∗αiUβiUαjU∗βj] sin 2φij,
(14)

where

φij = ∆m2
ij

L
4Eν
' 1.267∆m2

ij
L
Eν

[eV2][km]

[GeV]
. (15)

The coefficients of the massive neutrino components of flavour antineutrinos are simply
related to the corresponding coefficients of massive neutrino components of flavour
neutrinos by complex conjugation Uαi → U∗αi. Hence, the antineutrino oscillation
probabilities differ from the corresponding neutrino oscillation probabilities only in the
sign of the terms depending on the imaginary parts of the quartic products of the mixing
matrix elements. The imaginary part in Eq. 27 depends on whether neutrinos (+) or
antineutrinos (−) are considered.

The oscillation process is determined by the Pontecorvo-Maki-Nakawaga-Sakata mixing
matrix (PMNS) [14, 13] and the difference of squared masses. In the conventional
three-flavour scheme with Dirac neutrinos, the relevant parameters are three mixing
angles, θ12, θ13, θ23, two mass-squared differences, ∆m2

21, ∆m2
31, and one CP phase, δCP.

Our present knowledge of these parameters can be summarised as follows: θ12 ≈ 31–36◦,
θ13 ≈ 8–9◦, θ23 ≈ 41–51◦, ∆m2

12 ≈ 7–8 × 10−5 eV2, | ∆m2
23 | (≈ | ∆m2

13 |) ≈ 2.4–2.6 × 10−3

eV2 and δCP ≈ 200 – 350◦. We ignore if θ23 is in the first or second octant, the sign of ∆m2
23

(the mass ordering) and we lack an accurate determination of δCP (see review 14 in [225]
for conventional definitions and further details).

When neutrinos propagate in matter, their evolution is further affected by interactions
with the medium due to the coherent forward elastic scattering of neutrinos with matter.
The overall effect can be described by effective potentials associated to the charged (CC)
and neutral (NC) currents. In the case of neutrinos travelling through Earth, the only
relevant potential is the one stemming from the electron neutrino components interacting
with electrons in matter, that turns out to be [24]: VCC =

√
2 GF ne, where GF is the Fermi
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coupling constant and ne is the electron number density across the neutrino path. The
relevant Hamiltonian is:

H3ν =
1

2Eν
UM2U† + VCC diag(1,0,0), (16)

where U, the PMNS mixing matrix, performs the rotation of the relevant mass matrix
M2 = diag(0, ∆m2

21, ∆m2
31) in the neutrino flavour space.

The existence of NSI can be described as a new potential that will translate into an
additional term in the Hamiltonian:

HNSI = VCC
n f

ne
ε, (17)

where n f and ne are the fermion and electron number density along the neutrino path
and neutrinos are assumed to interact with down quarks which are roughly three times
as abundant as electrons, n f = nd ≈ 3 ne and the matrix ε (εα β, α, β = e, µ, τ) gives the
strength of the NSI. The diagonal terms of this matrix, if different from each other, can
give rise to the violation of leptonic universality, while the off-diagonal terms can induce
flavour changing neutral currents, which are highly suppressed in the SM. Hermiticity,
unitarity constraints and the tracelessnes of the ε matrix reduce its components to six
effective parameters [226]. Furthermore, in an experiment like ANTARES in which the
atmospheric neutrino flux is highly dominated by νµ transforming mainly to ντ, the main
contribution to NSI would come from the matrix elements with α, β = µ or τ. Moreover,
it is customarily assumed that εµµ ≈ εττ. Therefore, in our analysis we will investigate
the two real parameters εττ and εµτ.

The dominant atmospheric neutrino oscillation νµ → ντ gives rise to the disappearance
of νµ’s, whose magnitude depends on their energy and path length. Since a neutrino
telescope as ANTARES mainly detects νµ CC interactions that yield track-like events, the
influence of neutrino oscillations can be studied measuring the deficit of these events as
a function of their energy and arrival direction. In the range from ∼10 GeV to above
∼100 GeV, the detector is able to provide an estimate of the neutrino energy measuring
the muon range [60]. Furthermore, given the actual values of θ23 and ∆m2

23, the effect
of the νµ → ντ oscillation is important in that energy range: a minimum of the survival
probability takes place at ∼25 GeV and the νµ deficit is noticeable up to 100 GeV [60].

NSI are expected to have sub-dominant effects and therefore they would be observed
as deviations from the distributions of the the energy and arrival direction expected for
standard oscillations. As an example of the expected effect, we show in in Fig. 1 the
variation of the oscillation pattern due to NSI. The difference of the survival probabilities
for the NSI and the standard oscillations cases is shown as a function of cos θz and
Eν. The left plot shows the difference for neutrinos and the right plot for antineutrinos.
Normal ordering is assumed in both cases. Although the NSI effects are anti-symmetric
for neutrinos and anti-neutrinos, they are not exactly opposite, thereby leading to small
but appreciable effects at a charge-blind isoscalar detector as ANTARES. The plots have
been produced for a value of εµτ of 0.01, to which most of the current neutrinos telescopes
are sensitive. The effect of NSI is more prominent for vertical events (cos θz ≈ 1) and
since NSI shift the minima of the oscillation, they also produce more impact at the
corresponding energies, although the effect of NSI on the survival probability extends
to higher energies.
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Figure 1: NSI induced modifications in νµ (left) and ν̄µ (right) disappearance probabilities as a
function of the neutrino energy and cosine of the zenith angle. The NSI test point has
been set at εµτ = 0.01. Normal ordering is assumed.

Instrument: Neutrino Telescopes

The term neutrino telescope refers to an array of optical devices arranged in a definite
geometry within a large volume of natural (and transparent) medium with the objective
of detecting Cherenkov radiation from neutrino interactions [126]. The directional
sensitivity is the reason to call them telescopes.

ANTARES

ANTARES (acronym for Astronomy with a Neutrino Telescope and Abyss environmental
RESearch) [130] is an under-water neutrino telescope located 40 km offshore from
Toulon, France at (42◦ 48′ N, 6◦ 10′ E), anchored about 2475 m below the surface of the
Mediterranean Sea. The first line was deployed in March 2006 and the detector was
completed in May 2008.

Fig. 2 shows a schematic view of the ANTARES detector. ANTARES consists of 12 vertical
detection lines, instrumented in an octagonal configuration with a (horizontal) separation
of 60–75 m. The lines are anchored to the sea floor by means of a titanium structure
(Bottom String Socket) acting as a dead weight and buoy on its top to stay vertical (optical
modules have also their own buoyancy). Each line holds 25 storeys (apart from line 12
with 20 storeys) starting 100 m above the sea floor with a (vertical) separation of 14.5 m
amounting to a total height of 450 m. The instrumented volume of ANTARES is ∼ 0.01
km3.
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Figure 2: Schematic diagram of the ANTARES detector. Photos of two storeys holding optical and
acoustic equipment are shown. From [130].

KM3NeT

KM3NeT (acronym for KiloMetre cube Neutrino Telescope) [66] is a next generation
deep-sea Cherenkov neutrino observatory, currently under construction in the
Mediterranean Sea. Based on the granularity of the optical modules (to target different
neutrino energy regimes), KM3NeT will house two detector sub-arrays:

• ORCA (Oscillation Research with Cosmics in the Abyss): densely instrumented
sub-array of ∼ 5 × 10−3 km3 volume, located offshore of Toulon, France at (42◦41′

N, 6◦02′ E), designed primarily for studying neutrino properties and low-energy
astrophysics;

• ARCA (Astroparticle Research with Cosmics in the Abyss): sparsely instrumented
sub-array of ∼ 1 km3 volume, located offshore of Sicily, Italy at (36◦16′ N, 16◦06′

E), designed primarily for detection of high-energy cosmic neutrinos and neutrino
astronomy.

The term "ORCA" ("ARCA") will be used henceforth to designate the KM3NeT-ORCA
(-ARCA) detector.

The three-dimensional array built in a particular layout is called a “building block”
(BB). KM3NeT will consist of two BBs for ARCA and one BB for ORCA to reach the
desired instrumented volumes. Fig. 3 shows a schematic view of one BB of the KM3NeT
detector. Each building block will consist of a three-dimensional array of ∼ 64,000 PMTs
distributed among 115 detection strings (also known as "DUs"6) with 18 spherical Digital
Optical Modules (DOMs) per line. Starting about 40 m (80 m) from the sea floor, the DUs
of ORCA (ARCA) are 200 m (700 m) high, horizontally separated by about 20 m (95 m),
with 18 DOMs spaced 9 m (36 m) apart in the vertical direction.

6The terms "DU", "string" and "line" have been used interchangeably in this thesis.
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Figure 3: Conceptual view of the KM3NeT detector. The blue line represents an up-going
neutrino undergoing νµ–CC interaction close to the fiducial volume leading to track-like
event and creating a Cherenkov cone along its path. From KM3NeT internal
documentation.

Methodology

An event-by-event separation of the NSI signal at the detectors is too challenging. What
is possible is to look for a statistical excess or deficit of neutrino plus antineutrino events
at the detectors predicted with a certain NSI test hypothesis. The first step is to compute
the number of events corresponding to a specific oscillation hypothesis with or without
NSI. The total number of charged current muon neutrino events expected at the detector
for a certain runtime t is given by:

d2NCC
µ

dE d cos θ
=

( d2φνµ

dE d cos θ
Pµµ +

d2φνe

dE d cos θ
Peµ

)
× σCC

νµ
ACC

νµ
× t

+

( d2φν̄µ

dE d cos θ
Pµ̄µ̄ +

d2φν̄e

dE d cos θ
Pēµ̄

)
× σCC

ν̄µ
ACC

ν̄µ
× t.

(18)

Nµ is the number of detected muon events within the range of energy dE and cosine
of zenith angle d cos θ; φνx (φν̄x ) is the atmospheric flux of neutrinos (antineutrinos) of
flavour x at the detector site; Pαβ is the probability of oscillation of a neutrino flavour
να to a neutrino flavour νβ; σCC

νµ
is the charged current cross-section of muon neutrino

with nucleons in sea water; ACC
νµ

(ACC
ν̄µ

) is the energy and zenith angle dependent effective
area of the detector corresponding to muon neutrinos (antineutrinos) undergoing CC
interaction within the detector.

However, the detector cannot separate (νe, νe, νµ, νµ, ντ, ντ - CC) and (ν, ν - NC) events.
Depending on the Cherenkov signatures of the outgoing lepton from the νe and νµ CC
and NC interactions, two distinct event topologies are observed at the detector: track-like
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and shower-like events. νµ CC and ντ CC interactions with muonic τ decays mostly
account for the track-like topology, since the outgoing muon appears as a track within the
detector. The shower-like topology corresponds to events from νe CC, ντ CC interactions
with non-muonic τ decays and NC interactions of all flavours. The eight distributions
indexed by interaction type X ∈ {(νe, νe, νµ, νµ, ντ, ντ - CC) and (ν, ν - NC)} are merged
and split into two distributions corresponding to the two event topologies: tracks and
showers.

The method to estimate the sensitivity to a test parameter in a model hypothesis is based
on a binned likelihood approach [196]. In the case of a Poissonian distribution of event
numbers, the test statistic after inclusion of Gaussian penalty terms reads

− 2LLR(λ, n) = 2 · ∑
i∈{bins}

[
λi(ō, s̄)− ni + ni ln

(
ni

λi(ō, s̄)

)]
+ ∑

j∈{syst}

(sj − ŝj)
2

2σ2
j

. (19)

The number of predicted events λi in the ith bin is a function of the set of oscillation
parameters, ō, as well as on the the set of parameters related to systematic uncertainties,
s̄. The second term runs over penalty terms of the number, j, of nuisance parameters,
ŝj and σ2

j being the assumed prior and Gaussian standard deviation of the parameter j,
respectively.

The individual contributions from track and shower classes are summed to compute the
total significance, σtot:

σtot =
√
−2LLR(λ, n)

=

√
(−2LLR)

∣∣∣
tracks

+ (−2LLR)
∣∣∣
showers

(20)

The value of σtot indicates the level of agreement or disagreement between a model
prediction λ(ō, s̄) and the dataset n and quantifies the sensitivity of the detector to that
particular model hypothesis given a certain runtime.

Systematics

Tab. 1 summarises the exhaustive list of systematic parameters considered in the fit, along
with their statistical treatment (fixed or fitted), nominal values and external constraints,
if used. They can be grouped in four categories:
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Nuisance parameters Treatment Nominal values Priors
Oscillation
θ12(

◦) fixed 33.82 -
θ13(

◦) fitted 8.60 0.13
θ23(◦) fitted 48.6 free
δCP(

◦) fitted 221 free
∆m2

21(×10−5eV2) fixed 7.39 -
∆m2

31(×10−3eV2) fitted 2.528 free
Flux
Track norm. fitted 1 free
Shower norm. fitted 1 free
Middle norm. fitted 1 free
νµ/νe skew fitted 0 5%
νµ/νµ skew fitted 0 5%
νe/νe skew fitted 0 5%
Energy slope (∆γ) fitted 0 5%
Zenith slope fitted 0 2%
Cross-section
NC scale fitted 1 5%
Detector
Energy scale fitted 1 10%

Table 1: The list of systematics studied in the NSI ORCA analysis, along with their statistical
treatment, injected nominal and prior values (if any).
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• Oscillation parameters: The solar parameters (θ12, ∆m2
21) are kept fixed at their

nominal values (adopted from NuFit v4.1 [90]), since ORCA being an atmospheric
oscillation experiment is not very sensitive to them. The mixing angle θ13 has a
large effect on oscillation probabilities. Hence existing experimental constraints
are used to exploit the full potential of ORCA for estimating the sensitivity to the
NSI parameters. It is reflected by a prior of 0.13◦. No priors are used on the
atmospheric oscillation parameters (θ23, ∆m2

31) and δCP since they are also supposed
to be measured by ORCA. Due to the degeneracy between the octant of θ23 and the
sign of ∆m2

31 (+/− correspond to NO/IO), a starting value of θ23 in both octants
(θ23 < 45◦ ∈ lower octant or θ23 > 45◦ ∈ higher octant) is chosen and the minimum
value of−2 lnL is stored. The effect of these uncertainties on oscillation parameters
on the final event distributions are shown in Fig. 4.31 to Fig. 4.34.

• Flux systematics: Systematic parameters compared to atmospheric neutrino flux
uncertainties are considered. The total number of events in each event class has
an associated normalisation factor: "Track norm.", "Middle norm." and "Shower
norm.", which is fitted without any constraint. This also takes into account
the uncertainty on the effective mass and on the interaction cross-sections of
neutrinos. The effective change in the event numbers in any [E, cos θz] bin is
directly proportional to the normalisation factor.

The ratio between the total number of νµ and νe ("νµ/νe skew" ), νµ and νµ ("νµ/νµ

skew") and νe and νe ("νe/νe skew") events are allowed to vary with a standard
deviation of 5% of the parameter nominal value. The prior value (5%), which is
independent of energy and zenith angle, is more conservative than the current
estimated flux uncertainties [207]. The effect of these uncertainties on the final event
distributions are shown in Fig. 4.35 to Fig. 4.37.

The "energy slope" error ∆γ, applied as a function of Eγ
ν , accounts for a change in

the neutrino spectrum due to uncertainties in the primary cosmic ray spectrum.
The energy slope error is allowed to vary within ±5% around its central value of
∆γ = 0. Similarly, the uncertainty on the ratio of up-going to horizontal-going
neutrinos, named "zenith slope", is allowed to vary with a standard deviation of 2%
of its nominal value. The effect of these uncertainties on the final event distribution
is shown in Fig. 4.38 and Fig. 4.39.

• Cross-section systematics: While lepton universality means the cross section ratios
between flavours are well known, the same is not necessarily the case for the ratio
between CC and NC events. Therefore, the neutral current event normalisation
is also fitted with a prior of 5%. Uncertainties on the absolute CC and NC
cross-sections are not considered in this study. However they would be somewhat
absorbed within the flux normalisations. The effect of NC scale normalisation on
the final event distribution is shown in Fig. 4.40.

• Detector systematics: Among the systematic parameters incorporated into this
analysis, the track, middle and shower normalisations and energy scale can be
considered detector effects. The energy scale depends on the PMT efficiencies and
water properties [179]. If events are systematically brighter or less bright than
expected, this will cause a shift to the normalisation of the effective mass. This
is accounted in the energy scale which is fitted with a 10% Gaussian width across
its nominal value.
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Results

The results of the four physics analyses have been summarised in subsequent subsections
below for both mass orderings: Normal Ordering (NO) and Inverted Ordering (IO). The
results of the search for NSIs with ANTARES and the performance estimation of ORCA
has been grouped together for brevity. This is followed by the estimation of the neutrino
mass ordering resolution at ORCA in presence of NSIs. The last one corresponds to the
resolution of the octant of θ23 at ORCA.

Search for NSIs with ANTARES and KM3NeT-ORCA

A first ANTARES analysis looking for NSIs in the atmospheric neutrino oscillation data
has been presented. No significant excess/deficit was observed and the data was found
consistent with standard oscillation hypothesis at > 2.2σ. This resulted in limits in the
NSI µ− τ sector.

For KM3NeT-ORCA, final event templates are simulated for a predicted exposure of
3 years of running. The expected event numbers are weighted according to various
possible NSI signal hypotheses in order to explore the detection potential of ORCA
towards NSIs. The ANTARES limits and ORCA sensitivities are shown in Fig. 4 to Fig. 6
along with comparisons from other experiments.
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Figure 4: 90% (top) and 99% (bottom) C.L. limits (blue solid curve) in the εµτ − εττ phase space
set after 10 years of ANTARES running obtained in this work, shown along with
MC-only sensitivities with ANTARES (blue dashed) and ORCA (red) and limits from
Super-K [192].
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Figure 5: 90% C.L. limits (blue solid curve) in the εeτ − εττ phase space set after 10 years of
ANTARES running obtained in this work, shown along with MC-only sensitivities with
ANTARES (blue dashed) and ORCA (red) and limits from Super-K [192].

30− 25− 20− 15− 10− 5− 5 10

3−10×

τµ∈ 
0

1

2

3

4

5

6

7

8

9

10

 L
LR

∆
-2

S
up

er
-K

 L
im

its

ANTARES Limits
ANTARES Sensitivity
ORCA Sensitivity
DeepCore Limits

Normal Ordering

ANTARES/KM3NeT Preliminary

Figure 6: Limits on εµτ phase space (blue solid curve) set after 10 years of ANTARES running
obtained in this work, shown along with MC-only sensitivities with ANTARES (blue
dashed) and ORCA (red) and limits from Super-K [192].

The limits for NSI obtained with 10 years of atmospheric muon disappearance data
collected by ANTARES is more stringent than allowed by current experimental limits,
thereby constitutes the world’s-best limits in the µ − τ sector. ORCA demonstrates
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an excellent potential to put tighter constraints on various NSI parameter spaces by
one order of magnitude better than what is allowed by current experimental limits.
Finally, expected bounds on NSIs with ORCA are collected in Tab. 2 and the limits from
ANTARES in the µ− τ sector are defined in Eq. 21 and Eq. 22.

NSI Couplings Assumed True NMO Bounds (90% C.L.)
εeµ NO (−1.7× 10−2, 1.7× 10−2)

IO (−2.0× 10−2, 2.0× 10−2)
εeτ NO (−1.8× 10−2, 2.1× 10−2)

IO (−3.1× 10−2, 2.7× 10−2)
εµτ NO (−1.7× 10−3, 1.7× 10−3)

IO (−1.7× 10−3, 1.7× 10−3)
εττ NO (−0.8× 10−2, 1.1× 10−2)

IO (−1.1× 10−2, 0.8× 10−2)

Table 2: Bounds on NSI of neutrinos with d-quarks at 90% C.L. for a runtime of 3 years of full
ORCA comprising 115 DUs with 20 m horizontal DU spacing. Only one NSI parameter
is considered at a time.

−4.2× 10−3 < εµτ < 2.7× 10−3 (at 90% C.L),
−6.1× 10−2 < εττ < −2.1× 10−2 and 2.1× 10−2 < εττ < 7.3× 10−2 (at 90% C.L).

(21)

−3.8× 10−3 < εµτ < 1.6× 10−3 ∀ εττ = 0 (at 90% C.L), (22)

Impact of NSIs on the NMO sensitivity at KM3NeT-ORCA

The sensitivity of ORCA towards the neutrino mass ordering (NMO) in the light of an
assumed NSI hypothesis is presented in Fig. 7. This incorporates the uncertainty of fitting
models to experimentally observed oscillation spectra and emphasizes the importance of
testing different frameworks high precision measurements of oscillation parameters. In
case of true IO, the NMO resolution at ORCA can be significantly impaired in presence
of sub-dominant effects in neutrino oscillations coming from NSIs depending on the true
value of θ23. The effect is negligible if the true mass ordering in normal. Hence, the
presence of NSIs can affect the physics potential of ORCA in measuring the standard
oscillation parameters.
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Figure 7: Projected sensitivity to the NMO after 3 years of ORCA run time, as a function of true
θ23, for NO (red) and IO (blue) assumptions, with a global best-fit δCP of 221◦ (228◦) for
NO (IO) assumptions. Dashed (solid) lines refer to the case when the NSI parameters
are simultaneously fitted (fixed at 0).

Sensitivity to the octant of θ23 at KM3NeT-ORCA

We have investigated how many years it would require for ORCA to make a 1/2/3σ C.L.
measurement of the octant, depending on the true NMO and true θ23. The results are
shown in Fig. 8 and Fig. 9. Sensitivity curves referring to minimization over the ordering
are also included.

The “shoulders” at θ23 ∼ 42◦ (true NO) and θ23 ∼ 49◦ (true IO) correspond to the regions
where the uncertainty in the true knowledge of the NMO degrades the octant sensitivity
and leads to an increase in the exposure time required to determine it. If the true ordering
is NO, testing for a wrong octant solution within the IO has a significant effect on the
octant sensitivity for θ23 < 42◦. For true IO, testing for a wrong octant solution within
the NO has rather mild effect on the octant sensitivity for θ23 > 49◦.
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Figure 8: Exposure time in years required for ORCA to exclude the wrong octant of θ23 at 1/2/3σ
C.L., as a function of true θ23 for true NO assumption. The solid curves refer to the test
ordering being kept fixed at the truth, while for the dashed curves it is treated as a free
parameter in the fit.
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Figure 9: Exposure time in years required for ORCA to exclude the wrong octant of θ23 at 1/2/3σ
C.L., as a function of true θ23 for true IO assumption. The solid curves refer to the test
ordering being kept fixed at the truth, while for the dashed curves it is treated as a free
parameter in the fit.

ORCA is projected to make a 1σ C.L. determination of the octant of θ23 within less than a
year if the NO is true and either θ23 < 42.5◦ or θ23 > 47.6◦, or if the IO is true and either
θ23 < 42.2◦ or θ23 > 48.0◦. A five-year measurement at the 1σ C.L. is achieved for NO
and θ23 < 42.2◦ or θ23 > 46.2◦, or for IO and θ23 < 42.4◦ or θ23 > 47.0◦.
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Conclusions

Atmospheric neutrinos and antineutrinos of muon and electron flavours represent a rich
source of information on neutrino oscillations stemming from its energy and zenith angle
dependent multi-layer matter effects. In the light of high statistics atmospheric neutrino
experiments, ANTARES and KM3NeT can make strong contributions in understanding
of neutrinos as well in the precise measurement of neutrino oscillation parameters.

Studies explored in the scope of this thesis indicate that ORCA is going to be the first
atmospheric experiment to measure the neutrino mass ordering with a significance of
3σ. However, before ascribing any measurement to the oscillation parameters in the
standard vanilla three-flavour neutrino paradigm, it is crucial to study the correlations
and degeneracies that might arise due to extra parameters from new physics scenarios
like NSIs. ORCA is expected to constrain many of such exotic physics cases that might
contribute to the signal in the extraction of standard oscillation parameters. Moreover,
ORCA is envisaged to precisely determine the value of θ23 with just few months of data
taking.

Apart from this, the possibility of sending a neutrino beam from Protvino, Russia
to ORCA (project nicknamed P2O) to measure CP violation in the neutrino sector is
underway [70]. P2O will provide unparalleled sensitivity to matter effects in Earth,
thereby allowing a measurement of CP violation at >2σ level within 15 years at a modest
beam power of 90 kW (≈ 0.8 × 1020 protons on target). The prospect of a ten times
denser ORCA configuration, a so-called Super-ORCA [227], is also under consideration.
Super-ORCA can probe the neutrino mass ordering (NMO) at >2σ level within 5 years.
In this exciting era of neutrino physics, ANTARES and KM3NeT can make significant
contributions in addressing many unresolved issues in particle physics by studying
neutrinos at the abyss of the Mediterranean sea.
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Resumen

"La luz pienŊa que viaja m«aŊ r«apido que cualquier

coŊa, pero Ŋe equivoca. No importa cu«an r«apido

viaje la luz, Ŋiempre encuentra que la oŊcuridad ha

llegado all«“ anteŊ y le eŊt«a eŊperando"

— TERRY PRATCHETT,
El Segador.

Durante las últimas décadas, una plétora de evidencias, acumuladas en experimentos
solares [29], atmosféricos [223], de aceleradores [224] y de reactores [36, 38, 39], ha
demostrado la transformación del sabor de los neutrinos cuando se propagan a través
de distancias macroscópicas. Este fenómeno, llamado “oscilaciones de neutrinos”, es
explicado de manera simple por estados propios de sabor y de masa no degenerados. El
descubrimiento de las oscilaciones de neutrinos por sí mismo supone el estudio de nueva
física más allá del Modelo Estándar (MS). Aunque el paradigma del MS con neutrinos
masivos, mezcla y oscilaciones se ha comprobado por multitud de experimentos, hay
algunas señales experimentales que no han podido ser acomodadas por este modelo,
lo que motiva el estudio de nueva física más allá del Modelo Estándar. El estudio de
interacciones no estándar de neutrinos (INE o NSIs por sus siglas en inglés) con los
fermiones de la materia proporciona una sonda para estudiar la naturaleza de nueva
física.

Se espera que la presencia de interacciones adicionales de neutrinos produzca una
modificación significativa en los espectros de sucesos predichos por las oscilaciones
estándar de tres sabores de neutrinos. El telescopio de neutrinos ANTARES y la
configuración de bajas energías de su sucesor, KM3NeT-ORCA, tienen el potencial
de medir oscilaciones de neutrinos atmosféricos con buena precisión para efectos
subdominantes provenientes de nueva física como las INE.

Objetivos

Esta tesis tiene por objetivo el desarrollo de una estrategia para identificar la señal de
interacciones no estándar de neutrinos (INE) en los observatorios ANTARES y ORCA. La
señal está afectada por incertidumbres en los modelos de flujos de neutrinos atmosféricos
y en las secciones eficaces neutrino-nucleón en el agua, así como en las características
del detector como su umbral y sus resoluciones. Se ha cuantificado el efecto de estas
incertidumbres sistemáticas en la intensidad de la señal y se ha explorado el alcance de
física de ANTARES y ORCA.

Los objetivos principales de la tesis se han agrupado de la siguiente manera:
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• Búsqueda de INE con diez años de datos de ANTARES: Los datos de desaparición
de neutrinos muónicos atmosféricos tomados por ANTARES en el periodo
2007-2016 se han analizado y se han puesto límites en el espacio de fase de las
INE en el sector µ− τ .

• Sensitividad a INE en ORCA: Se ha evaluado la futura sensitividad de ORCA para
el descubrimiento de INE en tres años de funcionamiento.

• El efecto de las INE en el ordenamiento de las masas de los neutrinos (OMN) en
ORCA: Además de las degeneraciones óctuples estándar en octante-ordenamiento
y fase CP, la presencia de INE causa degeneraciones adicionales, que pueden
afectar la determinación del ordenamiento de masas con ORCA. Se ha explorado el
impacto de varios parámetros de INE en la sensitividad de ORCA.

• Sensitividad de ORCA al octante de θ23: El valor no nulo de θ13 lleva a grandes
efectos de materia en las oscilaciones de neutrinos atmosféricos y puede ser usado
para estudiar la desviación de θ23 respecto al ángulo máximo de mezcla y aclarar
su octante. Se ha estimado la sensitividad de ORCA para el octante θ23 para una
exposición de tres años.

Teoría: Oscilaciones de neutrinos e interacciones no estándar

Los neutrino, {να} (donde α representa la familia de sabor) son producidos en procesos
de interacción débil de corrientes cargadas (CC) y corrientes neutras (NC). Cada estado
propio de sabor {να} es una superposición cuántica de varios estados propios de masa mi.
Las oscilaciones se generan debido a la interferencia entre distintos neutrinos masivos
que son producidos y detectados coherentemente como {να} con pequeñas diferencias
de masa. Esto implica que cuando un neutrino de un cierto sabor (por ejemplo {να} es
producido en un proceso de interacción débil y se propaga a través del espacio (o un
medio), cada estado propio de masa viaja con una velocidad diferente, dando lugar a un
retraso de fases entre ellos. Después de cierta distancia, la composición de los estados
de masa puede hacer que se detecte como un estado de sabor diferente. Este proceso
de transmutación de un sabor {να} en {νβ} se conoce como oscilaciones de neutrinos. Es
análogo a los estados cuánticos de mezcla, que son a su vez equivalentes a los osciladores
acoplados en mecánica clásica. Podemos discutir la teoría de las oscilaciones de neutrinos
en un modo cuantitativo de la siguiente manera. En la teoría estándar de oscilaciones de
neutrinos con n generaciones de neutrino ligeros, un estado propio de sabor puede ser
expresado como una superposición lineal de estados de masa (o viceversa):

|να〉 =
n

∑
i=1

U∗αi|νi〉, (or |νi〉 = ∑
α

Uαi|να〉, ) (23)

donde Uαi es la matriz de mezcla, que relaciona la base de sabor (los estados propios del
hamiltoniano) con la base de sabor (los estados propios de grupo gauge). Uαi satisface las
siguientes condiciones:

U†U = In×n, ∑
i

UαiU∗βi = δαβ, ∑
α

UαiU∗αj = δij. (24)

Los índices latinos i, j = 1, 2, 3...corresponden a los estados propios de masa mientras que
los índices griegos α, β = e, µ, τ.... corresponden a los autoestados de sabor.
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La amplitud de la transición |να〉 → |νβ〉 en función del tiempo es

Aνα→νβ
(t) = 〈να|νβ〉t = ∑

i
U∗αiUβie−iEit. (25)

La probabilidad de transición queda como

Pνα→νβ
(t) = |A|να〉→|νβ〉(t)|2 = ∑

i,j
U∗αiUβiUαjU∗βje

−(Ei−Ej)t. (26)

Para neutrinos ultra-relativistas, (Ei ' Pi +
m2

i
2E en la limita m2

i � Pi), asumiendo el mismo
momento para tods las componentes de neutrinos masivos, (Pi = P ∀ i) y usando la
aproximación de rayo de luz (t ' L (c = 1)), la transición se puede aproximar como [47,
49]:

Pνα→νβ
(L) = δαβ − 4 ∑

i>j
Re[U∗αiUβiUαjU∗βj] sin2 φij

± 2 ∑
i>j

Im[U∗αiUβiUαjU∗βj] sin 2φij,
(27)

donde

φij = ∆m2
ij

L
4Eν
' 1.267∆m2

ij
L
Eν

[eV2][km]

[GeV]
. (28)

Los coeficientes de las componentes de sabor de los antineutrinos neutrinos
están relacionados con los coeficientes correspondientes de los neutrinos como el
complejo-conjugado Uαi → U∗αi. Por lo tanto, las probabilidades de oscilación
correspondientes difieren solamente en el signo de los términos dependientes de las
partes imaginarias en los productos cuárticos de los elementos de la matriz de mezcla.
La parte imaginaria en la ecuación 5 depende de si los neutrinos (+) o antineutrinos (−)
son considerados.

El proceso de oscilación está determinado por la matriz de mezcla
Pontecorvo-Maki-Nakawaga-Sakata. (PMNS) [14, 13] y las diferencias de los cuadrados
de las masas. En esquema de tres sabores con neutrinos de Dirac, los parámetros
relevantes son los tres ángulos de mezcla, θ12, θ13, θ23, dos diferencias de masas al
cuadrado, ∆m2

21, ∆m2
31, y una fase CP, δCP. Nuestro actual conocimiento de estos

parámetros se puede resumir como: θ12 ≈ 31–36◦, θ13 ≈ 8–9◦, θ23 ≈ 41–51◦, ∆m2
12 ≈

7–8 × 10−5 eV2, | ∆m2
23 | (≈ | ∆m2

13 |) ≈ 2.4–2.6 × 10−3 eV2 y δCP ≈ 200 – 350◦..
Ignoramos si θ23 está en el primer o segundo octante, el signo de ∆m2

23 (el ordenamiento
de masas) y tampoco tenemos una determinación precisa de δCP (ver revisión 14 in [225]
para las definiciones convencionales y para más detalles).

Cuando los neutrinos se propagan en la materia, su evolución está además afectada
por las interacciones con el medio debido a la dispersión forward coherente de los
neutrinos con la materia. El efecto global se puede describir mediante potenciales
efectivos asociados a las corrientes cargadas (CC) y neutras (NC). En el caso de neutrinos
viajando a través de la Tierra, el único potencial relevante es el que viene de las
componentes de neutrino electrónico interaccionando con electrones de la materia, que
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resulta ser [24]:VCC =
√

2 GF ne, donde GF es la constante de Fermi yne es la densidad
número de electrones a lo largo del camino del neutrino. El hamiltoniano relevantes es:

H3ν =
1

2Eν
UM2U† + VCC diag(1,0,0), (29)

donde U, la matriz de mezcla PMNS, realiza la rotación de la matriz de masa M2 =
diag(0, ∆m2

21, ∆m2
31) en el espacio de sabor.

La existencia de INEs puede ser descrita como un nuevo potencial que se traducirá en un
nuevo término en el hamiltoniano.

H INE = VCC
n f

ne
ε, (30)

donde n f y ne son la densidad número de fermiones a lo largo del camino del
neutrino y se asume que los neutrinos interaccionan con los quarks down, que son
aproximadamente tres veces más abundantes que los electrones, n f = nd ≈ 3 ne y que
la matriz ε (εα β, α, β = e, µ, τ) da la fuerza de la INE. Los términos diagonales de esta
matriz, si son diferentes entre ellos, pueden dar lugar a la violación de la universalidad
leptónica, mientras que los elementos fuera de la diagonal pueden inducir corrientes
de neutras que cambien el sabor, algo fuertemente suprimido en el Modelo Estándar.
Condiciones de hermicidad y unitariedad y la falta de traza de la matriz ε reducen
sus componentes a seis parámetros efectivos [226]. Además, en un experimento como
ANTARES en el que el flujo de neutrinos atmosféricos está fuertemente dominado por νµ

transformándose principalmente en ντ, la principal contribución a INE vendría por los
elementos de matriz con α, β = µ or τ. Además, es usual asumir εµµ ≈ εττ. Por lo tanto,
en nuestro análisis investigaremos los dos parámetros reales εττ and εµτ.

La oscilación dominante atmosférica νµ → ντ da lugr a la desaparición de νµ’s, cuya
magnitud depende de su energía y camino. Dado que un telescopio de neutrinos como
ANTARES detecta principalmente interacciones νµ CC que dan lugar a eventos de traza,
la influencia de las oscilaciones de neutrinos se puede estudiar midiendo el déficit de esos
sucesos como función de su energía y dirección de llegada. En el intervalo de ∼10 GeV
hasta más de∼100 GeV, el detector es capaz de proporcionar una estimación de la energía
del muon a partir de la medida del rango del muon [60]. Además, dados los valores
actuales de θ23 y ∆m2

23, el efecto de la probabilidad de oscilación νµ → ντ es importante
en ese intervalo de energía: un mínimo de la probabilidad de supervivencia ocurre a
unos 25 GeV y el déficit de νµ es apreciable hasta 100 GeV [60].

Se espera que las INEs tengan un efecto sub-dominante y por tanto serían observdas
como desviaciones de las distribuciones de energía y direcciones de llegada respecto
a las oscilaciones estándar. Como ejemplo de los efectos esperados, mostramos en
la Fig. 10 la variación del patrón de oscilación debido a INE. La diferencia entre la
probabilidad de supervivencia para INE se muestran en función de cos θz y Eν. El
plot de la izquierda muestra la diferencia para neutrinos y el plot de la derecha, para
antineutrinos. Se asume ordenamiento normal en ambos casos. Aunque los efectos de
INEs son anti-simétricos para neutrinos y anti-neutrinos, no son exactamente opuestos,
lo que da lugar a diferencias pequeñas pero apreciables en detectores insensibles a la
carga isoscalar como ANTARES. Los plots han sido generados para un valor de εµτ

de 0.01, para el que la mayoría de los telescopios de neutrinos actuales son sensibles.
El efecto de INEs es más prominente para sucesos verticales (cos θz ≈ 1) y dado que
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las INEs desplazan el mínimo de oscilación, también producen mayor impacto a las
correspondientes energías, aunque el efecto de INEs en la probabilidad de supervivencia
se extiende a energías más altas.

Figure 10: INE inducen modificaciones en las probabilidades de desaparición de νµ (izquierda) y
ν̄µ (derecha) en función de la energía del neutrino y el coseno del ángulo cenital. El
punto de prueba INE se ha establecido en εµτ = 0.01. Se asume un orden normal.

Instrumento: Telescopios de neutrinos

El término telescopio de neutrinos se refiere a una red de dispositivos ópticos distribuidos
en un gran volumen de un medio transparente y natural con el objetivo de detectar la luz
Cherenkov de las interacciones de neutrinos [126]. La sensitividad a la dirección es la
razón de que se llamen telescopios.

ANTARES

ANTARES (acrónimo de Astronomy with a Neutrino Telescope and Abyss
environmentalRESearch) [130] es un telescopio de neutrinos submarine localizado
a 40 km de la costa de Tolón (Francia) a (42◦ 48′ N, 6◦ 10′ E), situado a 2475 m bajo
la superficie del mar Mediterráneo. La primera línea se instaló en marzo de 2006 y el
detector fue completado en mayo de 2008. La Fig. 11 muestra un esquema del detector
ANTARES. ANTARES consiste en 12 líneas de detección verticales instrumentadas en
una configuración octagonal con una separación horizontal de 60–75 m. Las líneas están
ancladas al lecho marino mediante una estructura de titanio (Bottom String Socket) que
actúa de peso muerto y una boya en su parte superior para que la línea permanezca
vertical (los módulos ópticos también tienen su propia flotabilidad). Cada línea tiene 25
pisos (salvo la línea 12 con 20 pisos) empezando a 100 sobre el fondo marino con una
separación vertical de 14.5 metros, lo que da una altura total de 450 m. El volumen total
instrumentado en ANTARES es ∼ 0.01 km3.
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Figure 11: Diagrama esquemático del detector ANTARES. Se muestran fotos de dos pisos con
equipamiento óptico y acústico. De [130].

KM3NeT

KM3NeT (acrónimo de KiloMetre cube Neutrino Telescope) [66] es un telescopio de
neutrinos de nueva generación actualmente en construcción en el mar Mediterráneo.
Según la granularidad de los módulos ópticos (para estudiar distintos intervalos de
energía de los neutrinos), KM3NeT albergará dos sub-detectores:

• ORCA (Oscillation Research with Cosmics in the Abyss): detector densamente
instrumentado de of un volume ∼ 5 × 10−3 km3, situado frente a la costa de Tolón
(Francia) en (42◦41′ N, 6◦02′ E), diseñado para estudiar las propiedades de los
neutrinos y astrofísica de bajas energías.

• ARCA (Astroparticle Research with Cosmics in the Abyss): detector instrumentado
con baja densidad, con un volumen de∼ 1 km3, localizado frente a la costa de Sicilia
(Italia) a (36◦16′N, 16◦06′ E), diseñado para la detección de neutrinos de alta energía
y astronomía de neutrinos.

Los términos ORCA y ARCA se usarán en lo que sigue para designar a los detectores
KM3NeT-ORCA y KM3NeT-ARCA respectivamente. La red tridimensional de cada
configuración particular se denomina “Building Block” (BB). KM3NeT consistirá en dos
BBs para ARCA y un BB para ORCA para alcanzar los volúmenes instrumentados
deseados. La Fig. 12 muestra una vista esquemática de uno de los BBs del detector
KM3NeT. Cada builiding block consistirá en una red tridimensional de 64,000 PMTs
distribuidos en 115 líneas de detección (también llamadas DUs) con 18 módulos digitales
(DOMs) por línea. Empezando a unos 40 m (80 m) del fondo marino, las DUs de ORCA
(ARCA) tienen una altura de 200 m (700 m) y están separados horizontalmente por unos
20 m (95 m), con 18 DOMs separados 9 m (36 m) verticalmente.
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Figure 12: Vista conceptual del detector KM3NeT. La línea azul representa un neutrino
ascendente que experimenta una interacción νµ - CC cerca del volumen fiducial que
conduce a un evento similar a una pista y crea un cono de Cherenkov a lo largo de su
trayectoria. De la documentación interna de KM3NeT.

Metodología

Una separación suceso a suceso de la señal de INE en los detectores es demasiado
complicada. Lo que es posible en cambio es buscar un exceso o déficit estadístico en
los sucesos de neutrinos y antineutrinos predichos por una determinada hipótesis test de
INE. El primer paso es calcular el número de sucesos correspondiente a una determinada
hipótesis de oscilación con o sin INE. El número total de sucesos de corriente cargada con
neutrinos muónicos esperado en el detector para un periodo t es:

d2NCC
µ

dE d cos θ
=

( d2φνµ

dE d cos θ
Pµµ +

d2φνe

dE d cos θ
Peµ

)
× σCC

νµ
ACC

νµ
× t

+

( d2φν̄µ

dE d cos θ
Pµ̄µ̄ +

d2φν̄e

dE d cos θ
Pēµ̄

)
× σCC

ν̄µ
ACC

ν̄µ
× t.

(31)

Nµ es el número de sucesos muónicos en el intervalo de energía dE y de coseno de ángulo
zenital d cos θ; φνx (φν̄x ) es el flujo de neutrinos (antineutrinos) de sabor x en la localización
del detector; Pαβ es la probabilidad de oscilación de un neutrino de sabor να a neutrino
de sabor νβ, σCC

νµ
es la sección eficaz de corriente cargada del neutrino con nucleones del

agua del mar; ACC
νµ

(ACC
ν̄µ

) es área efectiva del detector, dependiente de la energía y del
ángulo, correspondiente a neutrinos (antineutrinos) que ha sufrido una interacción CC
en el detector.

Sin embargo, el detector no puede separar sucesos (νe, νe, νµ, νµ, ντ, ντ - CC) y (ν, ν -
NC). Dependiendo de las señales Cherenkov de los leptones salientes de las interacciones
CC de νe y νµ, se observan dos topologías distintas en el detector: sucesos tipo traza y
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tipo cascada. Las interacciones CC νµ, CC y ντ con desintegración muónica del τ dan
cuenta de la mayoría de los muones que aparecen como traza en el detector. La topología
tipo cascada corresponde a sucesos de interacciones CC νe, CC ντ con desintegración
del tau no muónica y las interacciones de corriente cargada de cualquier sabor. Las ocho
distribuciones indexadas por tipoX ∈ {(νe, νe, νµ, νµ, ντ, ντ - CC) and (ν, ν - NC)} se han
mezclado en dos distribuciones correspondientes a las dos topologías: trazas y cascadas.

El método para estimar la sensitividad a un parámetro test en una hipótesis del modelo
está basado en una estrategia de verosimilitud con bines [196]. En el caso de distribución
poissoniana en el número de sucesos el test estadístico tras incluir los términos de
penalización gaussianos es

− 2LLR(λ, n) = 2 ∑
i∈{bins}

[
λi(ō, s̄)− ni + ni ln

(
ni

λi(ō, s̄)

)]
+ ∑

j∈{syst}

(sj − ŝj)
2

2σ2
j

. (32)

El número de sucesos predicho λi en el bin i-ésimo es una función de un conjunto de
parámetros, ō, así como del conjunto de parámetros relacionado con las incertidumbres
sistemáticas s̄. El segundo término corre sobre los términos de penalización j de los
parámetros de ruido, siendo ŝj y σ2

j los priors y la desviación estándar gaussiana del
parámetro j, respectivamente.

Las contribuciones individuales de las clases de traza y cascada se suman para calcular
la significancia total, σtot:

σtot =
√
−2LLR(λ, n)

=

√
(−2LLR)

∣∣∣
tracks

+ (−2LLR)
∣∣∣
showers

(33)

El valor de σtot indica el nivel de acuerdo o desacuerdo entre la predicción λ(ō, s̄) de un
modelo y el conjunto n de datos y cuantifica la sensitividad del detector a una hipótesis de
modelo particular dado un tiempo de funcionamiento.

Incertidumbres sistemáticas

La Tab. 3 muestra una lista exhaustiva de los parámetros de incertidumbres sistemáticas
considerados en el ajuste junto con su tratamiento (ajustados o fijos), valores nominales
y restricciones externas, si se usan. Pueden ser agrupados en cuatro categorías:
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Parámetros molestos Tratamiento Valor nominal Priors
Oscilación
θ12(

◦) fijos 33.82 -
θ13(

◦) ajustados 8.60 0.13
θ23(◦) ajustados 48.6 libre
δCP(

◦) ajustados 221 libre
∆m2

21(×10−5eV2) fijos 7.39 -
∆m2

31(×10−3eV2) ajustados 2.528 libre
Flujo
Normalización de la traza ajustados 1 libre
Normalización de las cascadas ajustados 1 libre
Normalización de los intermedios ajustados 1 libre
νµ/νe skew ajustados 0 5%
νµ/νµ skew ajustados 0 5%
νe/νe skew ajustados 0 5%
Pendiente de la energía (∆γ) ajustados 0 5%
Pendiente de zénit ajustados 0 2%
Secciones eficaces
Escala de NC ajustados 1 5%
Detector
Escala de energías ajustados 1 10%

Table 3: El listado de sistemáticas estudiadas en el análisis INE ORCA, junto con su tratamiento
estadístico, valores nominales y previos inyectados (si los hubiere).

• Parámetros de oscilación: los parámetros solares (θ12, ∆m2
21) se mantienen fijos

a su valor nominal (adoptado de NuFit v4.1 [90]), ya que ORCA, al ser un
experimento de oscilaciones atmosféricas, no es muy sensible a ellos. El ángulo
de mezcla θ13 tiene un efecto grande en las probabilidades de oscilación. Por tanto,
los límites experimentales actuales se han usado para aprovechar plenamente el
potencial de ORCA para estimar la sensitividad de los parámetros de INEs. Esto
se refleja en un prior de 0.13◦. No se han usado priores para los parámetros
de oscilación atmosféricos ((θ23, ∆m2

31) y δCP, ya que se supone que se medirán
por ORCA. Debido a la degeneración entre el octante de θ23 y el signo de ∆m2

31
(+/− corresponde a NO/IO), se usa un valor inicial de θ23 en ambos octantes
(θ23 < 45◦ ∈ primer octante o θ23 > 45◦ ∈ segundo octante) y se toma el
valor mínimo de −2 lnL. El efecto de estas incertidumbres en los parámetros de
oscilación se muestra en las Fig. 4.31 hasta Fig. 4.34.

• Incertidumbres en el flujo: Se han considerado los efectos sistemáticos de los
parámetros del flujo atmosférico. El número total de sucesos de cada clase tiene
un número asociado de factor de normalización: “Normalización de la traza”,
“Normalización de las cascadas”, “Normalización de los intermedios”, que son
ajustados sin ninguna restricción. También se tienen en cuenta las incertidumbres
en la masa efectiva del detector y de las secciones eficaces de interacción de los
neutrinos. Se permite variar hasta un 5% respecto al valor nominal el cociente
entre el número total de νµ y de νe ("νµ/νe skew" ), νµ y νµ ("νµ/νµ skew") y νe y
νe ("νe/νe skew"). El margen del 5%, que es independiente del ángulo zenital y la
energía, es más conservador que las actuales incertidumbres estimadas para el flujo
de atmosfércos [207]. El efecto de estas incertidumbres en la distribuciones finales
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se muestra en las Fig. 4.35 hasta Fig. 4.37.

El error en la “pendiente de la energía”, ∆γ, aplicado en función de Eγ
ν , tiene

en cuenta el cambio en el espectro de la energía debido a incertidumbres en el
espectro primario de rayos cósmicos. Se permite variar la pendiente de la energía
hasta un 5% alrededor del valor central ∆γ = 0. Análogamente, se permite variar
hasta un 2% el cociente de neutrinos ascendentes respecto a descendentes, llamado
“pendiente de zénit”. El efecto de estas incertidumbres en las distribuciones finales
de sucesos se muestra en las Fig. 4.38 y Fig. 4.39.

• Incertidumbres en las secciones eficaces: Mientras que la universalidad de
leptones implica que los cocientes entre distintos sabores son bien conocidos, lo
mismo no ocurre necesariamente para los cocientes entre sucesos CC y NN. Por
tanto, también se ajusta la normalización de las corrientes neutras dentro de un 5%.
Las incertidumbres en las secciones eficaces de CC y NC absolutas no se consideran
en este estudio. Sin embargo, son absorbidas en la normalización del flujo. El efecto
de la normalización de la escala de NC sobre la distribución de sucesos se muestra
en la Fig. 4.40.

• Incertidumbres del detector: Entre las incertidumbres incorporadas a este análisis,
las normalizaciones de trazas, intermedios y cascadas y en la escala de energías
pueden ser consideradas efectos del detector. La escala de energía depende
de las eficiencias de los PMTs y las propiedades del agua [23]. Si los sucesos
son sistemáticamente más brillantes o menos de lo esperado, esto causará un
desplazamiento en la normalización de la masa efectiva. Esto se tiene en cuenta en
la escala de energía, que se ajusta dentro de una incertidumbre de 10% alrededor
de su valor nominal.

Resultados

Los resultados de los cuatro análisis de física se resumen en las siguientes subsecciones
para ambos ordenamientos de masa: ordenamiento normal (ON) y ordenamiento inverso
(OI). Los resultados de la búsqueda de INE con ANTARES y la estimación de la capacidad
de ORCA se han agrupado en aras de la brevedad. A esto sigue la estimación de la
resolución de ORCA para la determinación del ordenamiento de masas en presencia de
INE. Por último, se muestra la resolución de ORCA para el octante de θ23.

Búsqueda de INE con ANTARES y KM3NeT-ORCA

Se presenta a continuación el análisis de ANTARES en busca de INE en los datos de
oscilación de neutrinos atmosféricos. No se ha observado un exceso o déficit significativo
y los datos son consistentes con la hipótesis de oscilaciones estándar a > 2.2σ. Esto resulta
en límites en el sector µ− τ de las INE.

Para KM3NeT-ORCA, se han simulado distribuciones de sucesos para un periodo de
exposición de tres años. El número esperado de sucesos se ha pesado de acuerdo a
varias hipótesis de señal de INE para explorar el potencial de ORCA para INE. Los
límites de ANTARES y la sensitividad de ORCA se muestran en las Fig. 13 – Fig. 15
con comparaciones con otros experimentos.
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Figure 13: Límites (izquierda: 90% C.L., derecha: 99% C.L.) en el espacio de fase εµτ− εττ tras diez
años de funcionamiento de ANTARES, comparado con la sensitividad del detector y
los límites de Super-K [192].
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Figure 14: Límites (90% C.L.) en el espacio de fase εeτ − εττ obtenidos tras diez años de
funcionamiento de ANTARES, junto con la sensitividad del detector y los límites
obtenidos por Super-K [192].
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Figure 15: Límite en el espacio de fase εµτ obtenidos tras diez años de funcionamiento de
ANTARES, junto con la sensitividad del detector y los límites de Super-K [192].

Los límites para INE obtenidos tras diez años de datos de desaparición de muones
atmosféricos tomados por ANTARES son más restrictivos que los obtenidos por otros
experimentos, de manera que son los mejores límites existentes hasta la fecha en el
sector µ− τ. ORCA muestra un excelente potencial para poner límites más restrictivos
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en un orden de magnitud en varios espacios de parámetros de INE. Finalmente, las
sensitividades para INE esperados para ORCA y los límites obtenidos por ANTARES
en el sector mu-tau se muestran en la Tab. 4 y en las Eq. 34 y Eq. 35, respectivamente.

INE Couplings Assumed True NMO Bounds (90% C.L.)
εeµ NO (−1.7× 10−2, 1.7× 10−2)

IO (−2.0× 10−2, 2.0× 10−2)
εeτ NO (−1.8× 10−2, 2.1× 10−2)

IO (−3.1× 10−2, 2.7× 10−2)
εµτ NO (−1.7× 10−3, 1.7× 10−3)

IO (−1.7× 10−3, 1.7× 10−3)
εττ NO (−0.8× 10−2, 1.1× 10−2)

IO (−1.1× 10−2, 0.8× 10−2)

Table 4: Sensitividades (90% C.L.) para INE de neutrinos con quarks d para tres años de datos
de ORCA con 115 líneas espaciadas 20 m horizontalmente. Solo un parámetro de INE se
considera cada vez.

−4.2× 10−3 < εµτ < 2.7× 10−3 (at 90% C.L),
−6.1× 10−2 < εττ < −2.1× 10−2 and 2.1× 10−2 < εττ < 7.3× 10−2 (at 90% C.L).

(34)

−3.8× 10−3 < εµτ < 1.6× 10−3 ∀ εττ = 0 (at 90% C.L), (35)

Impacto de las INE en la sensitividad de KM3NeT-ORCA

La sensitividad de ORCA para el ordenamiento de masas de los neutrinos para la
hipótesis de INE se presenta en la Fig. 16. Esta incorpora la incertidumbre de los modelos
de ajuste a los espectros experimentalmente observados y enfatiza la importancia de
probar diferentes marcos con medidas de alta precisión de los parámetros de oscilación.
En el caso de OI verdadero, la resolución de ORCA para el ordenamiento de las masas
se puede ver perjudicada de manera significativa en presencia de efectos subdominantes
provenientes de INE, dependiendo del valor verdadero de θ23. El efecto es despreciable
si el ordenamiento de masas es normal. Por tanto, la presencia de INE puede afectar al
potencial de ORCA para medir los parámetros de oscilaciones estándar.
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Figure 16: Sensitividad prevista para el ordenamiento de masas tras tres años de funcionamiento
de ORCA en función del valor verdadero de θ23para ON (rojo) y OI (azul), con
un mejor ajuste global δCP de 221◦ (228◦) para la hipótesis ON (OI). Las líneas
discontinuas (continuas) corresponden al caso en el que los parámetros de INE se
ajustan simultáneamente (fijados en 0).

Sensitividad de KM3NeT-ORCA al octante de θ23

Hemos investigado cuántos años requeriría ORCA para hacer una medida a 1/2/3σ del
octante de θ23, dependiendo de los verdaderos valores del ordenamiento de masas y
de θ23. Los resultados se muestran en las Fig. 17 y Fig. 18. Las curvas de sensitividad
correspondientes a la minimización sobre el ordenamiento también se incluyen.

Los “hombros” en θ23 ∼ 42◦ (ON) y θ23 ∼ 49◦ (OI) corresponden a regiones donde la
incertidumbre en el conocimiento del ordenamiento degrada la sensitividad del octante
y lleva a un incremento del tiempo de exposición necesario para determinarlo. Si el
ordenamiento verdadero es ON, probar una solución falsa del octante en la hipótesis
OI tiene un efecto significativo en la sensitividad el octante para θ23 < 42◦. Cuando
el ordenamiento verdadero es OI, la solución falsa del octante para ON tiene un efecto
pequeño sobre la sensitividad para θ23 > 49◦.
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Figure 17: Tiempo de exposición (en años) requerido para que ORCA pueda excluir el octante
falso de θ23 a 1/2/3σ, en función del valor verdadero de θ23 asumiendo ordenamiento
ON. La curva continua se refiere al caso donde el ordenamiento se ha fijado al
valor verdadero, mientras que la curva discontinua corresponde al caso en el que el
ordenamiento se trata como un parámetro libre en el ajuste.
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Figure 18: Tiempo de exposición (en años) requerido para que ORCA pueda excluir el octante
falso de θ23 a 1/2/3σ, en función del valor verdadero de θ23 asumiendo ordenamiento
OI. La curva continua se refiere al caso donde el ordenamiento se ha fijado al
valor verdadero, mientras que la curva discontinua corresponde al caso en el que el
ordenamiento se trata como un parámetro libre en el ajuste.

Se prevé que ORCA pueda hacer una determinación a 1σ el octante de θ23 en menos de
un año si el ordenamiento de masas es normal y si θ23 < 42.5◦ o θ23 > 47.6◦, o si el
ordenamiento es inverso y θ23 < 42.2◦ o θ23 > 48.0◦. Con cinco años de datos se puede
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hacer una medida a 1σ para ON y θ23 < 42.2◦ o θ23 > 46.2◦, o para OI y θ23 < 42.4◦ o
θ23 > 47◦.

Conclusiones

Los neutrinos y antineutrinos atmosféricos de sabor muónico y electrónico representan
una rica fuente de información sobre las oscilaciones de neutrinos gracias a la
dependencia de sus flujos con el ángulo y la energía y los efectos de materia. Gracias a
la alta estadística de neutrinos atmosféricos, ANTARES y KM3NeT pueden hacer fuertes
contribuciones a la comprensión de los neutrinos la medida precisa de sus parámetros de
oscilación.

Los estudios llevados a cabo en esta tesis indican que ORCA será el primer detector de
neutrinos atmosféricos capaz de medir el ordenamiento de masas con una precisión de
3σ. Sin embargo, antes de atribuir cualquier medida a las oscilaciones estándar en el
paradigma básico tres sabores de neutrinos, es crucial estudiar posibles correlaciones y
degeneraciones que podrían aparecer debidas a nuevos parámetros de nuevos escenarios
físicos como las interacciones no estándar de neutrinos. Se espera que ORCA pueda
restringir muchos de esos casos de física exóticos que podrían contribuir a la señal en
la extracción de los parámetros de oscilaciones estándar. Además, se prevé que ORCA
pueda medir con precisión el valor de θ23 tras solo unos meses de toma de datos.

Además, se ha propuesto el proyecto P2O con el objetivo de mandar un haz de
neutrinos desde Protvino (Rusia) a ORCA para medir la violación de CP en el sector
de neutrinos [70]. P2O proporcionará excelente sensitividad a los efectos de materia en
la Tierra, permitiendo una medida de la violación de CP a >2σ en 15 años con un haz
de potencia modesta (90 kW ≈ 0.8 × 1020 protones en el destino). La posibilidad de
una versión de ORCA diez veces más densa, llamada Super-ORCA [227], también está
en consideración. Super-ORCA puede probar la hipótesis de ordenamiento (NMO) a
>2σ en cinco años. En esta excitante era de física de neutrinos, ANTARES y KM3NeT
pueden hacer contribuciones significativas a muchas cuestiones no resueltas en física de
partículas estudiando neutrinos en el fondo del mar Mediterráneo.
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